新疆农业科学 ›› 2023, Vol. 60 ›› Issue (11): 2618-2626.DOI: 10.6048/j.issn.1001-4330.2023.11.003
• 作物遗传育种·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
王辉1(), 董永梅2,3, 郭伟锋1, 曹新川1, 郭金成1, 谢宗铭2,3(
), 何良荣1(
)
收稿日期:
2023-01-30
出版日期:
2023-11-20
发布日期:
2023-12-07
作者简介:
王辉(1993-),男,河南荥阳人,硕士研究生,研究方向为作物种质资源研究与创新,(E-mail)347488940@qq.com
基金资助:
WANG Hui1(), DONG Yongmei2,3, GUO Weifeng1, CAO Xinchuan1, GUO Jincheng1, XIE Zongming2,3(
), HE Liangrong1(
)
Received:
2023-01-30
Published:
2023-11-20
Online:
2023-12-07
Supported by:
摘要:
【目的】 研究陆地棉高温胁迫下关键基因的响应,比较基因表达差异,为揭示陆地棉高温胁迫响应的分子机制提供参考。【方法】 利用RNA-Seq对正常温度(26℃)和高温胁迫(42℃)的陆地棉品系YZ1进行转录组测序和数据分析。【结果】 在WN4/WH4,WN12/WH12,WN24/WH24,WN48/WH48共鉴定出383个共有上调基因和234个共有下调基因。将差异基因按GO功能分类,主要富集到上调差异基因和下调差异基因20个类别;差异基因显著富集到类黄酮生物合成途径、苯丙烷代谢、昼夜节律-植物、内质网加工等通路;鉴定出39个转录因子,主要是WRKY和MYB两大家族;Gohir.A08G104100是高温胁迫主要的基因,对植物的耐热性至关重要,Gohir.D08G033300是质体类异戊二烯生物合成的限制酶,对叶绿体发育至关重要。2个差异基因在整个时期表达量差异倍数较为显著。【结论】 高温胁迫和正常温度下在不同时间段,陆地棉的基因转录表达差异。
中图分类号:
王辉, 董永梅, 郭伟锋, 曹新川, 郭金成, 谢宗铭, 何良荣. 高温胁迫下陆地棉转录组差异性分析[J]. 新疆农业科学, 2023, 60(11): 2618-2626.
WANG Hui, DONG Yongmei, GUO Weifeng, CAO Xinchuan, GUO Jincheng, XIE Zongming, HE Liangrong. Analysis of the difference of transcription groups of upland cotton under heat stress[J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2618-2626.
碱基质量 值分值 Quality phred | 不正确的 碱基识别 Incorrect base identification | 碱基正确 识别率 Correct base recognition rate(%) |
---|---|---|
Q10 | 1/10 | 90 |
Q20 | 1/100 | 99 |
Q30 | 1/1000 | 99.90 |
Q40 | 1/10000 | 99.99 |
表1 碱基识别正确识别率与Phred分值之间的简明对应关系
Tab.1 Concise correspondence between base recognition accuracy and Phred score
碱基质量 值分值 Quality phred | 不正确的 碱基识别 Incorrect base identification | 碱基正确 识别率 Correct base recognition rate(%) |
---|---|---|
Q10 | 1/10 | 90 |
Q20 | 1/100 | 99 |
Q30 | 1/1000 | 99.90 |
Q40 | 1/10000 | 99.99 |
基因序号Gene_id | 基因名称Gene name | 描述Description | 调控Regulation |
---|---|---|---|
Gohir.A11G135500 | HSP15.7 | 15.7 k Da heat shock protein, peroxisomal | down |
Gohir.A05G091600 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G092500 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G139900 | HSP17.4B | 17.4 k Da class ⅡI heat shock protein | down |
Gohir.D06G084500 | HSP17.6 | 17.6 k Da class Ⅱ heat shock protein | down |
Gohir.D07G106100 | HSP18.5-C | 18.5 k Da class I heat shock protein | down |
Gohir.A08G104100 | HSP22 | Small heat shock protein, chloro-plastic | down |
Gohir.D05G127000 | HSP26.5 | 26.5 k Da heat shock protein, mitochondrial | down |
Gohir.D05G096900 | HSP70 | Heat shock cognate 70 k Da protein | down |
Gohir.A13G234100 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D13G239700 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D09G208200 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.D09G212600 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.A12G254100 | HSP83A | Heat shock protein 83 | down |
