

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (5): 1102-1110.DOI: 10.6048/j.issn.1001-4330.2025.05.007
陈润峰1,2(
), 高强1(
), 严青青1, 徐麟1, 吐汗姑丽·托合提1, 张龑1(
), 郑立鹏1, 任海龙3, 聂秋海4
收稿日期:2024-10-20
出版日期:2025-05-20
发布日期:2025-07-09
通信作者:
高强(1988-),男,四川资阳人,副研究员,硕士,研究方向为种质资源收集、评价与创新利用,(E-mail)blueskysmallfish@163.com;作者简介:陈润峰(1998-),男,河南郑州人,硕士研究生,研究方向为种质资源收集与创新, (E-mail)1063554708@qq.com
基金资助:
CHEN Runfeng1,2(
), GAO Qiang1(
), YAN Qingqing1, XU Lin1, Tuhanguli Touheti1, ZHANG Yan1(
), ZHENG Lipeng1, REN Hailong3, NIE Qiuhai4
Received:2024-10-20
Published:2025-05-20
Online:2025-07-09
Supported by:摘要:
【目的】基于近红外光谱技术建立橡胶草根部菊糖和总糖含量绿色、低成本的快速检测技术。【方法】以103个橡胶草干根粉末样品作为研究对象,使用福斯公司的FOSS NIRSTM DS2500F SR近红外光谱仪(850~2500nm)采集样品光谱,使用酶标仪法检测样品根部的总糖、还原糖含量,并使用总糖含量减去还原糖含量计算出菊糖含量,采用SPXY算法划分训练集和验证集。用移动窗口平滑(MWS)、标准化(SNV)、多元散射校正(MSC)和一阶导数(FD)算法对原始光谱进行预处理,使用竞争性自适应重加权采样法(CARS)筛选波长,建立橡胶草根部菊糖和总糖含量的PLS预测模型。【结果】检测样品集总糖、还原糖和菊糖含量的区间分别为9.79%~51.85%、3.11%~8.98%和6.41%~45.35%,变异系数分别为34.18%、32.61%和39.46%。使用SPXY算法将校正集和验证集按照4∶1的比例划分,总糖和菊糖的校正集、验证集的个数均为82和21个。使用划分后的样品集进行模型建立,最优的菊糖含量PLS预测模型使用的光谱预处理方法为MWS-SNV-CARS,其验证集相关系数Rv达到了0.942,验证集均方根误差RMSEv为2.515,验证集相对分析误差RPDv为2.977;最优的总糖含量PLS预测模型使用的光谱预处理方为MWS-SNV-CARS,其Rv达到了0.949,RMSEv为2.490,RPDv为3.175。2个模型的RPDv均大于2.5,性能较佳。【结论】使用近红外光谱技术能够实现对橡胶草根部菊糖和总糖的绿色、低成本的快速定量检测。
中图分类号:
陈润峰, 高强, 严青青, 徐麟, 吐汗姑丽·托合提, 张龑, 郑立鹏, 任海龙, 聂秋海. 基于近红外光谱技术建立橡胶草根部菊糖和总糖含量快速检测方法[J]. 新疆农业科学, 2025, 62(5): 1102-1110.
CHEN Runfeng, GAO Qiang, YAN Qingqing, XU Lin, Tuhanguli Touheti, ZHANG Yan, ZHENG Lipeng, REN Hailong, NIE Qiuhai. A rapid determination method for inulin and total sugar content in araxacum kok-saghyz Rodin based on near-infrared spectroscopy[J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1102-1110.
