

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 982-992.DOI: 10.6048/j.issn.1001-4330.2025.04.023
马继龙1(
), 阿丽亚·拜都热拉1(
), 王新英2, 刘茂秀2, 艾吉尔·阿不拉2
收稿日期:2024-09-13
出版日期:2025-04-20
发布日期:2025-06-20
通信作者:
阿丽亚·拜都热拉(1986-),女,新疆人,副教授,博士,硕士生导师,研究方向为荒漠化防治,(E-mail)aliya@xjau.edu.cn作者简介:马继龙(2000-),男,新疆伊犁人,硕士研究生,研究方向为荒漠化防治,(E-mail)mjl4ever888@163.com
基金资助:
MA Jilong1(
), Aliya Baidurela1(
), WANG Xinying2, LIU Maoxiu2, Aijier Abula2
Received:2024-09-13
Published:2025-04-20
Online:2025-06-20
Supported by:摘要:
【目的】研究塔里木河(简称塔河)流域不同生境下土壤微生物群落特征,探讨土壤环境因子对土壤微生物多样性的影响,为研究微生物在胡杨河岸林生长发育过程中的作用提供科学依据。【方法】以塔里木河中游不同生境土壤为研究对象,分析荒漠、中生和周期性水淹3种不同生境下0~100 cm土体中土壤微生物群落结构与土壤理化性质,运用典范对应和Spearman相关性分析等方法,分析胡杨林3种不同生境下微生物群落结构特征及其与土壤环境之间的关系。【结果】(1)中生生境土壤有机质、全氮、全钾、碱解氮、速效磷、速效钾均显著高于其他生境(P<0.05);荒漠生境土壤全磷、硝态氮、铵态氮、总盐均显著高于其他生境(P<0.05);(2)3种不同生境微生物群落丰富度和多样性差异显著,细菌丰富度及多样性在周期性水淹生境最高,真菌则是在荒漠生境中最高;(3)微生物群落组成纲水平上,中生和周期性水淹生境下细菌优势菌群为γ‐变形菌纲(相对丰度分别为0.20和0.29),荒漠生境则为盐杆菌纲(相对丰度为0.31);周期性水淹生境中真菌优势菌群为伞菌纲(相对丰度为0.22),中生生境为盘菌纲(相对丰度为0.30),荒漠生境为银耳纲(相对丰度为0.30);(4)中生和荒漠生境的真菌和细菌群落组成较为相似,周期性水淹生境则与其差异显著;(5)塔河中游3种生境土壤微生物群落组成主要受土壤总盐、含水量、速效钾和硝态氮的影响最大。【结论】塔河中游中生生境下胡杨林土壤养分条件最佳,周期性水淹生境具有较丰富的细菌微生物群落,荒漠生境则具有较丰富的真菌微生物群落,土壤环境对微生物群落组成影响显著。
中图分类号:
马继龙, 阿丽亚·拜都热拉, 王新英, 刘茂秀, 艾吉尔·阿不拉. 塔里木河中游土壤微生物群落多样性特征及影响因子分析[J]. 新疆农业科学, 2025, 62(4): 982-992.
MA Jilong, Aliya Baidurela, WANG Xinying, LIU Maoxiu, Aijier Abula. Characteristics and influencing factors of soil microbial community diversity in middle reaches of Tarim River[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 982-992.