Gohir.D08G135400 | HSP83A | Heat shock protein 83 | down |
Gohir.D03G148100 | HSP83A | Heat shock protein 83 | down |
Gohir.D12G256400 | HSP83A | Heat shock protein 83 | down |
表2 17个差异基因热激蛋白(HSP)
Tab.2 17 DEGs heat shock protein(HSP)
基因序号Gene_id | 基因名称Gene name | 描述Description | 调控Regulation |
---|---|---|---|
Gohir.A11G135500 | HSP15.7 | 15.7 k Da heat shock protein, peroxisomal | down |
Gohir.A05G091600 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G092500 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G139900 | HSP17.4B | 17.4 k Da class ⅡI heat shock protein | down |
Gohir.D06G084500 | HSP17.6 | 17.6 k Da class Ⅱ heat shock protein | down |
Gohir.D07G106100 | HSP18.5-C | 18.5 k Da class I heat shock protein | down |
Gohir.A08G104100 | HSP22 | Small heat shock protein, chloro-plastic | down |
Gohir.D05G127000 | HSP26.5 | 26.5 k Da heat shock protein, mitochondrial | down |
Gohir.D05G096900 | HSP70 | Heat shock cognate 70 k Da protein | down |
Gohir.A13G234100 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D13G239700 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D09G208200 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.D09G212600 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.A12G254100 | HSP83A | Heat shock protein 83 | down |
Gohir.D08G135400 | HSP83A | Heat shock protein 83 | down |
Gohir.D03G148100 | HSP83A | Heat shock protein 83 | down |
Gohir.D12G256400 | HSP83A | Heat shock protein 83 | down |
记录号 Accession | 项目 Term | 输入基因数目 Input Gene Number | 所有基因数目 All Gene Number | P值 P-value | Q值 Q-value |
---|---|---|---|---|---|
ko00941 | Flavonoid biosynthesis | 20 (14.60%) | 81 (0.57%) | 8.40E-25 | 2.90E-23 |
ko01110 | Biosynthesis of secondary metabolites | 62 (45.26%) | 2,573 (18.15%) | 5.40E-14 | 1.20E-12 |
ko00360 | Phenylalanine metabolism | 10 (7.30%) | 104 (0.73%) | 4.80E-09 | 5.50E-08 |
ko04915 | Estrogen signaling pathway | 9 (6.57%) | 89 (0.63%) | 1.40E-08 | 1.30E-07 |
ko01100 | Metabolic pathways | 76 (55.47%) | 4,904 (34.59%) | 1.70E-07 | 1.30E-06 |
ko04612 | Antigen processing and presentation | 10 (7.30%) | 175 (1.23%) | 1.00E-06 | 7.00E-06 |
ko04940 | Type I diabetes mellitus | 4 (2.92%) | 24 (0.17%) | 2.90E-06 | 1.80E-05 |
ko05134 | Legionellosis | 8 (5.84%) | 145 (1.02%) | 1.10E-05 | 6.00E-05 |
ko04621 | NOD-like receptor signaling pathway | 4 (2.92%) | 32 (0.23%) | 1.30E-05 | 6.30E-05 |
ko04141 | Protein processing in endoplasmic reticulum | 17 (12.41%) | 593 (4.18%) | 1.60E-05 | 7.30E-05 |
ko00072 | Synthesis and degradation of ketone bodies | 3 (2.19%) | 17 (0.12%) | 1.80E-05 | 7.30E-05 |
ko04712 | Circadian rhythm-plant | 7 (5.11%) | 120 (0.85%) | 2.10E-05 | 8.00E-05 |
表3 差异基因KEGG富集变化
Tab.3 KEGG enrichment of the differentially expressed genes