| 组分 Composition | 样品数 Number of samples (个) | 最大值 Max (%) | 最小值 Minimum (%) | 平均值 Mean (%) | 标准偏差 Standard deviation | 变异系数 CV(%) |
|---|---|---|---|---|---|---|
| 总糖 Total Sugar | 103 | 51.85 | 9.79 | 24.66 | 8.43 | 34.18 |
| 还原糖 Reducing Sugar | 103 | 8.98 | 3.11 | 4.63 | 1.51 | 32.61 |
| 菊糖 Inulin | 103 | 45.35 | 6.41 | 19.99 | 7.89 | 39.46 |
表1 样本集菊糖和总糖含量统计
Tab.1 Statistical table of Inulin and Total Sugar content in sample set
| 组分 Composition | 样品数 Number of samples (个) | 最大值 Max (%) | 最小值 Minimum (%) | 平均值 Mean (%) | 标准偏差 Standard deviation | 变异系数 CV(%) |
|---|---|---|---|---|---|---|
| 总糖 Total Sugar | 103 | 51.85 | 9.79 | 24.66 | 8.43 | 34.18 |
| 还原糖 Reducing Sugar | 103 | 8.98 | 3.11 | 4.63 | 1.51 | 32.61 |
| 菊糖 Inulin | 103 | 45.35 | 6.41 | 19.99 | 7.89 | 39.46 |
| 组分 Composition | 样品集 Sample set | 样品数 Number of samples (个) | 最大值 Max (%) | 最小值 Minimum (%) | 平均值 Mean (%) | 标准偏差 Standard deviation | 变异系数 CV(%) |
|---|---|---|---|---|---|---|---|
| 菊糖 Inulin | 校正集 | 82 | 45.35 | 6.41 | 19.50 | 7.86 | 40.32 |
| 验证集 | 21 | 41.80 | 8.28 | 21.90 | 7.88 | 36.00 | |
| 总糖 Total Sugar | 校正集 | 82 | 51.85 | 9.79 | 24.27 | 8.51 | 35.08 |
| 验证集 | 21 | 45.83 | 11.59 | 26.17 | 8.10 | 30.95 |
表2 SPXY法划分样本集橡胶草菊糖和总糖含量
Tab.2 Statistical data of Inulin and Total Sugar content of TKS in sample set divided by SPXY method
| 组分 Composition | 样品集 Sample set | 样品数 Number of samples (个) | 最大值 Max (%) | 最小值 Minimum (%) | 平均值 Mean (%) | 标准偏差 Standard deviation | 变异系数 CV(%) |
|---|---|---|---|---|---|---|---|
| 菊糖 Inulin | 校正集 | 82 | 45.35 | 6.41 | 19.50 | 7.86 | 40.32 |
| 验证集 | 21 | 41.80 | 8.28 | 21.90 | 7.88 | 36.00 | |
| 总糖 Total Sugar | 校正集 | 82 | 51.85 | 9.79 | 24.27 | 8.51 | 35.08 |
| 验证集 | 21 | 45.83 | 11.59 | 26.17 | 8.10 | 30.95 |
| 组分 Composition | 光谱处理方法 Pretreatment method | 主成分数 PCs | 校正集 Calibration | 验证集 Validation | RPDv | ||
|---|---|---|---|---|---|---|---|
| Rc | RMSEc | Rv | RMSEv | ||||
| 菊糖 Inulin | 无 | 10 | 0.858 | 4.005 | 0.888 | 3.545 | 2.170 |
| MWS | 10 | 0.858 | 4.006 | 0.888 | 3.543 | 2.171 | |
| MWS-SNV | 10 | 0.862 | 3.995 | 0.925 | 2.841 | 2.635 | |
| MWS-MSC | 10 | 0.856 | 4.045 | 0.901 | 3.314 | 2.322 | |
| MWS-FD | 10 | 0.879 | 3.719 | 0.873 | 3.752 | 2.050 | |
| MWS-SNV-FD | 10 | 0.874 | 3.798 | 0.854 | 4.003 | 1.922 | |
| MWS-MSC-FD | 10 | 0.874 | 3.798 | 0.853 | 4.022 | 1.913 | |
