

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (6): 1530-1542.DOI: 10.6048/j.issn.1001-4330.2025.06.025
马海叶1,2(
), 李忠慧2, 王嘉俊1,2, 唐丽苹1,2, 狄江3(
), 李文蓉2(
)
收稿日期:2024-11-28
出版日期:2025-06-20
发布日期:2025-07-29
通信作者:
李文蓉(1969-),女,江苏海安人,研究员,博士,研究方向为家畜遗传育种,(E-mail)xjlwr@126.com;作者简介:马海叶(1999-),女,甘肃平凉人,硕士研究生,研究方向为动物遗传育种与繁殖,(E-mail)2627047120@qq.com
基金资助:
MA Haiye1,2(
), LI Zhonghui2, WANG Jiajun1,2, TANG Liping1,2, DI Jiang3(
), LI Wenrong2(
)
Received:2024-11-28
Published:2025-06-20
Online:2025-07-29
Supported by:摘要:
【目的】分析中国美利奴羊毛密度表型差异,筛选影响中国美利奴羊毛密度性状相关的候选基因,为阐明中国美利奴羊毛密度的分子调控机制提供参考。【方法】采用毛丛法对中国美利奴羊的羊毛密度和毛囊密度进行测定、统计分析,选择不同羊毛密度中国美利奴羊皮肤进行转录组测序,鉴定与羊毛密度性状相关的候选基因。【结果】中国美利奴高羊毛密度组(HWD组)的平均羊毛密度(9 852.02±1 673.98)根/cm2,极显著高于低羊毛密度组(LWD组)(5 390.61±1 365.67)根/cm2(P<0.01)。HWD组与LWD组平均初级毛囊密度差异不显著,HWD组的平均次级毛囊密度、初级毛囊密度与次级毛囊密度比值、平均总毛囊密度均极显著高于LWD组(P<0.01)。利用羊毛密度显著差异的中国美利奴羊皮肤转录组数据,HWD组相对于LWD组,共筛选出521个差异表达基因,其中280个基因表达上调、241个基因表达下调。通过高、低密度组间差异基因富集、差异基因互作和差异基因表达验证等分析,筛选出KRT18、KRT16、LOC101116157、CCN3、SPARC、C7、ATP12A、ANGPT4、WNT16、S100A1及S100A4等,影响了中国美利奴羊毛生长及密度的差异表达基因。【结论】不同羊毛密度的细毛羊皮肤组织的基因表达谱存在差异,这些基因表达可通过改变皮肤毛囊及羊毛生长等过程影响羊毛密度。
中图分类号:
马海叶, 李忠慧, 王嘉俊, 唐丽苹, 狄江, 李文蓉. 中国美利奴羊毛密度相关基因的筛选[J]. 新疆农业科学, 2025, 62(6): 1530-1542.
MA Haiye, LI Zhonghui, WANG Jiajun, TANG Liping, DI Jiang, LI Wenrong. Identification of genes associated with wool density traits in Chinese Merino sheep[J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1530-1542.
| 基因 Gene | 引物序列 Primer | 产物长度 Product length(bp) | GenBank登录号 GenBank accession numer |
|---|---|---|---|
| β-actin | F:AAGGACCTCTACGCCAACAC R:GTAACGCAGCTAACAGTCCG | 279 | NM_001009784.3 |
| ADIPOQ | F:TCTTCTACTGCTGCTAGCCC R:TAGGACCAACGAGACCTGGAT | 197 | NM_001308565.1 |
| KRT16 | F:CTGGAGATGCAGATCGAAGGC R:TCACTGTTAAAGGCCGCTTC | 263 | XM_060394896.1 |
| SPARC | F:CCTTGCCTGATGAGACAGAAGT R:GTGTTGCTCTCGTCCAGTTC | 202 | NM_001166202.1 |
| IL37 | F:GACACAACAAGCCATCCCTG R:CAGGATAGCGGAAGGTGCAG | 171 | XM_027965788.2 |
| CNN3 | F:GATCTGTGACACCAAAGAGACG R:CTGTTCGATGCAGTTGACACT | 118 | XM_004011765.5 |
| ANGPT4 | F:AATGCTGAAGAACAACACGC R:AGCTGGATCTCCATTCGGGA | 225 | XM_027977034.3 |
| KRT18 | F:AGACTGGGGACACTACCTGA R:CACTCTCCACAGACTGGCG | 170 | XM_027967273.2 |
| C7 | F:TCAGTCTGGGTCCTTAGGAGG R:AGGCCTCTTCCATCGTTGTG | 167 | XM_004017017.6 |
| ATP12A | F:CGGTACCTGATGCTGTCACC R:ATACCGACGCTCTTGGCAAT | 106 | XM_004012313.6 |
表1 引物序列
Tab.1 The qPCR Primers were used in this study
| 基因 Gene | 引物序列 Primer | 产物长度 Product length(bp) | GenBank登录号 GenBank accession numer |
|---|---|---|---|
| β-actin | F:AAGGACCTCTACGCCAACAC R:GTAACGCAGCTAACAGTCCG | 279 | NM_001009784.3 |
| ADIPOQ | F:TCTTCTACTGCTGCTAGCCC R:TAGGACCAACGAGACCTGGAT | 197 | NM_001308565.1 |
| KRT16 | F:CTGGAGATGCAGATCGAAGGC R:TCACTGTTAAAGGCCGCTTC | 263 | XM_060394896.1 |
| SPARC | F:CCTTGCCTGATGAGACAGAAGT R:GTGTTGCTCTCGTCCAGTTC | 202 | NM_001166202.1 |
| IL37 | F:GACACAACAAGCCATCCCTG R:CAGGATAGCGGAAGGTGCAG | 171 | XM_027965788.2 |
| CNN3 | F:GATCTGTGACACCAAAGAGACG R:CTGTTCGATGCAGTTGACACT | 118 | XM_004011765.5 |
| ANGPT4 | F:AATGCTGAAGAACAACACGC R:AGCTGGATCTCCATTCGGGA | 225 | XM_027977034.3 |
| KRT18 | F:AGACTGGGGACACTACCTGA R:CACTCTCCACAGACTGGCG | 170 | XM_027967273.2 |
| C7 | F:TCAGTCTGGGTCCTTAGGAGG R:AGGCCTCTTCCATCGTTGTG | 167 | XM_004017017.6 |