记录号 Accession | 项目 Term | 输入基因数目 Input Gene Number | 所有基因数目 All Gene Number | P值 P-value | Q值 Q-value |
---|---|---|---|---|---|
ko00941 | Flavonoid biosynthesis | 20 (14.60%) | 81 (0.57%) | 8.40E-25 | 2.90E-23 |
ko01110 | Biosynthesis of secondary metabolites | 62 (45.26%) | 2,573 (18.15%) | 5.40E-14 | 1.20E-12 |
ko00360 | Phenylalanine metabolism | 10 (7.30%) | 104 (0.73%) | 4.80E-09 | 5.50E-08 |
ko04915 | Estrogen signaling pathway | 9 (6.57%) | 89 (0.63%) | 1.40E-08 | 1.30E-07 |
ko01100 | Metabolic pathways | 76 (55.47%) | 4,904 (34.59%) | 1.70E-07 | 1.30E-06 |
ko04612 | Antigen processing and presentation | 10 (7.30%) | 175 (1.23%) | 1.00E-06 | 7.00E-06 |
ko04940 | Type I diabetes mellitus | 4 (2.92%) | 24 (0.17%) | 2.90E-06 | 1.80E-05 |
ko05134 | Legionellosis | 8 (5.84%) | 145 (1.02%) | 1.10E-05 | 6.00E-05 |
ko04621 | NOD-like receptor signaling pathway | 4 (2.92%) | 32 (0.23%) | 1.30E-05 | 6.30E-05 |
ko04141 | Protein processing in endoplasmic reticulum | 17 (12.41%) | 593 (4.18%) | 1.60E-05 | 7.30E-05 |
ko00072 | Synthesis and degradation of ketone bodies | 3 (2.19%) | 17 (0.12%) | 1.80E-05 | 7.30E-05 |
ko04712 | Circadian rhythm-plant | 7 (5.11%) | 120 (0.85%) | 2.10E-05 | 8.00E-05 |
转录因子 TF | 基因登录号 Gene_id | 调控 Regulation | 结构域 Domain | 描述 Description | e-值 e_value |
---|---|---|---|---|---|
MYB | Gohir.D09G170800 | up | PF00249 | Myb-like DNA- binding domain | 2.00E-30 |
Gohir.A07G020200 | up | 5.20E-30 | |||
Gohir.A13G099200 | up | 4.00E-30 | |||
Gohir.A08G111000 | up | 9.30E-34 | |||
Gohir.D12G116900 | up | 3.20E-33 | |||
Gohir.A01G153200 | up | 5.90E-28 | |||
Gohir.D01G146000 | up | 2.80E-30 | |||
Gohir.D12G267100 | down | 7.40E-33 | |||
Gohir.A06G082300 | up | 1.40E-36 | |||
WRKY | Gohir.D11G100800 | up | PF03106 | WRKY DNA- binding domain | 5.40E-25 |
Gohir.A12G119500 | up | 1.40E-26 | |||
Gohir.A05G379600 | up | 2.70E-26 | |||
Gohir.D07G143900 | up | 2.20E-24 | |||
Gohir.D08G131700 | up | 3.70E-27 | |||
Gohir.D10G011400 | up | 5.30E-27 | |||
Gohir.A04G096000 | up | 1.70E-51 | |||
Gohir.D06G103300 | up | 2.80E-25 | |||
Gohir.D04G135800 | up | 2.00E-51 | |||
Gohir.D12G236600 | up | 2.80E-26 | |||
Gohir.D07G020700 | up | 8.40E-25 | |||
Gohir.A07G138800 | up | 9.80E-25 | |||
Gohir.A08G100100 | up | 9.50E-27 | |||
Gohir.A12G235400 | up | 7.60E-27 | |||
ERF | Gohir.D08G130900 | down | PF00847 | AP2 domain | 7.50E-13 |
Gohir.D13G069800 | up | 9.90E-09 | |||
NAC | Gohir.A01G001700 | up | PF02365 | No apical meristem (NAM) protein | 7.90E-25 |
Gohir.A12G035000 | up | 6.20E-26 | |||
Gohir.D01G001300 | up | 3.10E-23 | |||
Gohir.D03G003700 | up | 4.40E-26 | |||
bZIP | Gohir.D11G259400 | down | PF00170 | bZIP transcription factor | 6.60E-13 |
Gohir.A11G248500 | down | 1.50E-13 | |||