| MWS-SNV-MSC--FD | 10 | 0.874 | 3.798 | 0.853 | 4.021 | 1.913 | |
| 总糖 Total Sugar | 无 | 10 | 0.867 | 4.218 | 0.905 | 3.367 | 2.348 |
| MWS | 10 | 0.867 | 4.219 | 0.905 | 3.368 | 2.348 | |
| MWS-SNV | 10 | 0.868 | 4.210 | 0.939 | 2.720 | 2.902 | |
| MWS-MSC | 10 | 0.857 | 4.355 | 0.919 | 3.113 | 2.540 | |
| MWS-FD | 10 | 0.884 | 3.960 | 0.892 | 3.576 | 2.211 | |
| MWS-SNV-FD | 10 | 0.878 | 4.053 | 0.876 | 3.819 | 2.070 | |
| MWS-MSC-FD | 10 | 0.878 | 4.052 | 0.873 | 3.848 | 2.054 | |
| MWS-SNV-MSC--FD | 10 | 0.878 | 4.052 | 0.873 | 3.848 | 2.054 | |
表3 不同预处理方法的PLS模型效果比较
Tab.3 Comparison of PLS model effects of different preprocessing methods
| 组分 Composition | 光谱处理方法 Pretreatment method | 主成分数 PCs | 校正集 Calibration | 验证集 Validation | RPDv | ||
|---|---|---|---|---|---|---|---|
| Rc | RMSEc | Rv | RMSEv | ||||
| 菊糖 Inulin | 无 | 10 | 0.858 | 4.005 | 0.888 | 3.545 | 2.170 |
| MWS | 10 | 0.858 | 4.006 | 0.888 | 3.543 | 2.171 | |
| MWS-SNV | 10 | 0.862 | 3.995 | 0.925 | 2.841 | 2.635 | |
| MWS-MSC | 10 | 0.856 | 4.045 | 0.901 | 3.314 | 2.322 | |
| MWS-FD | 10 | 0.879 | 3.719 | 0.873 | 3.752 | 2.050 | |
| MWS-SNV-FD | 10 | 0.874 | 3.798 | 0.854 | 4.003 | 1.922 | |
| MWS-MSC-FD | 10 | 0.874 | 3.798 | 0.853 | 4.022 | 1.913 | |
| MWS-SNV-MSC--FD | 10 | 0.874 | 3.798 | 0.853 | 4.021 | 1.913 | |
| 总糖 Total Sugar | 无 | 10 | 0.867 | 4.218 | 0.905 | 3.367 | 2.348 |
| MWS | 10 | 0.867 | 4.219 | 0.905 | 3.368 | 2.348 | |
| MWS-SNV | 10 | 0.868 | 4.210 | 0.939 | 2.720 | 2.902 | |
| MWS-MSC | 10 | 0.857 | 4.355 | 0.919 | 3.113 | 2.540 | |
| MWS-FD | 10 | 0.884 | 3.960 | 0.892 | 3.576 | 2.211 | |
| MWS-SNV-FD | 10 | 0.878 | 4.053 | 0.876 | 3.819 | 2.070 | |
| MWS-MSC-FD | 10 | 0.878 | 4.052 | 0.873 | 3.848 | 2.054 | |
| MWS-SNV-MSC--FD | 10 | 0.878 | 4.052 | 0.873 | 3.848 | 2.054 | |
| 组分 Composition | 光谱处理方法 Pretreatment method | 主成分数 PCs | 波长筛选方法 Spectral wavelength selection method | 校正集 Calibration | 验证集 Validation | RPDv | ||
|---|---|---|---|---|---|---|---|---|
| Rc | RMSEc | Rv | RMSEv | |||||
| 菊糖 Inulin | MWS-SNV | 10 | 全波段 | 0.862 | 3.995 | 0.925 | 2.841 | 2.635 |
| 10 | CARS | 0.844 | 4.226 | 0.942 | 2.515 | 2.977 | ||
| MWS-MSC | 10 | 全波段 | 0.856 | 4.045 | 0.901 | 3.314 | 2.322 | |
| 10 | CARS | 0.838 | 4.304 | 0.922 | 2.898 | 2.583 | ||
| MWS-FD | 10 | 全波段 | 0.879 | 3.719 | 0.873 | 3.752 | 2.050 | |
| 10 | CARS | 0.873 | 3.851 | 0.933 | 2.684 | 2.789 | ||