| ATP12A | F:CGGTACCTGATGCTGTCACC R:ATACCGACGCTCTTGGCAAT | 106 | XM_004012313.6 |
| 样本 序号 Sample | HWD组个体 羊毛密度 (根/cm2) Individual wool density of HWD group (roots /cm2) | 样本号 Sample | LWD组个体 羊毛密度 (根/cm2) Individual wool density in LWD group (roots /cm2) |
|---|---|---|---|
| M1 | 9 599.86±740.78 | X1 | 4 784.16±528.16 |
| M2 | 7 580.63±564.01 | X2 | 4 465.07±161.07 |
| M3 | 9 224.80±148.86 | X3 | 6 020.73±447.87 |
| M4 | 12 183.55±249.22 | X4 | 4 530.65±215.19 |
| M5 | 7 447.33±193.86 | X5 | 7 423.50±48.50 |
| M6 | 10 037.68±520.97 | X6 | 7 086.63±218.13 |
| M7 | 12 119.28±312.94 | X7 | 6 046.34±607.34 |
| M8 | 9 676.79±642.13 | X8 | 3 112.43±698.43 |
| M9 | 11 493.81±779.05 | X9 | 4 286.698±88.89 |
| M10 | 9 156.43±433.57 | X10 | 6 149.94±75.94 |
| 平均羊 毛密度 (根/cm2) Average wool density (roots /cm2) | 9 852.02±1 673.98A | 平均羊 毛密度 (根/cm2) Average wool density (roots /cm2) | 5 390.61±1365.67B |
表2 中国美利奴羊羊毛密度比较
Tab.2 Comparison of wool density of Chinese Merino sheep
| 样本 序号 Sample | HWD组个体 羊毛密度 (根/cm2) Individual wool density of HWD group (roots /cm2) | 样本号 Sample | LWD组个体 羊毛密度 (根/cm2) Individual wool density in LWD group (roots /cm2) |
|---|---|---|---|
| M1 | 9 599.86±740.78 | X1 | 4 784.16±528.16 |
| M2 | 7 580.63±564.01 | X2 | 4 465.07±161.07 |
| M3 | 9 224.80±148.86 | X3 | 6 020.73±447.87 |
| M4 | 12 183.55±249.22 | X4 | 4 530.65±215.19 |
| M5 | 7 447.33±193.86 | X5 | 7 423.50±48.50 |
| M6 | 10 037.68±520.97 | X6 | 7 086.63±218.13 |
| M7 | 12 119.28±312.94 | X7 | 6 046.34±607.34 |
| M8 | 9 676.79±642.13 | X8 | 3 112.43±698.43 |
| M9 | 11 493.81±779.05 | X9 | 4 286.698±88.89 |
| M10 | 9 156.43±433.57 | X10 | 6 149.94±75.94 |
| 平均羊 毛密度 (根/cm2) Average wool density (roots /cm2) | 9 852.02±1 673.98A | 平均羊 毛密度 (根/cm2) Average wool density (roots /cm2) | 5 390.61±1365.67B |
图1 不同羊毛密度组皮肤横切 注:左侧表示HWD组,右侧为LWD组。侧面代表不同的比例尺。a,皮脂腺;b,初级毛囊;c,次级毛囊
Fig.1 Skin crosscut of different wool density groups Notes: The left side indicates the HWD group and the right side indicates the LWD group. a,sebaceous glands;b,Primary hair follicle;c,Secondary hair follicle
| 毛囊密度 Hair follicle density | HWD组 HWD group (n=3) | LWD组 LWD group (n=3) |
|---|---|---|
| 初级毛囊密度 Primary hair follicle density(个/mm2) | 11.73±0.88 | 11.47±1.17 |
| 次级毛囊密度 Secondary hair follicle density(个/mm2) | 123.77±6.56A | 75.60±6.82B |
| 总毛囊密度 Total hair follicle density(个/mm2) | 135.5±7.21A | 87.08±7.04B |
| 次级毛囊/ 初级毛囊 Secondary follicle primary follicle (S/P) | 10.57±0.54A | 6.64±0.83B |
表3 中国美利奴羊毛囊密度比较
Tab.3 Comparison of hair follicle density of Chinese Merino sheep
| 毛囊密度 Hair follicle density | HWD组 HWD group (n=3) | LWD组 LWD group (n=3) |
|---|---|---|
| 初级毛囊密度 Primary hair follicle density(个/mm2) | 11.73±0.88 | 11.47±1.17 |
| 次级毛囊密度 Secondary hair follicle density(个/mm2) | 123.77±6.56A | 75.60±6.82B |
| 总毛囊密度 Total hair follicle density(个/mm2) | 135.5±7.21A | 87.08±7.04B |
| 次级毛囊/ 初级毛囊 Secondary follicle primary follicle (S/P) | 10.57±0.54A | 6.64±0.83B |
| 样本名称 Sample name | 原始数据 Raw reads | 有效数据 Clean reads | 总碱基数(G) Raw bases(G) | Q20 (%) | Q30 (%) | GC (%) | 有效比对位置 Total mapped reads | 唯一比对位置 Uniq mapped reads |
|---|---|---|---|---|---|---|---|---|
| HWD1 | 99 631 888 | 98 403 852 | 14.94 | 96.95 | 91.71 | 43.5 | 76760706 (78.01%) | 74966784 (76.18%) |