| 生境 Habitats | 距河道 垂直距离 Vertical distance from river (km) | 平均 地下水位 Mean water table (m) | 主要植被情况 Main vegetation condition | 郁闭度/盖度 Canopy density/ coverage | 胡杨密度 Populus euphratica density (株/667m2) | 生长状况 Growth condition | 有无周期性 水淹 Whether is periodic flooding |
|---|---|---|---|---|---|---|---|
| 荒漠生境 Desert habitats | 16.85 | 5.25 | 柽柳 | 0.20 | 正常 | 无 | |
| 胡杨林中生生境 Mesophytic habitat of Populus euphratica forest | 7.75 | 2.95 | 胡杨、柽柳 | 0.46/0.29 | 32 | 树冠完整, 极少枯枝 | 无 |
| 胡杨林周期性 水淹生境 Periodic flooding habitat of Populus euphratica forest | 0.75 | 0.06 | 胡杨、柽柳、 铃铛刺、琵琶柴、 芨芨草、蒿草、芦苇等 | 0.71/0.65 | 41 | 树冠完整, 无枯枝 | 有,最深 可达1.2 m |
表1 不同生境样地基本情况
Tab.1 Basic information on sample sites in different habitats
| 生境 Habitats | 距河道 垂直距离 Vertical distance from river (km) | 平均 地下水位 Mean water table (m) | 主要植被情况 Main vegetation condition | 郁闭度/盖度 Canopy density/ coverage | 胡杨密度 Populus euphratica density (株/667m2) | 生长状况 Growth condition | 有无周期性 水淹 Whether is periodic flooding |
|---|---|---|---|---|---|---|---|
| 荒漠生境 Desert habitats | 16.85 | 5.25 | 柽柳 | 0.20 | 正常 | 无 | |
| 胡杨林中生生境 Mesophytic habitat of Populus euphratica forest | 7.75 | 2.95 | 胡杨、柽柳 | 0.46/0.29 | 32 | 树冠完整, 极少枯枝 | 无 |
| 胡杨林周期性 水淹生境 Periodic flooding habitat of Populus euphratica forest | 0.75 | 0.06 | 胡杨、柽柳、 铃铛刺、琵琶柴、 芨芨草、蒿草、芦苇等 | 0.71/0.65 | 41 | 树冠完整, 无枯枝 | 有,最深 可达1.2 m |
图1 土壤样品微生物群落稀释曲线 注:Q.S.1-Q.S.5、Q.Z.1-Q.Z.5、Q.H.1-Q.H.5分别代表胡杨林周期性水淹生境、胡杨林中生生境、荒漠生境3种生境下的5层土壤采样点,下同
Fig.1 Dilution curve of microbial communities in soil samples Notes:Q.S.1-Q.S.5、Q.Z.1-Q.Z.5、Q.H.1-Q.H.5 representing the periodically flooded habitats of populus euphratica forest respe ctively、habitat in populus euphratica forest、sampling points of layers of soil in 3 different desert habitats,the same as below
| 土壤理化性质 Soil physicochemical properties | 胡杨林周期性水淹生境 Periodic flooding habitat of populus euphratica forest | 胡杨林中生生境 Mesophytic habitat of populus euphratica forest | 荒漠生境 Desert habitat |
|---|---|---|---|
| 含水量Soil water content(%) | 16.51±0.19a | 14.81±1.44a | 3.36±1.03b |
| 有机质Soil organic matter(g/kg) | 19.8±1.00b | 32.61±1.74a | 16.88±1.44c |
| 全氮Total nitrogen(g/kg) | 0.27±0.008b | 0.52±0.009a | 0.17±0.001c |
| 全磷Total phosphorus(g/kg) | 1.25±0.14b | 0.42±0.01c | 1.46±0.11a |
| 全钾Total Potassium(g/kg) | 12.06±0.22ab | 12.46±0.41a | 11.51±0.23b |
| 碱解氮Alkali hydrolyzed nitrogen(mg/kg) | 35.39±0.68b | 48.43±0.32a | 25.69±0.47c |
| 速效磷Rapidly available phosphorus(mg/kg) | 4.82±0.51b | 12.76±0.66a | 4.37±0.72b |
| 速效钾Rapidly available potassium(mg/kg) | 103.36±1.10c | 509.78±1.49a | 182.08±0.82b |
| 硝态氮Nitrate nitrogen(mg/kg) | 7.90±1.95b | 6.14±1.99b | 15.65±1.22a |
| 铵态氮Ammonium nitrogen(mg/kg) | 1.87±0.30a | 1.43±0.11b | 1.94±0.05a |
