新疆农业科学 ›› 2023, Vol. 60 ›› Issue (9): 2152-2162.DOI: 10.6048/j.issn.1001-4330.2023.09.009
• 作物遗传育种·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
王立红(), 张宏芝, 张跃强(
), 李剑峰, 王重, 高新, 时佳, 王春生, 夏建强, 樊哲儒(
)
收稿日期:
2022-11-23
出版日期:
2023-09-20
发布日期:
2023-09-19
通信作者:
樊哲儒(1964-),男,甘肃人,研究员,研究方向小麦遗传育种,(E-mail)fzr640814@qq.com;作者简介:
王立红(1990-),女,河南人,助理研究员,研究方向为作物高产栽培,(E-mail)1498877605@qq.com
基金资助:
WANG Lihong(), ZHANG Hongzhi, ZHANG Yueqiang(
), LI Jianfeng, WANG Zhong, GAO Xin, SHI Jia, WANG Chunsheng, XIA Jianqiang, FAN Zheru(
)
Received:
2022-11-23
Published:
2023-09-20
Online:
2023-09-19
Supported by:
摘要:
【目的】研究不同产量水平下冬小麦干物质与氮素积累、转运及利用差异,为缩小新疆冬小麦产量差及高产栽培提供理论依据。【方法】试验于2018~2020年2年在昌吉军户进行,以冬小麦品种新冬41号为材料,采用不同施肥和栽培管理措施模拟高产Ⅰ(SH:≥9 000 kg/hm2)、高产Ⅱ(HH:7 500 kg/hm2~9 000 kg/hm2)、农户(FP:6 000 kg/hm2~7 500 kg/hm2)、基础(CK:≤4 500 kg/hm2)4个产量水平,研究不同产量水平冬小麦干物质和氮素积累及转运、氮素吸收利用的差异。【结果】SH、HH、FP的2年产量平均与CK产量差为6 863.27、5 496.76和3 735.73 kg/hm2。收获穗数和穗粒数均表现为SH>HH >FP>CK,千粒重表现为HH>SH>FP>CK。SH、HH、FP与CK的开花期干物质积累量差为11 221.65、8 220.05和5 527.81 kg/hm2,成熟期干物质积累量差为16 026.10、11 918.25和7 645.80 kg/hm2,随着产量差增大,干物质积累量、花前干物质转运量、花后干物质积累量及对籽粒的贡献率增高,花前干物质转运率及对籽粒的贡献率降低;开花期和成熟期营养器官氮素积累量、花前氮素转运量均随着产量水平的提高而提高,产量水平越高,需氮量越大,氮素吸收越高,氮素利用效率及氮肥偏生产力越低;籽粒产量与花前干物质转运量、花后干物质积累量、花前氮素转运量、需氮量及氮素吸收效率呈极显著正相关,与氮肥偏生产力呈显著正相关。【结论】缩小产量差应通过施肥等栽培管理措施,尤其是滴灌条件下生育后期磷钾肥随水滴施,增加花前干物质和氮素积累及转运率、花后干物质积累量,提高氮素吸收效率,在适宜收获穗数技术上,协同提高穗粒数与千粒重。
中图分类号:
王立红, 张宏芝, 张跃强, 李剑峰, 王重, 高新, 时佳, 王春生, 夏建强, 樊哲儒. 不同产量水平冬小麦产量差异形成的干物质生产、转运及氮肥利用分析[J]. 新疆农业科学, 2023, 60(9): 2152-2162.
WANG Lihong, ZHANG Hongzhi, ZHANG Yueqiang, LI Jianfeng, WANG Zhong, GAO Xin, SHI Jia, WANG Chunsheng, XIA Jianqiang, FAN Zheru. Analysis of dry matter production, transport and nitrogen fertilizer utilization caused by yield Gap at different yield levels of winter wheat[J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2152-2162.