| HWD4 | 84 552 020 | 83 407 436 | 12.68 | 96.58 | 90.88 | 43.53 | 74051906 (88.78%) | 72554208 (86.99%) |
| HWD5 | 91 710 628 | 90 393 514 | 13.76 | 97.26 | 92.37 | 44.43 | 80665002 (89.24%) | 78763920 (87.13%) |
| LWD1 | 86 716 742 | 85 687 388 | 13.01 | 97.14 | 92.11 | 43.73 | 75754520 (88.41%) | 74119478 (86.50%) |
| LWD2 | 76 853 470 | 75 812 706 | 11.53 | 96.84 | 91.47 | 44.07 | 68094896 (89.82%) | 66541090 (87.77%) |
| LWD3 | 84 070 894 | 82 835 182 | 12.61 | 96.91 | 91.63 | 43.9 | 73686020 (88.95%) | 71999760 (86.92%) |
表4 测序数据质量情况统计
Tab.4 Quality statistics of sequencing data
| 样本名称 Sample name | 原始数据 Raw reads | 有效数据 Clean reads | 总碱基数(G) Raw bases(G) | Q20 (%) | Q30 (%) | GC (%) | 有效比对位置 Total mapped reads | 唯一比对位置 Uniq mapped reads |
|---|---|---|---|---|---|---|---|---|
| HWD1 | 99 631 888 | 98 403 852 | 14.94 | 96.95 | 91.71 | 43.5 | 76760706 (78.01%) | 74966784 (76.18%) |
| HWD4 | 84 552 020 | 83 407 436 | 12.68 | 96.58 | 90.88 | 43.53 | 74051906 (88.78%) | 72554208 (86.99%) |
| HWD5 | 91 710 628 | 90 393 514 | 13.76 | 97.26 | 92.37 | 44.43 | 80665002 (89.24%) | 78763920 (87.13%) |
| LWD1 | 86 716 742 | 85 687 388 | 13.01 | 97.14 | 92.11 | 43.73 | 75754520 (88.41%) | 74119478 (86.50%) |
| LWD2 | 76 853 470 | 75 812 706 | 11.53 | 96.84 | 91.47 | 44.07 | 68094896 (89.82%) | 66541090 (87.77%) |
| LWD3 | 84 070 894 | 82 835 182 | 12.61 | 96.91 | 91.63 | 43.9 | 73686020 (88.95%) | 71999760 (86.92%) |
图4 差异表达基因Pathway富集气泡图 注:散点图是KEGG Pathway富集分析结果的图形化展示方式。在此图中,KEGG Pathway富集程度通过GeneRatio、pvalue和富集到此通路上的基因个数来衡量。Count:富集在通路中的基因数目;pvalue值:富集显著注
Fig.4 Bubble enrichment map of differentially expressed genes Pathway Notes: Scatter plot is a graphical display of KEGG Pathway enrichment analysis results. In this graph, the enrichment of KEGG Pathway is measured by GeneRatio, pvalue, and the number of genes enriched in this pathway. Count : the number of genes enriched in the pathway ; pvalue value : Enriched significant annotation
图5 差异表达基因蛋白网络互作图 注:上调表达差异基因为红色,下调表达差异基因为绿色,圆点和字体越大表示与该基因连接的节点更多
Fig. 5 Interaction of differentially expressed gene protein networks Notes: Up-regulated differential genes are red, down-regulated differential genes are green, and larger dots and fonts indicate more nodes connected to the gene
| 基因 Gene | 差异倍数 Log2(FC) | pvale | GO term名称/通路名称 GO term name/Channel name | GO ID/通路ID GO ID/Path ID |
|---|---|---|---|---|
| KRT16 (LOC101108147) | 3.908 358 258 | 0.001 5 | 雌激素信号通路、中间丝细胞骨架、细胞迁移的负调控、中间丝 | ko04915、GO:0045111、GO:0030336、GO:0005882 |
| K38 | -0.990 508 546 | 0.049 | 雌激素信号通路、中间丝细胞骨架、中间丝 | ko04915、GO:0045111、GO:0005882 |
| KRT18 | 8.52E-10 | 1.07E-06 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| KRT2 | -1.107 283 021 | 0.0337 | 中间丝细胞骨架、中间丝 | GO:0045111、GO:0005882、 |
| KRT86 (LOC101112469) | -0.929 762 743 | 0.025 9 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC114113396 | -0.873 803 919 | 0.000 0 | 中间丝、中间丝细胞骨架 | GO:0005882、GO:0045111 |