| 总盐Total salt(g/kg) | 0.58±0.05c | 7.12±0.10b | 9.93±0.29a |
表2 不同生境土壤理化性质的变化
Tab.2 Changes of soil physical and chemical properties in different habitats
| 土壤理化性质 Soil physicochemical properties | 胡杨林周期性水淹生境 Periodic flooding habitat of populus euphratica forest | 胡杨林中生生境 Mesophytic habitat of populus euphratica forest | 荒漠生境 Desert habitat |
|---|---|---|---|
| 含水量Soil water content(%) | 16.51±0.19a | 14.81±1.44a | 3.36±1.03b |
| 有机质Soil organic matter(g/kg) | 19.8±1.00b | 32.61±1.74a | 16.88±1.44c |
| 全氮Total nitrogen(g/kg) | 0.27±0.008b | 0.52±0.009a | 0.17±0.001c |
| 全磷Total phosphorus(g/kg) | 1.25±0.14b | 0.42±0.01c | 1.46±0.11a |
| 全钾Total Potassium(g/kg) | 12.06±0.22ab | 12.46±0.41a | 11.51±0.23b |
| 碱解氮Alkali hydrolyzed nitrogen(mg/kg) | 35.39±0.68b | 48.43±0.32a | 25.69±0.47c |
| 速效磷Rapidly available phosphorus(mg/kg) | 4.82±0.51b | 12.76±0.66a | 4.37±0.72b |
| 速效钾Rapidly available potassium(mg/kg) | 103.36±1.10c | 509.78±1.49a | 182.08±0.82b |
| 硝态氮Nitrate nitrogen(mg/kg) | 7.90±1.95b | 6.14±1.99b | 15.65±1.22a |
| 铵态氮Ammonium nitrogen(mg/kg) | 1.87±0.30a | 1.43±0.11b | 1.94±0.05a |
| 总盐Total salt(g/kg) | 0.58±0.05c | 7.12±0.10b | 9.93±0.29a |
| 微生物 Microorganism | 生境 Habitats | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | pielou_e指数 pielou_e index | 测序覆盖度 Goods coverage |
|---|---|---|---|---|---|---|
| 细菌 Bacteria | 周期性水淹生境 | 10.36±0.34a | 0.998 3±0.000 8a | 3 104.29±319.91a | 0.890 6±0.018 2a | 0.999 9±0.000 5a |
| 中生生境 | 8.65±0.16b | 0.992 4±0.002 4b | 1 438.11±90.27b | 0.824 2±0.011 5b | 1±0.000 4a | |
| 荒漠生境 | 7.71±0.28c | 0.986 0±0.003 3c | 1 232.28±136.93c | 0.769 0±0.018 9c | 1±0.000 4a | |
| 统计结果 | F=114.477 | F=32.201 | F=153.29 | F=67.607 | F=1.313 | |
| P<0.001 | P<0.001 | P<0.001 | P<0.001 | P=0.305 | ||
| 真菌 Fungi | 周期性水淹生境 | 4.34±1.08b | 0.866 6±0.101 3b | 254.99±35.30a | 0.544 8±0.136 4b | 1a |
| 中生生境 | 4.92±01.03b | 0.893 8±0.058 1ab | 264.77±25.87a | 0.612 4±0.131 7b | 1a | |
| 荒漠生境 | 6.24±0.21a | 0.969 2±0.008 6a | 200.77±22.99b | 0.818 0±0.035 8a | 1a | |
| 统计结果 | F=6.254 | F=3.092 | F=7.294 | F=8.156 | ||
| P<0.05 | P=0.083 | P<0.05 | P<0.05 |
表3 不同生境土壤微生物多样性的变化
Tab.3 Changes of soil microbial diversity in different habitats
| 微生物 Microorganism | 生境 Habitats | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | pielou_e指数 pielou_e index | 测序覆盖度 Goods coverage |
|---|---|---|---|---|---|---|
| 细菌 Bacteria | 周期性水淹生境 | 10.36±0.34a | 0.998 3±0.000 8a | 3 104.29±319.91a | 0.890 6±0.018 2a | 0.999 9±0.000 5a |
| 中生生境 | 8.65±0.16b | 0.992 4±0.002 4b | 1 438.11±90.27b | 0.824 2±0.011 5b | 1±0.000 4a | |
| 荒漠生境 | 7.71±0.28c | 0.986 0±0.003 3c | 1 232.28±136.93c | 0.769 0±0.018 9c | 1±0.000 4a | |
| 统计结果 | F=114.477 | F=32.201 | F=153.29 | F=67.607 | F=1.313 | |