MYB_related | Gohir.A01G075400 | up | PF00249 | Myb-like DNA- binding domain | 9.00E-10 |
Gohir.D02G216000 | up | 6.60E-06 | |||
Dof | Gohir.D12G068300 | down | PF02701 | Dof domain, zinc finger | 7.30E-33 |
Gohir.D06G130200 | up | 2.20E-31 | |||
HSF | Gohir.A07G012200 | down | PF00447 | HSF-type DNA-binding | 6.50E-31 |
DBB | Gohir.A06G006200 | up | PF00643 | B-box zinc finger | 1.70E-13 |
HB-other | Gohir.A08G236600 | down | PF00046 | Homeobox domain | 3.50E-07 |
bHLH | Gohir.D05G002300 | up | PF00010 | Helix-loop-helix DNA-binding domain | 1.40E-12 |
表4 差异基因的转录因子
Tab.4 Transcription factors of differential genes
转录因子 TF | 基因登录号 Gene_id | 调控 Regulation | 结构域 Domain | 描述 Description | e-值 e_value |
---|---|---|---|---|---|
MYB | Gohir.D09G170800 | up | PF00249 | Myb-like DNA- binding domain | 2.00E-30 |
Gohir.A07G020200 | up | 5.20E-30 | |||
Gohir.A13G099200 | up | 4.00E-30 | |||
Gohir.A08G111000 | up | 9.30E-34 | |||
Gohir.D12G116900 | up | 3.20E-33 | |||
Gohir.A01G153200 | up | 5.90E-28 | |||
Gohir.D01G146000 | up | 2.80E-30 | |||
Gohir.D12G267100 | down | 7.40E-33 | |||
Gohir.A06G082300 | up | 1.40E-36 | |||
WRKY | Gohir.D11G100800 | up | PF03106 | WRKY DNA- binding domain | 5.40E-25 |
Gohir.A12G119500 | up | 1.40E-26 | |||
Gohir.A05G379600 | up | 2.70E-26 | |||
Gohir.D07G143900 | up | 2.20E-24 | |||
Gohir.D08G131700 | up | 3.70E-27 | |||
Gohir.D10G011400 | up | 5.30E-27 | |||
Gohir.A04G096000 | up | 1.70E-51 | |||
Gohir.D06G103300 | up | 2.80E-25 | |||
Gohir.D04G135800 | up | 2.00E-51 | |||
Gohir.D12G236600 | up | 2.80E-26 | |||
Gohir.D07G020700 | up | 8.40E-25 | |||
Gohir.A07G138800 | up | 9.80E-25 | |||
Gohir.A08G100100 | up | 9.50E-27 | |||
Gohir.A12G235400 | up | 7.60E-27 | |||
ERF | Gohir.D08G130900 | down | PF00847 | AP2 domain | 7.50E-13 |
Gohir.D13G069800 | up | 9.90E-09 | |||
NAC | Gohir.A01G001700 | up | PF02365 | No apical meristem (NAM) protein | 7.90E-25 |
Gohir.A12G035000 | up | 6.20E-26 | |||
Gohir.D01G001300 | up | 3.10E-23 | |||
Gohir.D03G003700 | up | 4.40E-26 | |||
bZIP | Gohir.D11G259400 | down | PF00170 | bZIP transcription factor | 6.60E-13 |
Gohir.A11G248500 | down | 1.50E-13 | |||
MYB_related | Gohir.A01G075400 | up | PF00249 | Myb-like DNA- binding domain | 9.00E-10 |
Gohir.D02G216000 | up | 6.60E-06 | |||
Dof | Gohir.D12G068300 | down | PF02701 | Dof domain, zinc finger | 7.30E-33 |
Gohir.D06G130200 | up | 2.20E-31 | |||
HSF | Gohir.A07G012200 | down | PF00447 | HSF-type DNA-binding | 6.50E-31 |
DBB | Gohir.A06G006200 | up | PF00643 | B-box zinc finger | 1.70E-13 |
HB-other | Gohir.A08G236600 | down | PF00046 | Homeobox domain | 3.50E-07 |
bHLH | Gohir.D05G002300 | up | PF00010 | Helix-loop-helix DNA-binding domain | 1.40E-12 |
[1] |
David B. Lobell, Wolfram Schlenker, Justin Costa-Roberts. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042):616-620.