| LOC101102526 | -0.793 473 605 | 0.002 1 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC114110489 | -0.704 724 41 | 0.024 2 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC105604740 | -1.055 040 848 | 0.006 0 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC105604748 | -0.678 692 255 | 0.034 9 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC114116854 | -1.014 303 349 | 0.000 0 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC106991399 | -0.645 218 659 | 0.001 5 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC101108798 | -0.747 533 195 | 0.032 4 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| PPARGC1A | -0.653 304 401 | 0.013 0 | AMPK信号通路、脂肪细胞因子信号通路、Apelin信号通路、胰岛素信号通路、长寿调节通路 | ko04152、ko04920、ko04371、ko04211 |
| ADIPOQ | 4.171 096 047 | 0.000 0 | PPAR信号通路、AMPK信号通路、脂肪细胞因子信号通路 | ko03320、ko04152、ko04920 |
| LPL | 1.566 831 306 | 0.0000 | PPAR信号通路、胆固醇代谢 | ko03320、ko04979、 |
| PCK1 | 3.028 853 484 | 0.0000 | PPAR信号通路、AMPK信号通路、脂肪细胞因子信号通路、胰岛素信号通路 | ko03320、ko04152、ko04920、ko04910 |
| PLIN1 | 2.050 184 714 | 0.0003 | PPAR信号通路、脂肪细胞中脂肪分解的调节、Apelin信号通路 | ko03320、ko04923、ko04371 |
| AQP7 | 3.191 035 154 | 0.000 0 | 脂肪细胞中脂肪分解的调节、PPAR信号通路 | ko04923、ko03320 |
| LOC114110557 | 1.354 378 402 | 0.017 1 | PPAR信号通路 | ko03320 |
| LOC101116157 | 2.169 032 359 | 0.004 4 | 甲状腺激素合成、 | ko04918 |
| LOC101105860 | 2.051 008 032 | 0.000 0 | 卡波西肉瘤相关疱疹病毒感染 | ko05167 |
| IL37 | -1.009 125 479 | 0.021 4 | 病毒蛋白与细胞因子和细胞因子受体的相互作用、细胞因子-细胞因子受体相互作用 | ko04061、ko04060 |
| ACVR1C | 1.941 346 561 | 0.0001 | 细胞因子-细胞因子受体相互作用、调节干细胞多能性的信号通路、TGF-β信号通路 | ko04060、ko04550、ko04350 |
| CCN3 | 0.830 009 455 | 0.0000 | 细胞外基质、外封装结构、细胞间连接、糖胺聚糖结合蛋白质、感觉知觉调节、细胞成分运动的负性调节 | GO:0031012、GO:0030312、GO:0005911、GO:0005539 |
| SPARC | -0.740 383 421 | 0.036 5 | 含胶原的细胞外基质、外封装结构、基底膜、细胞外基质结合、胶原蛋白结合、含胶原的细胞外基质 | GO:0031012、GO:0030312、GO:0005604、GO:0050840、GO:0005518、GO:0062023 |
| C7 | 1.533 434 994 | 0.0070 | 补体和凝血级联反应、系统性红斑狼疮、朊病毒疾病 | ko04610、ko05322、ko05020 |
| ATP12A | 0.769 716 368 | 0.0190 | 氧化磷酸化 | ko00190 |
| ANGPT4 | 0.857 573 739 | 0.000 1 | MAPK信号通路、PI3K-Akt信号通路 | ko04010、ko04151 |
| WNT16 | -0.695 275 741 | 0.007 9 | 调节干细胞多能性的信号通路、癌症中的转录失调、乳腺癌、Wnt信号通路 | ko04550、ko05202、ko05224、ko04310 |
| ESR1 | -0.709 884 33 | 0.000 4 | 雌激素信号通路、乳腺癌 | ko04915、ko05224 |
| S100A4 | 0.701 756 699 | 0.003 9 | 血液循环、血液循环的调节、心脏收缩、钙依赖性蛋白结合、循环系统过程 | GO:0008015、GO:1903522、GO:0003015、GO:0048306、GO:0003013 |
| S100A1 | 0.685 870 126 | 0.037 3 | NF-kB信号通路、NF-kB信号通路正调节、钙依赖性蛋白结合 | GO:0007249、GO:0043123、GO:0022832、GO:0048306 |
表5 影响中国美利奴羊毛密度相关候选基因
Tab.5 Candidate genes affecting wool density of Chinese Merino sheep
| 基因 Gene | 差异倍数 Log2(FC) | pvale | GO term名称/通路名称 GO term name/Channel name | GO ID/通路ID GO ID/Path ID |
|---|---|---|---|---|
| KRT16 (LOC101108147) | 3.908 358 258 | 0.001 5 | 雌激素信号通路、中间丝细胞骨架、细胞迁移的负调控、中间丝 | ko04915、GO:0045111、GO:0030336、GO:0005882 |
| K38 | -0.990 508 546 | 0.049 | 雌激素信号通路、中间丝细胞骨架、中间丝 | ko04915、GO:0045111、GO:0005882 |
| KRT18 | 8.52E-10 | 1.07E-06 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| KRT2 | -1.107 283 021 | 0.0337 | 中间丝细胞骨架、中间丝 | GO:0045111、GO:0005882、 |
| KRT86 (LOC101112469) | -0.929 762 743 | 0.025 9 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC114113396 | -0.873 803 919 | 0.000 0 | 中间丝、中间丝细胞骨架 | GO:0005882、GO:0045111 |