| P<0.001 | P<0.001 | P<0.001 | P<0.001 | P=0.305 | ||
| 真菌 Fungi | 周期性水淹生境 | 4.34±1.08b | 0.866 6±0.101 3b | 254.99±35.30a | 0.544 8±0.136 4b | 1a |
| 中生生境 | 4.92±01.03b | 0.893 8±0.058 1ab | 264.77±25.87a | 0.612 4±0.131 7b | 1a | |
| 荒漠生境 | 6.24±0.21a | 0.969 2±0.008 6a | 200.77±22.99b | 0.818 0±0.035 8a | 1a | |
| 统计结果 | F=6.254 | F=3.092 | F=7.294 | F=8.156 | ||
| P<0.05 | P=0.083 | P<0.05 | P<0.05 |
图4 微生物群落组成与土壤理化因子的Spearman相关性 注:SWC:土壤含水量;SOM:土壤有机质;TN:全氮;TP:全磷;TK:全钾;AN:碱解氮;AP:速效磷;AK:速效钾;N O 3 -:硝态氮;N H 4 +:铵态氮;TDS:总盐,下同
Fig.4 Spearman correlation between soil physicochemical properties and the composition of microbial community Notes:SWC:Soil moisture content;SOM:Soil organic matter;TN:Total nitrogen;TP:Total phosphorus;TK:Total potassium;AN:Alkali hydrolyzed nitroger;AP:Olsen-P;AK:Available K;N O 3 -:Nitrate nitrogen;N H 4 +:Ammonium nitrogen;TDS:Total salt,the same as below
图5 微生物群落组成与土壤理化因子典范对应的变化
Fig.5 Changes of relationship between soil physicochemical properties and the composition of microbial community tested using classical canonicalcorrelation analysis
| [1] |
朱永官, 陈保冬, 付伟. 土壤生态学研究前沿[J]. 科技导报, 2022, 40(3): 25-31.
DOI |
| ZHU Yongguan, CHEN Baodong, FU Wei. Research frontiers in soil ecology[J]. Science & Technology Review, 2022, 40(3): 25-31. | |
| [2] | Chaparro J M, Sheflin A M, Manter D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489-499. |
| [3] |
Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth’s biogeochemical cycles[J]. Science, 2008, 320(5879): 1034-1039.
DOI PMID |
| [4] | Shi Y, Grogan P, Sun H B, et al. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities[J]. Soil Biology and Biochemistry, 2015, 86: 126-134. |
| [5] | Van Horn D J, Van Horn M L, Barrett J E, et al. Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale[J]. PLoS One, 2013, 8(6): e66103. |
| [6] | He H R, Xu M Z, Li W T, et al. Linking soil depth to aridity effects on soil microbial community composition, diversity and resource limitation[J]. CATENA, 2023, 232: 107393. |
| [7] |
Jiao S, Chu H Y, Zhang B G, et al. Linking soil fungi to bacterial community assembly in arid ecosystems[J]. iMeta, 2022, 1(1): e2.
DOI PMID |
| [8] | Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233-237. |
| [9] | Na X F, Yu H L, Wang P, et al. Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China[J]. Soil Biology and Biochemistry, 2019, 136: 107520. |
| [10] |
de Vries F T, Griffiths R I, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9(1): 3033.
DOI PMID |
| [11] |
Xu S, Geng W X, Sayer E J, et al. Soil microbial biomass and community responses to experimental precipitation change: a meta-analysis[J]. Soil Ecology Letters, 2020, 2(2): 93-103.