DOI PMID |
[2] |
Peng S, Huang J, Sheehy J E. Rich yields decline with higher night temperature from global warming[J]. Pro Natl Acad Sci USA, 2004, 101(27):9971-9975.
DOI URL |
[3] |
王秀琴, 段维. 新疆莫索湾高温日数统计特征[J]. 干旱气象, 2014, 32(2):220-225.
DOI |
WANG Xiuqin, DUAN Wei. Statistical characteristics of high-temperature days in Mosuowan of Xinjiang[J]. Journal of Arid Meteorology, 2014, 32(2) : 220-225. | |
[4] | 黄帅, 江静. 中国持续性高温事件的时空分析[J]. 南京大学学报(自然科学版), 2012, 48(6):689-700. |
HUANG Shuai, JIANG Jing. The spatial-temporal analysis of persistent high-temperature events in China[J]. Journal of Nanjing University (Natural Sciences), 2012, 48(6) : 689-700. | |
[5] | 尹波. 高温胁迫下番茄Solexa转录组测序及LeCOR413-TM1基因克隆和功能分析[D]. 山东农业大学, 2014. |
Yin Bo. Transcriptional analysis of tomato under high temperature stress via Solexa sequencing and cloning and functional analysis of LeCOR413-TM1 gene[D]. Shandong Agricultural University, 2014. | |
[6] | 徐洪国. 葡萄耐热性评价及不同耐热性葡萄转录组研究[D]. 北京: 中国农业大学, 2014. |
Xu Hongguo. Evaluation of grape heat tolerance and transcriptome of different heat tolerance of grape[D]. Beijing: China Agricultural University, 2014. | |
[7] |
Elizabeth R. Waters, Garrett J. Lee,Elizabeth Vierling. Evolution, structure and function of the small heat shock proteins in plants[J]. Journal of Experimental Botany, 1996, 47(296): 325-338.
DOI URL |
[8] |
Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP)[J]. Journal of Proteomics, 2008, 71: 391-411.
DOI PMID |
[9] |
Kimpel J A, Key J L. Heat shock in plants[J]. Trends in Biochemical Sciences, 1985, 10: 353-357.
DOI URL |
[10] |
Van Montfort R L M, Basha E, Friedrich K L, et al. Crystal structure and assembly of a eukaryotic small heat shock protein[J]. Nature Structural Biology, 2001, 8: 1025-1030.
DOI PMID |
[11] |
Arasakesary S. J., Manonmani S, Pushpam R, et al. New temperature sensitive genic male sterile lines with better outcrossing ability for production of two-line hybrid in rice[J]. Rice Science, 2015, 22(1):49-52.
DOI |
[12] |
Raafat EN, Saber S, Yonnelle DM, et al. Microsatellite-aided screening for fertility restoration genes (Rf) facilitates hybrid improvement[J]. Rice Science, 2016, 23(3):160-164.
DOI |
[13] |
Frey FP, Urbany C, Hüttel B, et al. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress[J]. BMC Genomics, 2015, 16:123.
DOI PMID |
[14] |
Qin D, Wu H, Peng H, et al. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array[J]. BMC Genomics, 2008, 9:432.
DOI |
[15] |
Lee YH, Kim KS, Jang YS, et al. Global gene expression responses to waterlogging in leaves of rape seedlings[J]. Plant Cell Rep, 2014, 33(2):289-299.
DOI URL |
[16] |
Aulakh SS, Veilleux RE, Dickerman AW, et al. Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant[J]. Plant Mol Biol, 2014, 84(6):635-658.