| LOC101102526 | -0.793 473 605 | 0.002 1 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC114110489 | -0.704 724 41 | 0.024 2 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC105604740 | -1.055 040 848 | 0.006 0 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC105604748 | -0.678 692 255 | 0.034 9 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC114116854 | -1.014 303 349 | 0.000 0 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC106991399 | -0.645 218 659 | 0.001 5 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| LOC101108798 | -0.747 533 195 | 0.032 4 | 角蛋白、中间丝、中间丝细胞骨架 | GO:0045095、GO:0005882、GO:0045111 |
| PPARGC1A | -0.653 304 401 | 0.013 0 | AMPK信号通路、脂肪细胞因子信号通路、Apelin信号通路、胰岛素信号通路、长寿调节通路 | ko04152、ko04920、ko04371、ko04211 |
| ADIPOQ | 4.171 096 047 | 0.000 0 | PPAR信号通路、AMPK信号通路、脂肪细胞因子信号通路 | ko03320、ko04152、ko04920 |
| LPL | 1.566 831 306 | 0.0000 | PPAR信号通路、胆固醇代谢 | ko03320、ko04979、 |
| PCK1 | 3.028 853 484 | 0.0000 | PPAR信号通路、AMPK信号通路、脂肪细胞因子信号通路、胰岛素信号通路 | ko03320、ko04152、ko04920、ko04910 |
| PLIN1 | 2.050 184 714 | 0.0003 | PPAR信号通路、脂肪细胞中脂肪分解的调节、Apelin信号通路 | ko03320、ko04923、ko04371 |
| AQP7 | 3.191 035 154 | 0.000 0 | 脂肪细胞中脂肪分解的调节、PPAR信号通路 | ko04923、ko03320 |
| LOC114110557 | 1.354 378 402 | 0.017 1 | PPAR信号通路 | ko03320 |
| LOC101116157 | 2.169 032 359 | 0.004 4 | 甲状腺激素合成、 | ko04918 |
| LOC101105860 | 2.051 008 032 | 0.000 0 | 卡波西肉瘤相关疱疹病毒感染 | ko05167 |
| IL37 | -1.009 125 479 | 0.021 4 | 病毒蛋白与细胞因子和细胞因子受体的相互作用、细胞因子-细胞因子受体相互作用 | ko04061、ko04060 |
| ACVR1C | 1.941 346 561 | 0.0001 | 细胞因子-细胞因子受体相互作用、调节干细胞多能性的信号通路、TGF-β信号通路 | ko04060、ko04550、ko04350 |
| CCN3 | 0.830 009 455 | 0.0000 | 细胞外基质、外封装结构、细胞间连接、糖胺聚糖结合蛋白质、感觉知觉调节、细胞成分运动的负性调节 | GO:0031012、GO:0030312、GO:0005911、GO:0005539 |
| SPARC | -0.740 383 421 | 0.036 5 | 含胶原的细胞外基质、外封装结构、基底膜、细胞外基质结合、胶原蛋白结合、含胶原的细胞外基质 | GO:0031012、GO:0030312、GO:0005604、GO:0050840、GO:0005518、GO:0062023 |
| C7 | 1.533 434 994 | 0.0070 | 补体和凝血级联反应、系统性红斑狼疮、朊病毒疾病 | ko04610、ko05322、ko05020 |
| ATP12A | 0.769 716 368 | 0.0190 | 氧化磷酸化 | ko00190 |
| ANGPT4 | 0.857 573 739 | 0.000 1 | MAPK信号通路、PI3K-Akt信号通路 | ko04010、ko04151 |
| WNT16 | -0.695 275 741 | 0.007 9 | 调节干细胞多能性的信号通路、癌症中的转录失调、乳腺癌、Wnt信号通路 | ko04550、ko05202、ko05224、ko04310 |
| ESR1 | -0.709 884 33 | 0.000 4 | 雌激素信号通路、乳腺癌 | ko04915、ko05224 |
| S100A4 | 0.701 756 699 | 0.003 9 | 血液循环、血液循环的调节、心脏收缩、钙依赖性蛋白结合、循环系统过程 | GO:0008015、GO:1903522、GO:0003015、GO:0048306、GO:0003013 |
| S100A1 | 0.685 870 126 | 0.037 3 | NF-kB信号通路、NF-kB信号通路正调节、钙依赖性蛋白结合 | GO:0007249、GO:0043123、GO:0022832、GO:0048306 |
图6 差异表达基因荧光定量RCR验证 注:纵坐标表示基因表达量,横坐标表示不同基因。黑色表示HWD组,灰色表示LWD组。“*”表示两组差异显著(P<0.05),“**”表示差异极显著(P<0.01)
Fig.6 RT-qRCR validation of differentially expressed genes Notes: The ordinate represents the amount of gene expression, and the abscissa represents different genes. Black represents the HWD group, and gray represents the LWD group. ' * ' indicated that the difference between the two groups was significant ( P< 0.05 ), and ' * * ' indicated that the difference was extremely significant ( P< 0.01 )
| [1] | 赵有璋. 羊生产学[M]. 2版. 北京: 中国农业出版社, 2002. |
| ZHAO Youzhang. Sheep and goat production[M]. 2nd ed. Beijing: China Agriculture Press, 2002. | |
| [2] | Hynd P, Ponzoni R, Hill J. Can selection for skin traits increase the rate of genetic progress in merino breeding programs[C]. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 1997. |
| [3] | 江玮, 范一星, 乔贤, 等. 皮肤毛囊发育的转录组研究进展[J]. 遗传, 2015, 37(6): 528-534. |
| JIANG Wei, FAN Yixing, QIAO Xian, et al. The transcriptome research progresses of skin hair follicle development[J]. Hereditas, 2015, 37(6): 528-534. | |