DOI |
| [12] | Jangid K, Williams M A, Franzluebbers A J, et al. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties[J]. Soil Biology and Biochemistry, 2011, 43(10): 2184-2193. |
| [13] | Zechmeister-Boltenstern S, Michel K, Pfeffer M. Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition[J]. Plant and Soil, 2011, 343(1): 37-50. |
| [14] | Heitkötter J, Heinze S, Marschner B. Relevance of substrate quality and nutrients for microbial C-turnover in top- and subsoil of a Dystric Cambisol[J]. Geoderma, 2017, 302: 89-99. |
| [15] | Yost J L, Hartemink A E. How deep is the soil studied-an analysis of four soil science journals[J]. Plant and Soil, 2020, 452(1): 5-18. |
| [16] | Yu J L, Bing H J, Chang R Y, et al. Microbial metabolic limitation response to experimental warming along an altitudinal gradient in alpine grasslands, eastern Tibetan Plateau[J]. CATENA, 2022, 214: 106243. |
| [17] | 王新英, 史军辉, 刘茂秀, 等. 洪水漫溢对塔里木河中游天然胡杨林叶渗透调节物质及抗氧化酶活性的影响[J]. 干旱区研究, 2020, 37(6): 1544-1551. |
| WANG Xinying, SHI Junhui, LIU Maoxiu, et al. Effects of flood overtopping on leaf osmotic adjustment substances and antioxidant enzyme activities of natural Populus euphratica forest in the middle reaches of the Tarim River[J]. Arid Zone Research, 2020, 37(6): 1544-1551. | |
| [18] | 罗倩. 新疆干旱区三种不同植被类型土壤微生物多样性分析[D]. 南宁: 广西大学, 2012. |
| LUO Qian. Analysis of soil microbial diversity of three different vegetation types in arid areas of Xinjiang[D]. Nanning: Guangxi University, 2012. | |
| [19] |
马继龙, 史军辉, 王新英, 等. 洪水漫溢对塔里木河中游河岸胡杨林土壤有机碳及活性组分的影响[J]. 干旱区研究, 2023, 40(8): 1248-1257.
DOI |
|
Ma Jilong, Shi Junhui, Wang Xinying, et al. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River[J]. Arid Zone Research, 2023, 40(8): 1248-1257.
DOI |
|
| [20] | 马继龙, 王新英, 刘茂秀, 等. 塔里木河中游不同生境胡杨林土壤有机碳及活性组分特征[J]. 西北林学院学报, 2024, 39(2): 1-7. |
| MA Jilong, WANG Xinying, LIU Maoxiu, et al. Characteristics of soil organic carbon and active fractions in Populus euphratica of different habitats in the middle reaches of the Tarim River[J]. Journal of Northwest Forestry University, 2024, 39(2): 1-7. | |
| [21] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
| [22] | 赵裕栋, 周俊, 何璟. 土壤微生物总DNA提取方法的优化[J]. 微生物学报, 2012, 52(9): 1143-1150. |
|
ZHAO Yudong, ZHOU Jun, HE Jing. Optimization of soil microbial DNA isolation[J]. Acta Microbiologica Sinica, 2012, 52(9): 1143-1150.
PMID |
|
| [23] |
金章利, 刘高鹏, 周明涛, 等. 喀斯特山地草地群落多样性海拔特征及土壤理化性质特征[J]. 生态环境学报, 2019, 28(4): 661-668.
DOI |
| JIN Zhangli, LIU Gaopeng, ZHOU Mingtao, et al. Elevation characteristics of grassland community diversity and effect of soil physical and chemical properties in Karst Mountain grassland[J]. Ecology and Environmental Sciences, 2019, 28(4): 661-668. | |
| [24] | 魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质[J]. 生态学报, 2012, 32(15): 4700-4713. |
| WEI Qiang, LING Lei, CHAI Chunshan, et al. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu[J]. Acta Ecologica Sinica, 2012, 32(15): 4700-4713. | |
| [25] | 张海涛, 梁继业, 周正立, 等. 塔里木河中游荒漠河岸林土壤理化性质分布特征与植被关系[J]. 水土保持研究, 2016, 23(2): 6-12. |
| ZHANG Haitao, LIANG Jiye, ZHOU Zhengli, et al. Relationship between distribution characteristics of soil physicochemical properties and vegetation in desert riparian forest in the middle reaches of the Tarim River[J]. Research of Soil and Water Conservation, 2016, 23(2): 6-12. | |
| [26] | 王亮, 王夏楠, 周正立, 等. 塔里木河中游典型样地土壤主要理化性质比较研究[J]. 北方园艺, 2014,(23): 148-151. |
| WANG Liang, WANG Xianan, ZHOU Zhengli, et al. Comparative study on soil physicochemical properties in the middle reaches of Tarim River[J]. Northern Horticulture, 2014,(23): 148-151. | |
| [27] |
李媛媛, 彭梦文, 党寒利, 等. 塔里木河下游胡杨根际土壤细菌群落多样性分析[J]. 干旱区地理, 2021, 44(3): 750-758.
DOI |
|
LI Yuanyuan, PENG Mengwen, DANG Hanli, et al. Bacterial communities diversity of Populus euphratica rhizospheric soil in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 750-758.