DOI PMID |
[17] | Blanco-Ulate B, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea[J]. Front Plant Science, 2013, 4:142. |
[18] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12:357.
DOI PMID |
[19] |
Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general-purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30:923-930.
DOI URL |
[20] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15:550.
DOI URL |
[21] |
Goldstein L D, Cao Y, Pau G, et al. Prediction and Quantification of Splice Events from RNA-Seq Data.[J]. Plos One, 2016, 11(5):e0156132.
DOI URL |
[22] |
Schulze S K, Kanwar R, et al. SERE: Single-parameter quality control and sample comparison for RNA-Seq[J]. BMC genomics, 2012, 13(1): 524.
DOI |
[23] | Wahid A, Farooq M, Hussain I, et al. Responses and management of heat stress in plants[J]. In: Ahmad P, Prasad MNV, editors. Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer, 2012, p. 135-157. |
[24] |
李川, 乔江方, 朱卫红, 等. 玉米自交系响应花粒期高温胁迫差异表达基因的分析[J]. 华北农学报, 2019, 34(1):1-11.
DOI |
LI Chuan, QIAO Jiangfang, ZHU Weihong, et al. Differential expressed of high temperature stress in anthesis stage related genes of maize inbred lines[J]. Acta agriculture boreali-sinica, 2019, 34(1):1-11. | |
[25] | 翟秀明, 唐敏, 李解, 等. 基于RNA-Seq技术的茶树响应高温胁迫转录组差异性分析[J]. 分子植物育种, 2020, 18(17):5629-5637. |
ZHAI Xiuming, TANG Min, LI Jie, et al. Difference analysis of heat stress-responsive transcriptome of Camellia sinensis based on RNA-Seq technology[J]. Molecular plant breeding, 2020, 18(17):5629-5637. | |
[26] | 许小芳. 高温胁迫下玉米叶片的转录组和蛋白质组分析[D]. 郑州: 河南农业大学, 2019. |
Xu Xiaofang. Transcriptome and proteome analysis of maize leaf under high temperature stress[D]. Zhenzhou: Henan Agricultural University, 2019. | |
[27] | 赵贝贝, 叶蕴灵, 王莉, 等. 银杏类黄酮响应非生物胁迫研究进展[J]. 扬州大学学报(农业与生命科学版), 2018, 39(3):106-112. |
ZHAO Beibei, YE Yunling, WANG Li, et al. The research progress on response to abiotic stress by flavonoid in Ginkgo biloba[J]. Journal of Yangzhou university (Agriculture and life science edition), 2018, 39(3):106-112. | |
[28] | 李鑫雨, 何媛, 代娅, 等. 多年生黑麦草温度胁迫差异表达转录因子的比较转录组分析[J]. 西北植物学报, 2020, 40(5):773-784. |
LI Xinyu, HE Yuan, DAI Ya, et al. Comparative transcriptome analysis reveals differentially expressed transcription factors associated with temperature stresses in Lolium perenne[J]. Acta botanica boreali-occidentalia sinica, 2020, 40(5):773-784. | |
[29] | 姚娜, 刘秀明, 董园园, 等. 转录组的测序方法及应用研究概述[J]. 北方园艺, 2017(12):192-198. |
YAO Na, LIU Xiuming, DONG Yuanyuan, et al. Advances in application and seguencing methods of transcriptome[J]. Northern Horticulture, 2017(12):192-198. | |
[30] |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nature reviews genetics, 2009, 10(1):57.