| [4] | Noramly S, Freeman A, Morgan B A. Beta-catenin signaling can initiate feather bud development[J]. Development, 1999, 126(16): 3509-3521. |
| [5] | Huelsken J, Vogel R, Erdmann B, et al. Beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin[J]. Cell, 2001, 105(4): 533-545. |
| [6] | Laurikkala J, Pispa J, Jung H S, et al. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar[J]. Development, 2002, 129(10): 2541-2553. |
| [7] | 苏蕊, 张文广, 尹俊, 等. 骨形态发生蛋白2(BMP2)基因在内蒙古绒山羊皮肤毛囊发育不同时期的表达[J]. 华北农学报, 2008, 23(2): 110-113. |
| SU Rui, ZHANG Wenguang, YIN Jun, et al. The expression of Inner Mongolia Cashmere goat BMP2 in skin and hair follicle at different development stage[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(2): 110-113. | |
| [8] | Ding H S, Zhao H L, Zhao X W, et al. Analysis of histology and long noncoding RNAs involved in the rabbit hair follicle density using RNA sequencing[J]. BMC Genomics, 2021, 22(1): 89. |
| [9] | 吕雪峰. 中国美利奴羊次级毛囊发育关键基因鉴定与表达分析[D]. 乌鲁木齐: 新疆大学, 2020. |
| LYU Xuefeng. Identification and expression analysis ofkey genes in secondary follicledevelopment of Chinese Merino sheep[D]. Urumqi: Xinjiang University, 2020. | |
| [10] | Shi R J, Li S W, Liu P G, et al. Identification of key genes and signaling pathways related to Hetian sheep wool density by RNA-seq technology[J]. PLoS One, 2022, 17(5): e0265989. |
| [11] | Liu S Y, Wang Z T, Zhu R H, et al. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2[J]. Journal of Visualized Experiments, 2021,( 175): (175). |
| [12] | 杨永林, 倪建宏, 周鹏飞, 等. 中国美利奴“U” 系羊毛品质分析[J]. 新疆农业科学, 2001, 38(S1): 28. |
| YANG Yonglin, NI Jianhong, ZHOU Pengfei, et al. Quality analysis of Chinese Merino ' U ' wool[J]. Xinjiang Agricultural Sciences, 2001, 38(S1): 28. | |
| [13] | 宋雅琴, 李永军. 无角美利奴羊皮肤品质和羊毛密度的研究[J]. 中国养羊, 1995, 15(2): 44-46. |
| SONG Yaqin, LI Yongjun. Study on skin quality and wool density of hornless Merino sheep[J]. China Sheep & Goat Farming, 1995, 15(2): 44-46. | |
| [14] | Lee Y S, Liang Y C, Wu P, et al. STAT3 signalling pathway is implicated in keloid pathogenesis by preliminary transcriptome and open chromatin analyses[J]. Experimental Dermatology, 2019, 28(4): 480-484. |
| [15] | Schutte B, Henfling M, Kölgen W, et al. Keratin 8/18 breakdown and reorganization during apoptosis[J]. Experimental Cell Research, 2004, 297(1): 11-26. |
| [16] | 冯梦雨. 慢性冷胁迫对绵羊毛皮组织的调控及其分子机制[D]. 银川: 宁夏大学, 2022. |
| FENG Mengyu. Regulation and molecular mechanism of chronic cold stress on sheep fur tissue[D]. Yinchuan: Ningxia University, 2022. | |
| [17] | 张希宇, 翟频, 王璠, 等. KRT16在长毛兔毛囊发育过程中的表达规律及功能探究[J]. 畜牧兽医学报, 2023, 54(1): 157-167. |
| ZHANG Xiyu, ZHAI Pin, WANG Fan, et al. Expression and function of KRT16 in hair follicle development of angora rabbit[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 157-167. | |
| [18] | Smith F J, Fisher M P, Healy E, et al. Novel keratin 16 mutations and protein expression studies in pachyonychia congenita type 1 and focal palmoplantar keratoderma[J]. Experimental Dermatology, 2000, 9(3): 170-177. |
| [19] | 张静. 角蛋白24在脱毛中的作用研究[D]. 杭州: 浙江大学, 2020. |
| ZHANG Jing. The role of keratin 24 in hair loss[D]. Hangzhou: Zhejiang University, 2020. | |