DOI |
|
| [28] |
Delgado-Baquerizo M, Reith F, Dennis P G, et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere[J]. Ecology, 2018, 99(3): 583-596.
DOI PMID |
| [29] |
de Carvalho T S, Jesus E D, Barlow J, et al. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria[J]. Ecology, 2016, 97(10): 2760-2771.
DOI PMID |
| [30] |
Barberán A, Ramirez K S, Leff J W, et al. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria[J]. Ecology Letters, 2014, 17(7): 794-802.
DOI PMID |
| [31] | 张静茹, 张雷一, 刘方, 等. 降雨对干旱半干旱地区土壤微生物影响研究进展[J]. 世界林业研究, 2014, 27(4): 6-12. |
| ZHANG Jingru, ZHANG Leiyi, LIU Fang, et al. Research progress in effect of rainfall on soil microbe in arid and semi-arid area[J]. World Forestry Research, 2014, 27(4): 6-12. | |
| [32] | Kawaguchi M, Nonaka K, Masuma R, et al. New method for isolating antibiotic-producing fungi[J]. The Journal of Antibiotics, 2013, 66(1): 17-21. |
| [33] |
Xiao Y, Wei X M, Ebright R, et al. Antibiotic production by myxobacteria plays a role in predation[J]. Journal of Bacteriology, 2011, 193(18): 4626-4633.
DOI PMID |
| [34] |
de Boer W, Folman L B, Summerbell R C, et al. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4): 795-811.
PMID |
| [35] | Yitbarek A, Weese J S, Alkie T N, et al. Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens[J]. FEMS Microbiology Ecology, 2018, 94(1). DOI:10.1093/femsec/fix165. |
| [36] |
Rodriguez-Valera F. Biotechnological potential of halobacteria[J]. Biochemical Society Symposium, 1992, 58: 135-147.
PMID |
| [37] | 王雅芸, 隆彦昕, 李岩, 等. 胡杨土壤理化性质与微生物群落结构空间和分布的关系[J]. 生态学报, 2021, 41(14): 5669-5684. |
| WANG Yayun, LONG Yanxin, LI Yan, et al. Relationships of soil physicochemical properties to the distribution and the composition of microbial community under Populus euphratica’s crown[J]. Acta Ecologica Sinica, 2021, 41(14): 5669-5684. | |
| [38] | 乔沙沙, 周永娜, 刘晋仙, 等. 关帝山针叶林土壤细菌群落结构特征[J]. 林业科学, 2017, 53(2): 89-99. |
| QIAO Shasha, ZHOU Yongna, LIU Jinxian, et al. Characteristics of soil bacterial community structure in coniferous forests of guandi mountains, Shanxi Province[J]. Scientia Silvae Sinicae, 2017, 53(2): 89-99. | |
| [39] | Mali T, Kuuskeri J, Shah F, et al. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes[J]. PLoS One, 2017, 12(9): e0185171. |
| [40] | 李媛媛. 塔里木河下游胡杨根际微生物群落结构与土壤理化性质的相关性分析[D]. 石河子: 石河子大学, 2022. |
| LI Yuanyuan. Correlation analysis between microbial community structure of Populus euphratica rhizosphere and soil physical and chemical properties in the lower reaches of Tarim River[D]. Shihezi: Shihezi University, 2022. | |