年份 Year | 处理 Treat- ments | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Alkaline nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|
2018~2019 | SH | 14.044 | 0.839 | 0.924 | 21.648 | 50.858 | 16.371 | 153 |
HH | 12.273 | 0.827 | 0.926 | 21.725 | 44.018 | 14.819 | 132 | |
FP | 11.352 | 0.807 | 1.004 | 22.078 | 43.311 | 14.262 | 136 | |
CK | 10.499 | 0.738 | 0.906 | 22.672 | 35.250 | 7.208 | 125 | |
2019~2020 | SH | 16.239 | 0.910 | 0.447 | 27.099 | 74.550 | 20.477 | 219 |
HH | 15.416 | 0.860 | 0.798 | 28.366 | 64.113 | 17.993 | 221 | |
FP | 14.279 | 0.800 | 0.777 | 28.670 | 61.131 | 15.156 | 212 | |
CK | 13.785 | 0.810 | 0.712 | 26.289 | 62.113 | 14.522 | 205 |
表1 播前土壤基础肥力
Tab.1 Soil basic fertility before sowing
年份 Year | 处理 Treat- ments | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Alkaline nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|
2018~2019 | SH | 14.044 | 0.839 | 0.924 | 21.648 | 50.858 | 16.371 | 153 |
HH | 12.273 | 0.827 | 0.926 | 21.725 | 44.018 | 14.819 | 132 | |
FP | 11.352 | 0.807 | 1.004 | 22.078 | 43.311 | 14.262 | 136 | |
CK | 10.499 | 0.738 | 0.906 | 22.672 | 35.250 | 7.208 | 125 | |
2019~2020 | SH | 16.239 | 0.910 | 0.447 | 27.099 | 74.550 | 20.477 | 219 |
HH | 15.416 | 0.860 | 0.798 | 28.366 | 64.113 | 17.993 | 221 | |
FP | 14.279 | 0.800 | 0.777 | 28.670 | 61.131 | 15.156 | 212 | |
CK | 13.785 | 0.810 | 0.712 | 26.289 | 62.113 | 14.522 | 205 |
处理 Treat- ments | 基肥 Base fertilizer | 返青期 Reviving stage | 起身期 Pre- jointing stage | 拔节期 Jointing stage | 孕穗期 Heading stage | 开花期 Flowering stage | 灌浆期 Filling stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
春3叶 Spring 3 leaves | 春4叶 Spring 4 leaves | 第一节 1.5~2 The first section 1.5-2 (cm) | 拔节后 10~12 (d) 10-12 d after jointing | 旗叶展开 Flag leaf expansion | 中部小 穗开花 Central spikelet blossom | 开花后 10~12 d 10-12d after flowering | 间隔 8~10 d Interval 8-10 d | 间隔 8~10 d Interval 8-10 d | ||||||||
有机肥+ 磷酸二铵 (kg/hm2) Organic fertilizer+ Diamine | 尿素+硫酸钾 (kg/hm2) Urea+Potassium sulfate | 尿素+磷酸二氢钾 (kg/hm2) Urea+Potassium dihydrogen phosphate | ||||||||||||||
SH | 7 500+375 | 90+0 | 90+0 | 150+30 | 90+30 | 90+0 | 90+0 | 75+30 | 0+15 | 0+15 | ||||||
HH | 3 000+300 | 75+0 | 75+0 | 90+30 | 75+15 | 75+0 | 75+0 | 60+30 | 0+15 | 0+0 | ||||||
FP | 1 500+225 | 45+0 | 45+0 | 75+30 | 45+0 | 45+0 | 45+0 | 45+30 | 0+15 | 0+0 | ||||||
CK | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 |
表2 小区田间施肥情况
Tab.2 Fertilization application in the field experiments
处理 Treat- ments | 基肥 Base fertilizer | 返青期 Reviving stage | 起身期 Pre- jointing stage | 拔节期 Jointing stage | 孕穗期 Heading stage | 开花期 Flowering stage | 灌浆期 Filling stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