| 总糖 Total Sugar | MWS-SNV | 10 | 全波段 | 0.868 | 4.206 | 0.939 | 2.724 | 2.902 |
| 10 | CARS | 0.853 | 4.419 | 0.947 | 2.542 | 3.109 | ||
| MWS-MSC | 10 | 全波段 | 0.857 | 4.355 | 0.919 | 3.113 | 2.540 | |
| 10 | CARS | 0.838 | 4.611 | 0.942 | 2.655 | 2.978 | ||
| MWS-FD | 10 | 全波段 | 0.884 | 3.960 | 0.892 | 3.576 | 2.211 | |
| 10 | CARS | 0.887 | 3.918 | 0.949 | 2.490 | 3.175 | ||
表4 全光谱和特征波长PLS模型比较
Tab.4 Comparison of full spectrum and characteristic band PLS models
| 组分 Composition | 光谱处理方法 Pretreatment method | 主成分数 PCs | 波长筛选方法 Spectral wavelength selection method | 校正集 Calibration | 验证集 Validation | RPDv | ||
|---|---|---|---|---|---|---|---|---|
| Rc | RMSEc | Rv | RMSEv | |||||
| 菊糖 Inulin | MWS-SNV | 10 | 全波段 | 0.862 | 3.995 | 0.925 | 2.841 | 2.635 |
| 10 | CARS | 0.844 | 4.226 | 0.942 | 2.515 | 2.977 | ||
| MWS-MSC | 10 | 全波段 | 0.856 | 4.045 | 0.901 | 3.314 | 2.322 | |
| 10 | CARS | 0.838 | 4.304 | 0.922 | 2.898 | 2.583 | ||
| MWS-FD | 10 | 全波段 | 0.879 | 3.719 | 0.873 | 3.752 | 2.050 | |
| 10 | CARS | 0.873 | 3.851 | 0.933 | 2.684 | 2.789 | ||
| 总糖 Total Sugar | MWS-SNV | 10 | 全波段 | 0.868 | 4.206 | 0.939 | 2.724 | 2.902 |
| 10 | CARS | 0.853 | 4.419 | 0.947 | 2.542 | 3.109 | ||
| MWS-MSC | 10 | 全波段 | 0.857 | 4.355 | 0.919 | 3.113 | 2.540 | |
| 10 | CARS | 0.838 | 4.611 | 0.942 | 2.655 | 2.978 | ||
| MWS-FD | 10 | 全波段 | 0.884 | 3.960 | 0.892 | 3.576 | 2.211 | |
| 10 | CARS | 0.887 | 3.918 | 0.949 | 2.490 | 3.175 | ||
| [1] |
van Beilen J B, Poirier Y. Guayule and Russian dandelion as alternative sources of natural rubber[J]. Critical Reviews in Biotechnology, 2007, 27(4): 217-231.
DOI PMID |
| [2] | 梁素钰, 王文帆, 刘滨凡, 等. 能源橡胶草的综合利用研究[J]. 能源研究与信息, 2010, 26(4): 219-224, 236. |
| LIANG Suyu, WANG Wenfan, LIU Binfan, et al. Study on the comprehensive utilization of the Taraxacum kok-saghyz Rodin[J]. Energy Research and Information, 2010, 26(4): 219-224, 236. | |
| [3] | 朱金霞, 张源沛, 郑国保, 等. 利用酶标仪快速批量测定橡胶草中菊糖的含量[J]. 食品工业科技, 2016, 37(19): 294-297, 301. |
| ZHU Jinxia, ZHANG Yuanpei, ZHENG Guobao, et al. Rapid batch determination of the inulin in Taraxacum kok- saghyz Rodin by enzyme mark instrument[J]. Science and Technology of Food Industry, 2016, 37(19): 294-297, 301. | |
| [4] |
Petrovsky N, Cooper P D. AdvaxTM, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety[J]. Vaccine, 2015, 33(44): 5920-5926.