| [41] | Sardinha M, Müller T, Schmeisky H, et al. Microbial performance in soils along a salinity gradient under acidic conditions[J]. Applied Soil Ecology, 2003, 23(3): 237-244. |
| [42] | Rath K M, Fierer N, Murphy D V, et al. Linking bacterial community composition to soil salinity along environmental gradients[J]. The ISME Journal, 2019, 13(3): 836-846. |
| [43] | 张笑培, 杨改河, 任广鑫, 等. 黄土高原南部植被恢复对土壤理化性状与土壤酶活性的影响[J]. 干旱地区农业研究, 2010, 28(6): 64-68. |
| ZHANG Xiaopei, YANG Gaihe, REN Guangxin, et al. Effects of vegetation restoration on soil physical-chemical properties and activities of soil enzyme in the Gully Region of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 64-68. | |
| [44] | Laurent P, Claire C, Andreas K, et al. The interplay between microbial communities and soil properties[J]. Nature reviews. Microbiology, 2023. |
| [45] | Schimel J P. Life in dry soils: effects of drought on soil microbial communities and processes[J]. Annual Review of Ecology, Evolution, and Systematics, 2018, 49: 409-432. |
| [1] | 陈俊, 张琦, 杨梦宇, 袁振杨. 生草对苹果园土壤理化性质及果实品质的影响[J]. 新疆农业科学, 2025, 62(4): 936-943. |
| [2] | 张优, 刘茂秀, 史军辉, 王新英, 艾吉尔·阿不拉, 张炎. 塔河胡杨林核心区退耕地初始年土壤及植被养分特征数值分析[J]. 新疆农业科学, 2024, 61(3): 699-707. |
| [3] | 姚宇翔, 王国强, 王可, 伊莎, 杨欣雅, 罗晓霞. 塔里木河上游不同生境细菌群落结构及多样性分析[J]. 新疆农业科学, 2024, 61(3): 708-718. |
| [4] | 热依汗·阿布力孜, 何学敏, 杨欢, 黄鹏程, 冯海鹏, 王勇志. 不同水盐生境下小叶碱蓬叶绿素荧光参数特征及其对土壤因子的响应[J]. 新疆农业科学, 2024, 61(2): 485-494. |
| [5] | 田敬宇, 高雁, 高兴旺, 曾军, 赵鹏安, 苏比努尔·居来提. 哈密瓜种植对根际土壤细菌群落组成和多样性的影响[J]. 新疆农业科学, 2023, 60(5): 1253-1262. |
| [6] | 艾海白尔·卡斯木, 樊永红, 迪拉热·海米提. 盐碱地白刺不同部位微生物群落高通量分析[J]. 新疆农业科学, 2022, 59(10): 2562-2573. |
| [7] | 郑亚楠, 姚永生, 古丽热娅尼·阿斯哈尔, 安世杰, 李延霞, 支金虎. 不同改良措施对沙质土壤颗粒组成及分形特征的影响[J]. 新疆农业科学, 2021, 58(9): 1665-1671. |
| [8] | 梁萌, 王志方, 马健, 李晨华. 还田棉秆腐解与土壤理化性质对氮肥施用的响应特征[J]. 新疆农业科学, 2021, 58(8): 1427-1434. |
| [9] | 鲁伟丹, 李俊华, 陈丽丽, 罗彤, 何浩, 张宇良. 有机肥替代20%化肥处理对滴灌春小麦产量及土壤养分的影响[J]. 新疆农业科学, 2021, 58(5): 814-821. |
| [10] | 赛米拉克孜·台外库力, 靳瑰丽, 安沙舟, 董乙强. 不同生境条件下醉马草芽库的动态变化特征[J]. 新疆农业科学, 2021, 58(5): 947-954. |
| [11] | 迪拉热·海米提, 樊永红, 王伟楠, 喻文丽, 艾海白尔·卡斯木. 盐穗木叶片及根际土壤微生物群落高通量分析[J]. 新疆农业科学, 2021, 58(4): 731-740. |
| [12] | 高雁, 张永强, 张志东, 唐琦勇, 楚敏, 欧提库尔·玛合木提, 詹发强, 朱静, 宋素琴, 顾美英. 功能性微生物菌剂对小麦生长和根际土壤生态的影响[J]. 新疆农业科学, 2021, 58(1): 115-124. |
| [13] | 王伟, 布丽根·加冷别克, 胡晓东, 夏俊芳, 张志东, 顾美英, 武运. 基于高通量测序技术的酿酒葡萄产区土壤微生物多样性[J]. 新疆农业科学, 2020, 57(5): 859-868. |
| [14] | 詹发强, 侯敏, 杨蓉, 王宁, 包慧芳, 侯新强, 崔卫东, 龙宣杞. 1株新疆胡杨林昆虫病原线虫鉴定及生物学特性[J]. 新疆农业科学, 2020, 57(3): 536-544. |
| [15] | 岳永寰, 靳瑰丽, 宫珂, 韩万强, 王惠宁, 董莉莉. 小尺度下醉马草生长动态与土壤养分的关系[J]. 新疆农业科学, 2019, 56(6): 1142-1150. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||