| [20] | Schlossman M L, McCarthy J P. Lanolin and its derivatives[J]. Journal of the American Oil Chemists’ Society, 1978, 55(4): 447-450. |
| [21] | Guerrero-Juarez C F, Plikus M V. Emerging nonmetabolic functions of skin fat[J]. Nature Reviews Endocrinology, 2018, 14(3): 163-173. |
| [22] | Sardella C, Winkler C, Quignodon L, et al. Delayed hair follicle morphogenesis and hair follicle dystrophy in a lipoatrophy mouse model of pparg total deletion[J]. Journal of Investigative Dermatology, 2018, 138(3): 500-510. |
| [23] | Nicu C, Jackson J, Shahmalak A, et al. Adiponectin negatively regulates pigmentation, Wnt/β-catenin and HGF/c-Met signalling within human scalp hair follicles ex vivo[J]. Archives of Dermatological Research, 2023, 315(3): 603-612. |
| [24] | Kanemaru K, Noguchi E, Tahara-Hanaoka S, et al. Clec10a regulates mite-induced dermatitis[J]. Science Immunology, 2019, 4(42): eaax6908. |
| [25] | Feingold K R. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis[J]. Journal of Lipid Research, 2007, 48(12): 2531-2546. |
| [26] | Hill R P, Haycock J W, Jahoda C A B. Human hair follicle dermal cells and skin fibroblasts show differential activation of NF-κB in response to pro-inflammatory challenge[J]. Experimental Dermatology, 2012, 21(2): 158-160. |
| [27] | Pan Y, Wen X, Hao D, et al. The role of IL-37 in skin and connective tissue diseases[J]. Biomedicine & Pharmacotherapy, 2020, 122: 109705. |
| [28] | 冯思毓. 绒山羊脱绒相关关键基因及lncRNA的筛选与验证[D]. 沈阳: 沈阳农业大学, 2023. |
| FENG Siyu. Screening and Verification of Key Genes and lncRNAs Related to Cashmere Shedding in Cashmere Goats[D]. Shenyang: Shenyang Agricultural University, 2023. | |
| [29] | Wang X Y, Ghasri P, Amir M, et al. Topical application of recombinant type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure[J]. Molecular Therapy, 2013, 21(7): 1335-1344. |
| [30] | Rittié L, Perbal B, Castellot J J Jr, et al. Spatial-temporal modulation of CCN proteins during wound healing in human skin in vivo[J]. Journal of Cell Communication and Signaling, 2011, 5(1): 69-80. |
| [31] | Ferres V, Nattrass G S, Mitchell M E, et al. Expression of SPARC (secreted protein acidic rich in cysteine) throughout the hair cycle in rats[J]. null, 2004. digital library. |
| [32] | 沈金澄. 辽宁绒山羊次级毛囊退行期转向休止期的关键蛋白筛选及调控网络研究[D]. 沈阳: 沈阳农业大学, 2023. |
| SHEN Jincheng. Study on the Screening of Key Proteins and Regulatory Networks during the Transition from Catagen to Telogen of Liaoning Cashmere Goat Secondary Hair Follicles[D]. Shenyang: Shenyang University, 2023. | |
| [33] | 李凡. 日粮铜调控獭兔毛囊发育的分子和代谢机制研究[D]. 泰安: 山东农业大学, 2023. |
| LI Fan. Study of Molecular and Metabolic Mechanisms of Dietary Copper Regulating Hair Follicle Development in Rex[D]. Taian: Shandong Agricultural University, 2023. | |
| [34] | Chew E G Y, Lim T C, Leong M F, et al. Observations that suggest a contribution of altered dermal papilla mitochondrial function to androgenetic alopecia[J]. Experimental Dermatology, 2022, 31(6): 906-917. |
| [35] | Xie X Y, Han C F, Zeng W Q, et al. Possible Involvement of F1F0-ATP synthase and Intracellular ATP in Keratinocyte Differentiation in normal skin and skin lesions[J]. Scientific Reports, 2017, 7: 42672. |
| [36] | 范心怡, 刘苍维, 周怡君, 等. 血管生成素4对牙髓干细胞成牙本质向分化的作用[J]. 口腔疾病防治, 2023, 31(10): 692-700. |