DOI PMID |
| [5] | 曾小宇, 罗登林, 刘胜男, 等. 菊糖的研究现状与开发前景[J]. 中国食品添加剂, 2010, 21(4): 222-227. |
| ZENG Xiaoyu, LUO Denglin, LIU Shengnan, et al. Recent advance and future trend of inulin research and development[J]. China Food Additives, 2010, 21(4): 222-227. | |
| [6] | 徐梦毫, 张义, 杨雪, 等. 橡胶草糖转运蛋白TkSWEET3基因的克隆和功能初步分析[J]. 分子植物育种, 2022, 20(18): 6001-6008. |
| XU Menghao, ZHANG Yi, YANG Xue, et al. Cloning and characterization of a sugar transporter gene, TkSWEET3 in Taraxacum kok-saghyz Rodin[J]. Molecular Plant Breeding, 2022, 20(18): 6001-6008. | |
| [7] | 杨增玲, 杨钦楷, 沈广辉, 等. 豆粕品质近红外定量分析实验室模型在线应用[J]. 农业机械学报, 2019, 50(8): 358-363, 371. |
| YANG Zengling, YANG Qinkai, SHEN Guanghui, et al. Online application of soybean meal NIRS quantitative analysis model from laboratory to factory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 358-363, 371. | |
| [8] |
许生陆, 高媛, 胡国梁, 等. 基于有效波长选择的近红外光谱枸杞总糖含量快速检测[J]. 食品科学, 2016, 37(12): 105-109.
DOI |
|
XU Shenglu, GAO Yuan, HU Guoliang, et al. Rapid determination of total sugar content of goji berries(Lycium barbarum) by near infrared spectroscopy with effective wavenumber selection[J]. Food Science, 2016, 37(12): 105-109.
DOI |
|
| [9] | 邓亮, 冷红琼, 段沅杏, 等. FT-NIR光谱测定烟草中烟碱、总氮、总糖含量的模型研究[J]. 云南农业大学学报(自然科学), 2013, 28(6): 814-818. |
| DENG Liang, LENG Hongqiong, DUAN Yuanxing, et al. Determination of nicotine, total nitrogen and total sugar in tobacco with Fourier transform near-infrared[J]. Journal of Yunnan Agricultural University (Natural Science), 2013, 28(6): 814-818. | |
| [10] |
Galvão R K H, Araujo M C U, José G E, et al. A method for calibration and validation subset partitioning[J]. Talanta, 2005, 67(4): 736-740.