春3叶 Spring 3 leaves | 春4叶 Spring 4 leaves | 第一节 1.5~2 The first section 1.5-2 (cm) | 拔节后 10~12 (d) 10-12 d after jointing | 旗叶展开 Flag leaf expansion | 中部小 穗开花 Central spikelet blossom | 开花后 10~12 d 10-12d after flowering | 间隔 8~10 d Interval 8-10 d | 间隔 8~10 d Interval 8-10 d | ||||||||
有机肥+ 磷酸二铵 (kg/hm2) Organic fertilizer+ Diamine | 尿素+硫酸钾 (kg/hm2) Urea+Potassium sulfate | 尿素+磷酸二氢钾 (kg/hm2) Urea+Potassium dihydrogen phosphate | ||||||||||||||
SH | 7 500+375 | 90+0 | 90+0 | 150+30 | 90+30 | 90+0 | 90+0 | 75+30 | 0+15 | 0+15 | ||||||
HH | 3 000+300 | 75+0 | 75+0 | 90+30 | 75+15 | 75+0 | 75+0 | 60+30 | 0+15 | 0+0 | ||||||
FP | 1 500+225 | 45+0 | 45+0 | 75+30 | 45+0 | 45+0 | 45+0 | 45+30 | 0+15 | 0+0 | ||||||
CK | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 | 0+0 |
年份 Year | 处理 Treatments | 收获穗数 Spike number (104spikes/hm2) | 穗粒数 Grain number per spike | 千粒重 1000-grain weight(g) | 籽粒产量 Yield (kg/hm2) | 与CK产量差 |
---|---|---|---|---|---|---|
2018~2019 | SH | 535.67a | 42.18a | 52.39a | 9 342.80a | 6 623.40 |
HH | 502.00ab | 38.55b | 52.44a | 8 137.20b | 5 417.80 | |
FP | 494.33ab | 33.45c | 48.09b | 6 860.20c | 4 140.80 | |
CK | 474.00b | 19.07d | 44.48c | 2 719.40d | - | |
2019~2020 | SH | 585.60a | 44.55a | 50.30b | 9 854.50a | 7 103.14 |
HH | 532.60ab | 38.88b | 53.76a | 8 372.08b | 5 575.72 | |
FP | 515.00b | 32.01c | 49.21b | 6 082.02c | 3 330.66 | |
CK | 475.80b | 18.82d | 40.97c | 2 751.36d | - | |
P-value | ||||||
年份(Y) Year | 0.022 5 | 0.905 2 | 0.066 1 | 0.999 7 | ||
处理(T) Treatments | 0.000 1 | 0.000 1 | 0.000 1 | 0.000 1 | ||
年份×处理(Y×T) Year×Treatments | 0.549 5 | 0.215 5 | 0.000 4 | 0.246 0 |
表3 不同产量水平下新疆冬小麦产量及产量构成因素
Tab.3 Xinjiang winter wheat yield and yield components under different yield levels
年份 Year | 处理 Treatments | 收获穗数 Spike number (104spikes/hm2) | 穗粒数 Grain number per spike | 千粒重 1000-grain weight(g) | 籽粒产量 Yield (kg/hm2) | 与CK产量差 |
---|---|---|---|---|---|---|
2018~2019 | SH | 535.67a | 42.18a | 52.39a | 9 342.80a | 6 623.40 |
HH | 502.00ab | 38.55b | 52.44a | 8 137.20b | 5 417.80 | |
FP | 494.33ab | 33.45c | 48.09b | 6 860.20c | 4 140.80 | |
CK | 474.00b | 19.07d | 44.48c | 2 719.40d | - | |
2019~2020 | SH | 585.60a | 44.55a | 50.30b | 9 854.50a | 7 103.14 |
HH | 532.60ab | 38.88b | 53.76a | 8 372.08b | 5 575.72 | |
FP | 515.00b | 32.01c | 49.21b | 6 082.02c | 3 330.66 | |
CK | 475.80b | 18.82d | 40.97c | 2 751.36d | - | |
P-value | ||||||
年份(Y) Year | 0.022 5 | 0.905 2 | 0.066 1 | 0.999 7 | ||
处理(T) Treatments | 0.000 1 | 0.000 1 | 0.000 1 | 0.000 1 | ||
年份×处理(Y×T) Year×Treatments | 0.549 5 | 0.215 5 | 0.000 4 | 0.246 0 |
年份 Year | 处理 Treatments | 开花期Flowering stage | 成熟期Mature stage | ||||||
---|---|---|---|---|---|---|---|---|---|
