新疆农业科学 ›› 2024, Vol. 61 ›› Issue (11): 2648-2657.DOI: 10.6048/j.issn.1001-4330.2024.11.005
• 种质资源·分子遗传学·生理生化·微生物 • 上一篇 下一篇
收稿日期:
2024-03-20
出版日期:
2024-11-20
发布日期:
2025-01-08
通信作者:
杨生保(1980-),男,新疆米泉人,研究员,研究方向为蔬菜遗传育种,(E-mail)ysb.jack@163.com作者简介:
蒋荣伟(1997-),男,云南弥勒人,硕士研究生,研究方向为蔬菜育种,(E-mail)2580006748@qq.com
基金资助:
JIANG Rongwei1,2(), YANG Shengbao2(
), YUAN Lei1, XIAO Hongxing3
Received:
2024-03-20
Published:
2024-11-20
Online:
2025-01-08
Supported by:
摘要:
【目的】综合分析辣椒的种植面积变化,研究辣椒色素的调控途径和基因,综述辣椒色素的研究成果,为辣椒育种者在选育培育高色价辣椒品种中提供参考。【方法】通过对国内外官网、文献和技术等与辣椒相关最新信息的收集、总结和对比分析。【结果】辣椒果实颜色主要由果肉细胞中叶绿素、类胡萝卜素和花青素等的种类和含量决定,类胡萝卜素是成熟果实主要色素来源。辣椒拥有高度进化的类胡萝卜素合成路径,PSY和CCS等单基因突变控制果实色泽,非结构基因或许调控辣椒色素的形成。已证实转录因子Golden2-like (GLK2)和APRR2-Like在辣椒的叶绿素和色素含量积累方面发挥主要作用。叶绿素和类胡萝卜素的产生在辣椒中是相关的。【结论】辣椒色素被作为重要的工业原料广泛应用于食品、医药及饲料添加剂等领域。
中图分类号:
蒋荣伟, 杨生保, 袁雷, 肖红星. 辣椒果实中辣椒色素的研究进展[J]. 新疆农业科学, 2024, 61(11): 2648-2657.
JIANG Rongwei, YANG Shengbao, YUAN Lei, XIAO Hongxing. Research progress of capsicum pigment in pepper fruit[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2648-2657.
[1] | 邹学校. 辣椒遗传育种学[M]. 北京: 科学出版社, 2009,10. |
Zou Xuexiao. Pepper Genetics and Breeding[M].Beijin:Science Press, 2009,10. | |
[2] | Kim S, Park M, Yeom S I, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species[J]. Nature Genetics, 2014, 46(3): 270-278. |
[3] | 刘宇华. 基于转录组学与靶向代谢组学解析辣椒果实颜色的形成[D]. 长沙: 湖南大学, 2020. |
LIU Yuhua. Analysis of Pepper Fruit Color Formation Mechanism Based on Transcriptomics and Targeted Metabolomics[D]. Changsha: Hunan University, 2020. | |
[4] | 董新荣, 刘仲华, 庄杨, 等. 辣椒中辣椒素与色素提取的优化研究[J]. 化学与生物工程, 2006, 23(2): 28-30. |
DONG Xinrong, LIU Zhonghua, ZHUANG Yang, et al. Study on optimization of the extraction of capsaicin and pigment from Capsicum frutescens L[J]. Chemistry & Bioengineering, 2006, 23(2): 28-30. | |
[5] | Braconnot H. Mémoire sur le principe extractif et sur les extraits en général.[J]. Phys.Chim.Hist.Nat.Arts 1817, (84): 267-296. |
[6] | Ikan R. Natural Products: A Laboratory Guide(2nd ed)[M]. Academic Press: San Diego, CA, USA, 1991:360. |
[7] | Von Zechmeister L.; von Cholnoky L. Untersuchungen über den paprika-farbstoff. XI.Isomerisierungs-Erscheinungen.Ann.Chem 1940, 543, 248-257. |
[8] | Curl A.L. The carotenoids of red bell peppers.[J]. Agric.Food Chem 1962, (10):504-509. |
[9] | Barber M S, Jackman L M, Warren C K, Weedon B C L. The structures of the paprika ketones. Proc.Chem. Soc.1960, 19-20. |
[10] | Entschel R, Karrer P. Zur konstitution des capsanthins und capsorubins[J]. Helvetica Chimica Acta, 1960, 43(1): 89-94. |
[11] | Cheng Qin, Changshui Yu, Yaou Shen, et al.(2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. PNAS, doi/10.1073/pnas.1400975111. |
[12] | TGC 14 Jsc. TGC 14 JSC - ANNUAL REPORT - DECEMBER 31, 2011[M].Reportal:2012-06-15. |
[13] | Li Z, Wang S, Gui X L, et al. A further analysis of the relationship between yellow ripe-fruit color and the capsanthin-capsorubin synthase gene in pepper (Capsicum sp.) indicated a new mutant variant in C.annuum and a tandem repeat structure in promoter region[J]. PLoS One, 2013, 8(4): e61996. |
[14] | Ma J, Dai J X, Liu X W, et al. The transcription factor CaBBX20 regulates capsanthin accumulation in pepper (Capsicum annuum L.)[J]. Scientia Horticulturae, 2023, 314: 111907. |
[15] | Song J L, Sun B M, Chen C M, et al. An R-R-type MYB transcription factor promotes non-climacteric pepper fruit carotenoid pigment biosynthesis[J]. The Plant Journal, 2023, 115(3): 724-741. |
[16] | Jang S, Kim G W, Han K, et al. Investigation of genetic factors regulating chlorophyll and carotenoid biosynthesis in red pepper fruit[J]. Frontiers in Plant Science, 2022, 13: 922963. |
[17] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9): 1715-1726. |
ZOU Xuexiao, MA Yanqing, DAI Xiongze, et al. Spread and industry development of pepper in China[J]. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726.