DOI PMID |
| [11] | 孙嘉豪, 张伟, 施鉴芩, 等. 光谱数据预处理策略选择及应用[J]. 计量学报, 2023, 44(8): 1284-1292. |
| SUN Jiahao, ZHANG Wei, SHI Jianqin, et al. Selection and application of spectral data preprocessing strategy[J]. Acta Metrologica Sinica, 2023, 44(8): 1284-1292. | |
| [12] | Palou A, Miró A, Blanco M, et al. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 180: 119-126. |
| [13] | Delwiche S R, Reeves J B III. The effect of spectral pre-treatments on the partial least squares modelling of agricultural products[J]. Journal of Near Infrared Spectroscopy, 2004, 12(3): 177-182. |
| [14] | Noda I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy[J]. Applied Spectroscopy, 1993, 47(9): 1329-1336. |
| [15] | 杜一平, 潘铁英, 张玉兰. 化学计量学应用[M]. 北京: 化学工业出版社, 2008: 71-72. |
| DU Yiping, PAN Tieying, ZHANG Yulan. Chemometrics application[M]. Beijing: Chemical Industry Press, 2008: 71-72. | |
| [16] | 史丹阳. 定量核磁共振波谱法测定肉桂多酚提取物中的总酚、总糖和六种多酚成分[D]. 上海: 上海应用技术大学, 2022. |
| SHI Danyang. Determination of Total Phenols, Total Sugars and Six Polyphenols in Cinnamon Polyphenols Extracts by Quantitative Nuclear Magnetic Resonance Spectroscopy[D]. Shanghai: Shanghai Institute of Technology, 2022. | |
| [17] | 陈靖琳, 蔡静薇, 李建科, 等. 菊糖基功能性食品特性及研究现状[J]. 食品工业, 2023, 44(5): 281-286. |
| CHEN Jinglin, CAI Jingwei, LI Jianke, et al. Characteristics and research status of inulin-based functional food[J]. The Food Industry, 2023, 44(5): 281-286. | |
| [18] |
Li H D, Liang Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
DOI PMID |
| [19] | 唐启义, 唐洁. 偏最小二乘回归分析在均匀设计试验建模分析中的应用[J]. 数理统计与管理, 2005, 24(5): 45-49, 67. |
| TANG Qiyi, TANG Jie. Application of partial least-squares regressive on modeling analysis of uniform design experiment[J]. Application of Statistics and Management, 2005, 24(5): 45-49, 67. | |
| [20] |
Bekiaris G, Triolo J M, Peltre C, et al. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy[J]. Bioresource Technology, 2015, 197: 475-481.
DOI PMID |
| [21] | Phil W. The RPD statistic: a tutorial note[J]. NIR News, 2014, 25(1): 22-26. |
| [22] | 周志磊, 衡洋洋, 陈超, 等. 黑果枸杞果实中主要成分的傅里叶变换近红外光谱预测模型构建[J]. 食品工业科技, 2024, 45(5): 234-242. |
| ZHOU Zhilei, HENG Yangyang, CHEN Chao, et al. Construction of Fourier transform near infrared spectroscopy prediction model for main components in Lycium ruthenicum Murr[J]. Science and Technology of Food Industry, 2024, 45(5): 234-242. | |
| [23] | 陈淼, 侯名语, 崔顺立, 等. 不同种皮颜色花生糖含量近红外模型的构建[J]. 光谱学与光谱分析, 2022, 42(9): 2896-2902. |
| CHEN Miao, HOU Mingyu, CUI Shunli, et al. Construction of near-infrared model of peanut sugar content in different seed coat colors[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2896-2902. | |