茎秆+叶鞘 Stem+sheath | 叶片 Leaf | 颖壳+穗轴 Spike+glumes | 茎秆+叶鞘 Stem+sheath | 叶片 Leaf | 籽粒 Grain | 颖壳+穗轴 Spike+glumes | |||
2018~2019 | SH | 8 229.49a | 4 056.30a | 3 479.29a | 7 417.06a | 1 636.29a | 9 342.80a | 2 735.71a | |
HH | 7 235.67b | 3 628.00b | 2 589.53b | 6 306.76b | 1 191.83b | 8 137.20b | 2 293.38b | ||
FP | 6 768.56b | 3 458.43b | 1 359.31c | 5 011.23c | 852.60c | 6 860.20c | 2 148.20c | ||
CK | 2 634.18c | 1 412.86c | 984.31d | 2 196.19d | 392.10d | 2 719.40d | 923.95d | ||
2019~2020 | SH | 9 521.45a | 3 684.97a | 3 090.17a | 8 200.06a | 1 437.96a | 9 854.50a | 3 330.89a | |
HH | 7 556.44b | 2 624.14b | 2 424.70b | 5 782.20b | 1 056.32a | 8 372.08b | 2 599.80b | ||
FP | 5 645.06c | 2 057.03c | 1 385.61c | 3 432.12c | 751.04b | 6 082.02c | 2 057.25c | ||
CK | 2 949.10d | 946.73d | 691.20d | 1 700.50d | 415.63c | 2 751.36d | 803.94d |
表4 不同产量水平下冬小麦干物质分配的差异
Tab.4 Differences in dry matter distribution of winter wheat at different yield levels(kg/hm2)
年份 Year | 处理 Treatments | 开花期Flowering stage | 成熟期Mature stage | ||||||
---|---|---|---|---|---|---|---|---|---|
茎秆+叶鞘 Stem+sheath | 叶片 Leaf | 颖壳+穗轴 Spike+glumes | 茎秆+叶鞘 Stem+sheath | 叶片 Leaf | 籽粒 Grain | 颖壳+穗轴 Spike+glumes | |||
2018~2019 | SH | 8 229.49a | 4 056.30a | 3 479.29a | 7 417.06a | 1 636.29a | 9 342.80a | 2 735.71a | |
HH | 7 235.67b | 3 628.00b | 2 589.53b | 6 306.76b | 1 191.83b | 8 137.20b | 2 293.38b | ||
FP | 6 768.56b | 3 458.43b | 1 359.31c | 5 011.23c | 852.60c | 6 860.20c | 2 148.20c | ||
CK | 2 634.18c | 1 412.86c | 984.31d | 2 196.19d | 392.10d | 2 719.40d | 923.95d | ||
2019~2020 | SH | 9 521.45a | 3 684.97a | 3 090.17a | 8 200.06a | 1 437.96a | 9 854.50a | 3 330.89a | |
HH | 7 556.44b | 2 624.14b | 2 424.70b | 5 782.20b | 1 056.32a | 8 372.08b | 2 599.80b | ||
FP | 5 645.06c | 2 057.03c | 1 385.61c | 3 432.12c | 751.04b | 6 082.02c | 2 057.25c | ||
CK | 2 949.10d | 946.73d | 691.20d | 1 700.50d | 415.63c | 2 751.36d | 803.94d |
年份 Year | 处理 Treatment | 花前干物质 Dry matter assimilation before anthesis | 花后干物质 Dry matter assimilation after anthesis | |||
---|---|---|---|---|---|---|
转运量 Translocation amount (kg/hm2) | 转运率 Translocation ratio(%) | 贡献率 Contribution ratio to grain (%) | 积累量 Assimilation amount (kg/hm2) | 贡献率 CG/(%) | ||
2018~2019 | SH | 3 976.02a | 25.22b | 42.56b | 5 366.78a | 57.44a |
HH | 3 661.23ab | 27.21ab | 44.99b | 4 475.97b | 55.01ab | |
FP | 3574.27ab | 30.85a | 52.10a | 3 285.93c | 47.90b | |
CK | 1 519.11b | 30.19a | 55.86a | 1 200.29d | 44.14c | |
2019~2020 | SH | 3 327.68a | 20.42d | 33.77c | 6 526.82a | 66.23a |
HH | 3 166.96ab | 25.12c | 37.83c | 5 205.12b | 62.17ab | |
FP | 2 847.29b | 31.33b | 46.81b | 3 234.73c | 53.19b | |
CK | 1 666.96c | 36.34a | 60.59a | 1 084.40d | 39.41c |
表5 不同产量水平下冬小麦营养器官干物质转运及对籽粒产量贡献的差异