DOI |
|
[18] | 林巧, 辛竹琳, 孔令博, 等. 我国辣椒产业发展现状及育种应对措施[J]. 中国农业大学学报, 2023, 28(5): 82-95. |
LIN Qiao, XIN Zhulin, KONG Lingbo, et al. Current situation of pepper industry development and breeding countermeasures in China[J]. Journal of China Agricultural University, 2023, 28(5): 82-95. | |
[19] | 宋文胜, 袁丰年, 张新贵. 新疆制干加工辣椒产业概况及发展趋势[J]. 辣椒杂志, 2010, 8(3): 5-8. |
SONG Wensheng, YUAN Fengnian, ZHANG Xingui. The status quo and development trend of dried-fruit-processing hot pepper industry in Xinjiang[J]. Journal of China Capsicum, 2010, 8(3): 5-8. | |
[20] | Hugueney P, Badillo A, Chen H C, et al. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts[J]. The Plant Journal, 1995, 8(3): 417-424. |
[21] |
Lefebvre V, Kuntz M, Camara B, et al. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper[J]. Plant Molecular Biology, 1998, 36(5): 785-789.
PMID |
[22] | Timberlake C F. Plant pigments for colouring food[J]. Nutrition Bulletin, 1989, 14(2): 113-125. |
[23] | Facteau T J, Chestnut N E, Rowe K E. Relationship between fruit weight, firmness, and leaf/fruit ratio in lambert and Bing sweet cherries[J]. Canadian Journal of Plant Science, 1983, 63(3): 763-765. |
[24] | Song Z, Zhong J, Dong J C, et al. Mapping immature fruit colour-related genes via bulked segregant analysis combined with whole-genome re-sequencing in pepper (Capsicum annuum)[J]. Plant Breeding, 2022, 141(2): 277-285. |
[25] | Braconnot H. Mémoire sur le principe extractif et sur les extraits en général. J.Phys.Chim.Hist.Nat.Arts 1817, 84, 267-296. |
[26] | Ikan R. Natural Products: A Laboratory Guide, 2nd ed; Academic Press: San Diego, CA, USA, 1991; p.360. |
[27] | Zechmeister L, v Cholnoky L. Untersuchungen über den paprika-farbstoff.XI.isomerisierungs-erscheinungen[J]. Justus Liebigs Annalen Der Chemie, 1940, 543(1): 248-257. |
[28] | Curl A.L. The carotenoids of red bell peppers. J.Agric.Food Chem 1962, 10, 504-509. |
[29] | 张宝玺, 郭家珍, 杨桂梅, 等. 辣椒绿熟期果色及主要色素含量的遗传[J]. 园艺学报, 1996, 23(1): 94-96. |
ZHANG Baoxi, GUO Jiazhen, YANG Guimei, et al. Genetic analysis of fruit color and major pigment in green ripe stage of Capsicum annuum[J]. Acta Horticulturae Sinica, 1996, 23(1): 94-96. | |
[30] | 吴雪霞, 薛林宝, 陈建林, 等. 彩色甜椒果实转色期色素的消长规律[J]. 长江蔬菜, 2005,(5): 38-40. |
WU Xuexia, XUE Linbao, CHEN Jianlin, et al. Ebb and flow of pigment of colour sweet pepper fruit in colour-changed period[J]. Journal of Changjiang Vegetables, 2005,(5): 38-40. | |
[31] | 薛林宝, 吴雪霞, 陈建林. 甜椒果实颜色遗传研究[J]. 园艺学报, 2005, 32(3): 513-515. |
XUE Linbao, WU Xuexia, CHEN Jianlin. Study on heredity of fruit colors of sweet pepper[J]. Acta Horticulturae Sinica, 2005, 32(3): 513-515. | |
[32] | 戴雄泽, 王利群, 陈文超, 等. 辣椒果实发育过程中果色与类胡萝卜素的变化[J]. 中国农业科学, 2009, 42(11): 4004-4011. |
DAI Xiongze, WANG Liqun, CHEN Wenchao, et al. Changes of fruit colors and carotenoid contents during the development of pepper fruit[J]. Scientia Agricultura Sinica, 2009, 42(11): 4004-4011. | |
[33] |
Thorup T A, Tanyolac B, Livingstone K D, et al. Candidate gene analysis of organ pigmentation loci in the Solanaceae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11192-11197.