DOI PMID |
[31] | 潘琪. 番茄SYTA的功能及其与Fd Ⅰ互作研究[D]. 重庆: 西南大学, 2018. |
Pan Qi. Function analysis of Solanum lycopersicum SYTA and analyzing the interaction between Solanum lycopersicum SYTA and Nicotiana benthamiana Ferredoxin I[D]. Changqing: Southwest University, 2018. |
[1] | 李颖, 郭文文, 李江博, 曲延英, 陈全家, 郑凯. 90份转BT基因抗虫棉品种(系)在新疆早熟棉区的适应性评价[J]. 新疆农业科学, 2024, 61(7): 1561-1573. |
[2] | 巩隽铭, 熊显鹏, 张彩霞, 邵东南, 程帅帅, 孙杰. 陆地棉4-香豆酸辅酶A连接酶基因Gh4CL30的功能分析[J]. 新疆农业科学, 2024, 61(6): 1301-1309. |
[3] | 马尚洁, 李生梅, 杨涛, 王红刚, 赵康, 庞博, 高文伟. 陆地棉GHWAT1-35基因的克隆及亚细胞定位[J]. 新疆农业科学, 2024, 61(6): 1310-1317. |
[4] | 杨君妍, 闫淼, 吴海波, 杨文莉, 王豪杰, 毛建才, 翟文强, 李俊华. 高温对不同厚皮甜瓜品种种子萌发的影响及其耐热性综合评价[J]. 新疆农业科学, 2024, 61(6): 1386-1396. |
[5] | 何婉洁, 孟涵颖, 支梦婷, 陈静. 双斑长跗萤叶甲雌虫、雄虫触角转录组及差异表达基因分析[J]. 新疆农业科学, 2024, 61(4): 984-995. |
[6] | 王凯迪, 高晨旭, 裴文锋, 杨书贤, 张文庆, 宋吉坤, 马建江, 王莉, 于霁雯, 陈全家. 陆地棉TRM基因家族的鉴定及纤维品质相关优异单倍型分析[J]. 新疆农业科学, 2024, 61(3): 521-536. |
[7] | 王伟, 张仁福, 刘海洋, 丁瑞丰, 梁革梅, 姚举. 不同抗性遗传背景棉蚜氟啶虫胺腈及啶虫脒抗性品系转录组分析[J]. 新疆农业科学, 2024, 61(12): 3078-3088. |
[8] | 崔豫疆, 龚照龙, 王俊铎, 郑巨云, 桑志伟, 阳妮, 梁亚军, 李雪源, 曲延英. 245份陆地棉品种农艺性状及产量构成因素综合评价[J]. 新疆农业科学, 2024, 61(10): 2358-2365. |
[9] | 赵康, 任丹, 梁维维, 庞博, 马尚洁, 张梦媛, 高文伟. 陆地棉正反交F2∶3家系主要农艺性状与单株皮棉产量的关系[J]. 新疆农业科学, 2024, 61(1): 19-25. |
[10] | 王朋, 郑凯, 赵杰银, 高文举, 龙遗磊, 陈全家, 曲延英. 陆地棉种质资源材料的耐热性评价及指标筛选[J]. 新疆农业科学, 2023, 60(9): 2081-2090. |
[11] | 王辉, 郭金成, 宋佳, 张庭军, 何良荣. 高温胁迫下陆地棉GhCIPK6转基因后代生理生化分析[J]. 新疆农业科学, 2023, 60(9): 2109-2119. |
[12] | 马青山, 杜霄, 陶志鑫, 韩万里, 龙遗磊, 艾先涛, 胡守林. 陆地棉种质材料机采农艺性状鉴定分析[J]. 新疆农业科学, 2023, 60(8): 1830-1839. |
[13] | 杨晓娟, 靳娟, 樊丁宇, 郝庆, 杨磊, 耿文娟. 极端高温环境对骏枣和伏脆蜜枣光合特性的影响[J]. 新疆农业科学, 2023, 60(7): 1679-1688. |
[14] | 耿翡翡, 孟超敏, 卿桂霞, 周佳敏, 张富厚, 刘逢举. 陆地棉磷高效基因GhMYB4的克隆与表达分析[J]. 新疆农业科学, 2023, 60(6): 1406-1412. |
[15] | 王冠玉, 贾平平, 靳娟, 阿布都卡尤木·阿依麦提, 樊丁宇, 赵晓梅, 郝庆, 杨磊, 耿文娟. 高温胁迫对枣花器官生理特性的影响[J]. 新疆农业科学, 2023, 60(6): 1485-1491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||