| FAN Xinyi, LIU Cangwei, ZHOU Yijun, et al. Effect of angiopoietin 4 on odontogenic differentiation of dental pulp stem cells[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2023, 31(10): 692-700. | |
| [37] | 张稳. 绵羊脱毛性状相关基因的筛选[D]. 银川: 宁夏大学, 2020. |
| ZHANG Wen. Selection of genes related to shedding in sheep[D]. Yinchuan: Ningxia University, 2020. | |
| [38] | Reddy S, Andl T, Bagasra A, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis[J]. Mechanisms of Development, 2001, 107(1/2): 69-82. |
| [39] | Toy W, Weir H, Razavi P, et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists[J]. Cancer Discovery, 2017, 7(3): 277-287. |
| [40] | Premanand A, Reena Rajkumari B. Bioinformatic analysis of gene expression data reveals Src family protein tyrosine kinases as key players in androgenetic alopecia[J]. Frontiers in Medicine, 2023, 10: 1108358. |
| [41] | Mitoma C, Kohda F, Mizote Y, et al. Localization of S100A2, S100A4, S100A6, S100A7, and S100P in the human hair follicle[J]. Hukuoka Acta Medica, 2014, 105(7): 148-156. |
| [42] | 聂杨帆. 藏羊初级毛囊发育诱导期分子调控网络和候选基因转录调控机制研究[D]. 武汉: 华中农业大学, 2019. |
| NIE Yangfan. Molecular regulation network of primary wool follicle induction in Tibetan sheep and transcriptional regulation mechanism of candidate[D]. Wuhan: Huazhong Agricultural University, 2019. | |
| [43] | 李文婷. 长江三角洲白山羊优质笔料毛性状相关基因差异表达的研究[D]. 扬州: 扬州大学, 2013. |
| LI Wenting. Study on Differential Expression of Genes Influencing the Formation of High Quality Brush Fair in Yangtze River Delta White Goat[D]. Yangzhou: Yangzhou University, 2013. |
| [1] | 张彦威, 徐新明, 于丽娟, 田月珍, 谢梦婉, 唐丽苹, 郑培宇, 宋楠楠, 狄江. 全基因组选择信号筛选和田羊异质被毛相关候选基因[J]. 新疆农业科学, 2025, 62(3): 766-774. |
| [2] | 杨存明, 张晓雪, 张梦华, 赵志文, 李峰洁, 黄锡霞, 李杰, 艾孜买提·阿吾提, 何军敏, 李雪, 李婷婷, 唐丽, 张文静, 田月珍, 田可川. 细毛羊育种目标性状的相关关系及差异分析[J]. 新疆农业科学, 2024, 61(2): 514-520. |
| [3] | 王辉, 董永梅, 郭伟锋, 曹新川, 郭金成, 谢宗铭, 何良荣. 高温胁迫下陆地棉转录组差异性分析[J]. 新疆农业科学, 2023, 60(11): 2618-2626. |
| [4] | 杨永, 范蓉, 张学军, 李寐华, 凌悦铭, 张红, 杨文莉, 姜雪, 张永兵, 伊鸿平. 厚皮甜瓜心部果肉蔗糖含量QTL定位及候选基因分析[J]. 新疆农业科学, 2022, 59(10): 2446-2455. |
| [5] | 于丽娟, 张艳花, 拉扎特·艾尼瓦尔, 徐新明, 玛尔孜娅·亚森, 狄江. 中国美利奴羊羊毛弯曲相关microRNA的筛选[J]. 新疆农业科学, 2021, 58(3): 573-580. |
| [6] | 张艳花;于丽娟;蒋晓梅;玛尔孜亚·亚森;阿米尼古丽·阿不来孜;吴伟伟;古丽努尔·马哈提;玛依肯·沙力;拉扎提·艾尼瓦尔. 利用平均信息最大似然法估计中国美利奴羊羊毛性状遗传参数[J]. , 2016, 53(12): 2344-2352. |
| [7] | 赵冰茹;付雪峰;于丽娟;田月珍;何军敏;王旭光;黄锡霞;田可川. 中国美利奴羊(新疆型)各品系间毛性状的差异分析[J]. , 2016, 53(11): 2135-2141. |
| [8] | 石晓雷;马依拉·吐尔逊;刘春洁;田月珍;詹振宏;艾买提·买买提;黄锡霞;田可川. IGFBP-3基因多态性与中国美利奴羊(新疆型)部分毛性状的关联性分析[J]. , 2015, 52(9): 1731-1738. |
| [9] | 杨洁;田可川;黄锡霞;付雪峰;苟锡勋;赵贵平;努尔比亚·吾布力;田月珍;艾买提·买买提. 中国美利奴羊(新疆型)初生重及其影响因素分析[J]. , 2014, 51(4): 735-740. |
| [10] | 田月珍;黄锡霞;狄江;田可川;吴伟伟;徐新明;哈尼克孜;付雪峰;张艳花;马依拉;艾买提. 中国美利奴羊(新疆型)皮肤组织GAPDH基因实时荧光定量PCR方法的建立[J]. , 2012, 49(10): 1938-1943. |
| [11] | 秦崇凯;杨菊清;王琼;耿明;古丽尼沙·吐拉甫;刘武军. 中国美利奴羊(新疆型)及其杂交后代群体遗传多态性研究[J]. , 2012, 49(1): 113-121. |
| [12] | 沈敏;杨永林;何其宏;马春萍;刘守仁. 中国美利奴羊IGFBP-5基因外显子区的PCR-SSCP多态性分析[J]. , 2010, 47(8): 1615-1618. |
| [13] | 田可川;努尔比亚·吾布力;刘武军;张亚军;吴茜;张艳花;吴伟伟;徐新明;黄锡霞. 影响中国美利奴羊(新疆型)主要经济性状的非遗传因素分析[J]. , 2010, 47(6): 1261-1264. |
| [14] | 黄锡霞;巴德娃木·道别克;张亚军;吴茜;张艳花;吴伟伟;哈尼克孜·吐拉甫;田可川. 影响中国美利奴羊(新疆型)羔羊初生重的非遗传因素分析[J]. , 2010, 47(10): 2027-2030. |
| [15] | 喻世刚;方毅;刘武军;沈杰;陈小滁;马维英;李智军. 早期断奶对中国美利奴羊(新疆型)羔羊血清生化指标的影响[J]. , 2009, 46(6): 1363-1367. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||