DOI PMID |
[34] | Hurtado-Hernandez H, Smith P G. Inheritance of mature fruit color in Capsicum annuum L[J]. Journal of Heredity, 1985, 76(3): 211-213. |
[35] |
Rodriguez-Uribe L, Guzman I, Rajapakse W, et al. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels[J]. Journal of Experimental Botany, 2012, 63(1): 517-526.
DOI PMID |
[36] | Ha S H, Kim J B, Park J S, et al. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper[J]. Journal of Experimental Botany, 2007, 58(12): 3135-3144. |
[37] |
DellaPenna D, Pogson B J. Vitamin synthesis in plants: tocopherols and carotenoids[J]. Annual Review of Plant Biology, 2006, 57: 711-738.
PMID |
[38] |
Von L J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism[J]. Annual Review of Nutrition, 2010, 30: 35-56.
DOI PMID |
[39] | Dogbo O, Camara B. Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1987, 920(2): 140-148. |
[40] | Dogbo O, Laferriere A, d’Harlingue A, Camara B Carotenoid biosynthesis:isolation and properties of the envelope of spinach chloroplasts.In: ReidE ed Plant organelles,vol 9.Ellis Horwood Publishers, Chichester, 1988,(9):47-59 |
[41] |
Hugueney P, Bouvier F, Badillo A, et al. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits[J]. Plant Physiology, 1996, 111(2): 619-626.
PMID |
[42] | Kuntz M, Römer S, Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening[J]. The Plant Journal: for Cell and Molecular Biology, 1992, 2(1): 25-34. |
[43] | Romer S, Hugueney P, Bouvier F, et al. Expression of the genes encoding the early carotenoid biosynthetic-enzymes in Capsicum annuum[J]. Biochemical and Biophysical Research Communications, 1993, 196(3): 1414-1421. |
[44] | Bouvier F, Hugueney P, D’Harlingue A, et al. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5, 6-epoxycarotenoid into ketocarotenoid[J]. The Plant Journal, 1994, 6(1): 45-54. |
[45] |
Hugueney P, Bouvier F, Badillo A, et al. Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(12): 5630-5634.
DOI PMID |
[46] |
Bouvier F, d’Harlingue A, Hugueney P, et al. Xanthophyll biosynthesis cloning, expression, functional reconstitution, and regulation of β-cyclohexenyl carotenoid epoxidase from pepper (capsicum annuum)[J]. Journal of Biological Chemistry, 1996, 271(46): 28861-28867.
DOI PMID |
[47] |
Hugueney P, Römer S, Kuntz M, et al. Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene and zeta-carotene in Capsicum chromoplasts[J]. European Journal of Biochemistry, 1992, 209(1): 399-407.
PMID |
[48] | Huh J H, Kang B C, Nahm S H, et al. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.)[J]. Theoretical and Applied Genetics, 2001, 102(4): 524-530. |
[49] |
张正海, 曹亚从, 于海龙, 等. 辣椒果实主要品质性状遗传和代谢物组成研究进展[J]. 园艺学报, 2019, 46(9): 1825-1841.
DOI |
ZHANG Zhenghai, CAO Yacong, YU Hailong, et al. Genetic control and metabolite composition of fruit quality in Capsicum[J]. Acta Horticulturae Sinica, 2019, 46(9): 1825-1841.