| [24] | 王凡, 李永玉, 彭彦昆, 等. 便携式番茄多品质参数可见/近红外检测装置研发[J]. 农业工程学报, 2017, 33(19): 295-300. |
| WANG Fan, LI Yongyu, PENG Yankun, et al. Development of portable device for simultaneous detection on multi-quality attributes of tomato by visible and near-infrared[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 295-300. | |
| [25] | Takeno S, Bamba T, Nakazawa Y, et al. High-throughput and highly sensitive analysis method for polyisoprene in plants by pyrolysis-gas chromatography/mass spectrometry[J]. Bioscience, Biotechnology, and Biochemistry, 2010, 74(1): 13-17. |
| [26] | 汤丽昌, 王宁, 姚海萍, 等. 天然橡胶胶清化学成分的研究[J]. 林产化学与工业, 2013, 33(1): 125-129. |
| TANG Lichang, WANG Ning, YAO Haiping, et al. Chemical components of the Hevea brasiliensis skim[J]. Chemistry and Industry of Forest Products, 2013, 33(1): 125-129. | |
| [27] | Zou X B, Zhao J W, Povey M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667(1/2): 14-32. |
| [1] | 张紫薇, 黄春媛, 于娜, 郑佳馨, 张艳, 刘光亮, 曹宗喜. 猪繁殖与呼吸综合征病毒的逆转录重组酶介导等温扩增荧光检测方法的建立及应用[J]. 新疆农业科学, 2025, 62(5): 1286-1292. |
| [2] | 张磊, 姚梦瑶, 刘志刚, 李娟, 杨洋, 蔡大润, 陈果, 李波, 李晓荣, 陈勋基, 翟云龙. 基于无人机多光谱NDVI值估测玉米产量[J]. 新疆农业科学, 2024, 61(4): 845-851. |
| [3] | 李硕, 王娟, 尼格尔热依·亚迪卡尔, 朱金芳, 冯作山, 帕尔哈提·艾尼瓦尔. 不同品种杏果实不同发育期功能性成分变化规律[J]. 新疆农业科学, 2023, 60(5): 1200-1207. |
| [4] | 高倩, 王亚梅, 吴平凡, 张红美, 周岭. 基于近红外光谱的果树残枝纤维组分含量分析[J]. 新疆农业科学, 2022, 59(8): 2025-2032. |
| [5] | 韩盛, 高强, 邢涛, 徐麟, 任海龙, 严青青, 玉山江·麦麦提, 张龑, 李文慧. 新疆橡胶草锈病病原菌的分离与鉴定[J]. 新疆农业科学, 2022, 59(5): 1231-1235. |
| [6] | 严青青, 邢涛, 王莉, 张龑, 高强, 徐麟, 王永刚. 不同Ca2+浓度对蒲公英和橡胶草种子萌发及根系生长的影响[J]. 新疆农业科学, 2022, 59(5): 1128-1134. |
| [7] | 张瑞, 苟春林, 王智, 乔坤云, 袁玉伟, 聂晶, 琚艳君, 赵多勇. 基于多种矿物元素的精河枸杞与中宁枸杞产地鉴别[J]. 新疆农业科学, 2022, 59(3): 674-682. |
| [8] | 谭慧林, 吴忠红, 金永生, 牛贵洋, 包东东, 陈海元, 张志东. 食品中金黄色葡萄球菌的快速检测及其评估[J]. 新疆农业科学, 2022, 59(2): 410-416. |
| [9] | 阿丽努尔·阿不都热衣木, 张珍珍, 黄亚东, 阿卜杜瓦日斯·图尔荪江, 陈恺, 李焕荣. 干制红枣可溶性糖含量变化动态模型的构建[J]. 新疆农业科学, 2021, 58(7): 1342-1354. |
| [10] | 杨植, 王振磊, 林敏娟. 基于近红外光谱技术的红枣水分无损检测[J]. 新疆农业科学, 2021, 58(12): 2320-2326. |
| [11] | 阿布都克尤木·阿不都热孜克, 高强, 徐麟, 张学超, 王莉, 严青青, 张龑, 古丽米拉·艾克拜尔, 聂秋海. 遮荫对橡胶草生理特性的影响[J]. 新疆农业科学, 2020, 57(11): 2126-2134. |
| [12] | 阎聪, 朱荣光, 黄昆鹏, 邱园园, 范中建, 孟令峰. 羊肉近红外光谱采集质量的影响因素[J]. 新疆农业科学, 2018, 55(5): 974-980. |
| [13] | 韩宏伟, 王浩, 佘建华, 王强, 庄红梅, 刘会芳, 李宁. 利用SRAP标记快速检测西瓜杂交种子纯度[J]. 新疆农业科学, 2017, 54(9): 1621-1626. |
| [14] | 邱园园, 朱荣光, 黄昆鹏, 范中建, 阎聪, 孟令峰. 真空包装冷却羊肉pH值和颜色的近红外快速无损检测[J]. 新疆农业科学, 2017, 54(11): 2092-2099. |
| [15] | 李京;张祥林;罗明;李亚伟;王翀;张小菊. 实时荧光PCR法快速检测地中海实蝇的研究[J]. , 2016, 53(6): 1107-1113. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||