DOI |
|
[50] | Kormos J, Kormos K(1960) Die genetischen typen der carotenoid-systeme der paprikafrucht. Acta Bot Acad Sci Hun, 6: 305-319. |
[51] | Popovsky S, Paran I. Molecular genetics of the y locus in pepper: its relation to capsanthin-capsorubin synthase and to fruit color[J]. Theoretical and Applied Genetics, 2000, 101(1): 86-89. |
[52] | Ya Qin Lang, Satoshi Yanagawa, Tsuneo Sasanuma, Tetsuo Sasakuma. Orange Fruit Color in Capsicum due to Deletion of Capsanthin-capsorubin Synthesis Gene[J]. Breeding Science, 2004, 54(1). |
[53] |
Brand A, Borovsky Y, Meir S, et al. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size[J]. Planta, 2012, 235(3): 579-588.
DOI PMID |
[54] | Liu Y S, Gur A, Ronen G, et al. There is more to tomato fruit colour than candidate carotenoid genes[J]. Plant Biotechnology Journal, 2003, 1(3): 195-207. |
[55] |
Pan Y, Bradley G, Pyke K, et al. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits[J]. Plant Physiology, 2013, 161(3): 1476-1485.
DOI PMID |
[56] |
Powell A L T, Nguyen C V, Hill T, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development[J]. Science, 2012, 336(6089): 1711-1715.
DOI PMID |
[57] |
Lavi N, Tadmor Y, Meir A, et al. Characterization of the intense pigment tomato genotype emphasizing targeted fruit metabolites and chloroplast biogenesis[J]. Journal of Agricultural and Food Chemistry, 2009, 57(11): 4818-4826.
DOI PMID |
[58] | Rick C M. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species[J]. Hilgardia, 1974, 42(15): 493-510. |
[59] | Azanza F, Young T E, Kim D, et al. Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersion chmielewskii on tomato soluble solids, pH, and yield[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 1994, 87(8): 965-972. |
[60] |
Yelle S, Hewitt J D, Robinson N L, et al. Sink metabolism in tomato fruit: III.analysis of carbohydrate assimilation in a wild species[J]. Plant Physiology, 1988, 87(3): 737-740.
DOI PMID |
[61] | Kerckhoffs L H J, De Groot N A M A, Van Tuinen A, et al. Physiological characterization of exaggerated-photoresponse mutants of tomato[J]. Journal of Plant Physiology, 1997, 150(5): 578-587. |
[62] | Azanza F, Kim D, Tanksley S D, et al. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 1995, 91(3): 495-504. |
[63] | Tanksley S D, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato—a re-examination[J]. Theoretical and Applied Genetics, 1988, 75(5): 811-823. |
[64] |
Lieberman M, Segev O, Gilboa N, et al. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype[J]. Theoretical and Applied Genetics, 2004, 108(8): 1574-1581.
DOI PMID |
[65] | Mustilli A C, Fenzi F, Ciliento R, et al. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1[J]. The Plant Cell, 1999, 11(2): 145-157. |
[66] |
Galpaz N, Wang Q, Menda N, et al. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 53(5): 717-730.
DOI PMID |
[67] | Davuluri G R, van Tuinen A, Mustilli A C, et al. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing[J]. The Plant Journal, 2004, 40(3): 344-354. |
[68] |
Wang S H, Liu J K, Feng Y Y, et al. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(1): 89-103.
DOI PMID |
[69] |
Enfissi E M A, Barneche F, Ahmed I, et al. Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit[J]. The Plant Cell, 2010, 22(4): 1190-1215.
DOI PMID |
[70] | Hashimoto H, Uragami C, Cogdell R J. Carotenoids and photosynthesis[M]// StangeC,ed. Subcellular Biochemistry. Cham: Springer International Publishing, 2016: 111-139. |
[71] |
Tanaka A, Tanaka R. Chlorophyll metabolism[J]. Curr Opin Plant Biol, 2006, 9(3): 248-255.
DOI PMID |
[72] | Bian W., Barsan C., Egea I., Purgatto E., Chervin C., Zouine M., et al. Metabolic and molecular events occurring during chromoplast[J]. biogenesis.Am.J.Bot. 2011, 1-13. |
[73] |
Egea I, Bian W P, Barsan C, et al. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue[J]. Annals of Botany, 2011, 108(2): 291-297.
DOI PMID |
[74] | Wahyuni Y, Ballester A R, Sudarmonowati E, et al. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding[J]. Phytochemistry, 2011, 72(11/12): 1358-1370. |
[75] |
Nisar N, Li L, Lu S, et al. Carotenoid metabolism in plants[J]. Molecular Plant, 2015, 8(1): 68-82.
DOI PMID |
[76] | Guzman I, Hamby S, Romero J, et al. Variability of carotenoid biosynthesis in orange colored Capsicum spp[J]. Plant Science, 2010, 179(1/2): 49-59. |
[77] |
Arimboor R, Natarajan R B, Menon K R, et al. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability-a review[J]. Journal of Food Science and Technology, 2015, 52(3): 1258-1271.
DOI PMID |
[78] |
Nguyen C V, Vrebalov J T, Gapper N E, et al. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening[J]. The Plant Cell, 2014, 26(2): 585-601.
DOI PMID |
[79] |
Nadakuduti S S, Holdsworth W L, Klein C L, et al. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato[J]. The Plant Journal: for Cell and Molecular Biology, 2014, 78(6): 1022-1033.
DOI PMID |
[80] | Brand A, Borovsky Y, Hill T, et al. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2014, 127(10): 2139-2148. |
[81] |
Borovsky Y, Monsonego N, Mohan V, et al. The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 99(1): 41-55.
DOI PMID |
[1] | 张国儒, 唐亚萍, 石林媛, 袁雷, 张勇, 杨生保. 辣椒种间杂交遗传特性[J]. 新疆农业科学, 2024, 61(3): 632-641. |
[2] | 王震鲁, 白涛, 李东亚, 戴硕, 陈珍. 基于改进YOLOv5的绿辣椒目标检测方法[J]. 新疆农业科学, 2024, 61(12): 3032-3041. |
[3] | 马思洁, 朱天生, 何璐, 杨叔青. 辣椒小G蛋白CaROP的生物信息学分析[J]. 新疆农业科学, 2024, 61(1): 165-175. |
[4] | 陈艳, 黄璐瑶, 邓昌蓉, 张彦君, 侯全刚, 邵登魁. 冷害对多茸毛型线辣椒幼苗生理水平的影响[J]. 新疆农业科学, 2023, 60(6): 1492-1498. |
[5] | 袁雷, 唐亚萍, 张国儒, 吉雪花, 杨生保. 基于辣椒种间杂交F2群体的遗传连锁图谱构建及主要果实性状QTL定位[J]. 新疆农业科学, 2023, 60(5): 1150-1161. |
[6] | 刘衍晨, 刘志刚, 白新慧, 乔鹏, 徐诚, 白慧敏, 张娟. 蛭石复混基质对辣椒育苗的影响[J]. 新疆农业科学, 2023, 60(5): 1190-1199. |
[7] | 裴红霞, 李生梅, 武旭霞, 耿世伟, 赖黎丽, 高晶霞, 董心久. 辣椒核雄性不育系pby-1形态学及生理生化特性分析[J]. 新疆农业科学, 2023, 60(3): 624-632. |
[8] | 肖中林, 闫会转, 高杰, 王思逸, 张旭旭, 艾力西热·尼加提. 不同浓度NaCl和NaHCO3胁迫对制干辣椒光合特性日变化的影响[J]. 新疆农业科学, 2023, 60(1): 140-149. |
[9] | 彭宇, 闫会转, 肖中林, 贾凯, 燕存尧, 王妍欣. 不同施肥处理对盆栽辣椒土壤酶活性及土壤微生物含量的影响[J]. 新疆农业科学, 2022, 59(9): 2200-2208. |
[10] | 袁雷, 吉雪花, 张国儒, 石林媛, 郭河瑶, 唐亚萍, 杨涛, 杨生保. 52份辣椒主要果实性状的遗传多样性及聚类分析[J]. 新疆农业科学, 2022, 59(8): 1935-1944. |
[11] | 张卢慧, 赵志强, 郭庆元. 辣椒细菌性果实条斑病病原鉴定[J]. 新疆农业科学, 2022, 59(7): 1726-1733. |
[12] | 马燕, 许铭强, 李喜弟, 孟新涛, 邹淑萍, 张婷, 张谦. 响应面法优化辣椒籽油碱异构化制备共轭亚油酸工艺及其氧化稳定性[J]. 新疆农业科学, 2022, 59(4): 908-915. |
[13] | 谢雪果, 袁雷, 王世宁, 沈凌峰, 夏亚辉, 吉雪花. 不同施氮水平对色素辣椒光合效率的影响[J]. 新疆农业科学, 2022, 59(10): 2502-2513. |
[14] | 张连俊, 李金兰, 张帅, 张广杰, 杨柳, 徐韬, 马德英, 刘玉升. 2种昆虫虫粪对辣椒生长及果实品质的影响[J]. 新疆农业科学, 2021, 58(8): 1511-1518. |
[15] | 石磊, 王军, 陈云, 吕宁. 化肥减量配施生物菌肥对色素辣椒生长的影响[J]. 新疆农业科学, 2021, 58(5): 854-865. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 25
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||