Tab.5 Differences of dry matter transport in vegetative organs and contributions to grain yield of winter wheat at different yield levels
年份 Year | 处理 Treatment | 花前干物质 Dry matter assimilation before anthesis | 花后干物质 Dry matter assimilation after anthesis | |||
---|---|---|---|---|---|---|
转运量 Translocation amount (kg/hm2) | 转运率 Translocation ratio(%) | 贡献率 Contribution ratio to grain (%) | 积累量 Assimilation amount (kg/hm2) | 贡献率 CG/(%) | ||
2018~2019 | SH | 3 976.02a | 25.22b | 42.56b | 5 366.78a | 57.44a |
HH | 3 661.23ab | 27.21ab | 44.99b | 4 475.97b | 55.01ab | |
FP | 3574.27ab | 30.85a | 52.10a | 3 285.93c | 47.90b | |
CK | 1 519.11b | 30.19a | 55.86a | 1 200.29d | 44.14c | |
2019~2020 | SH | 3 327.68a | 20.42d | 33.77c | 6 526.82a | 66.23a |
HH | 3 166.96ab | 25.12c | 37.83c | 5 205.12b | 62.17ab | |
FP | 2 847.29b | 31.33b | 46.81b | 3 234.73c | 53.19b | |
CK | 1 666.96c | 36.34a | 60.59a | 1 084.40d | 39.41c |
年份 Year | 处理 Treat- ment | 营养器官氮素积累量 Nitrogen accumulation amount of vegetative organs(kg/hm2) | 花前氮素 Nitrogen before anthesis | 花后氮素 Nitrogen after anthesis | ||||
---|---|---|---|---|---|---|---|---|
开花期 Anthesis stage | 成熟期 Maturity stage | 转运量 Translocation amount (kg/hm2) | 转运效率 Translocation rate(%) | 贡献率 Contribution rate(%) | 积累量 Accumulation amount (kg/hm2) | 贡献率 Contribution rate/(%) | ||
2018~ 2019 | SH | 252.76a | 60.93a | 191.83a | 75.89a | 78.80b | 51.62a | 21.20b |
HH | 173.06b | 43.06b | 130.00b | 75.12a | 77.72a | 37.27b | 22.28b | |
FP | 109.92c | 31.47c | 78.45c | 71.37a | 73.94a | 27.65c | 26.06b | |
CK | 36.74d | 11.81d | 24.93d | 67.86b | 64.25c | 13.87d | 35.75a | |
2019~ 2020 | SH | 233.84a | 68.51a | 165.33a | 70.70a | 75.53b | 53.58a | 24.47b |
HH | 149.39b | 40.68b | 108.72b | 72.77a | 71.59a | 43.15b | 28.41b | |
FP | 91.82c | 23.55c | 68.26c | 74.35a | 66.94a | 33.71c | 33.06a | |
CK | 30.77d | 8.99d | 21.78d | 70.78a | 62.88b | 12.85d | 37.12a |
表6 小麦氮素向籽粒的转运量及其对籽粒的贡献率
Tab.6 Nitrogen transport to grain and its contribution rate to grain in wheat
年份 Year | 处理 Treat- ment | 营养器官氮素积累量 Nitrogen accumulation amount of vegetative organs(kg/hm2) | 花前氮素 Nitrogen before anthesis | 花后氮素 Nitrogen after anthesis | ||||
---|---|---|---|---|---|---|---|---|
开花期 Anthesis stage | 成熟期 Maturity stage | 转运量 Translocation amount (kg/hm2) | 转运效率 Translocation rate(%) | 贡献率 Contribution rate(%) | 积累量 Accumulation amount (kg/hm2) | 贡献率 Contribution rate/(%) | ||
2018~ 2019 | SH | 252.76a | 60.93a | 191.83a | 75.89a | 78.80b | 51.62a | 21.20b |
HH | 173.06b | 43.06b | 130.00b | 75.12a | 77.72a | 37.27b | 22.28b | |
FP | 109.92c | 31.47c | 78.45c | 71.37a | 73.94a | 27.65c | 26.06b | |
CK | 36.74d | 11.81d | 24.93d | 67.86b | 64.25c | 13.87d | 35.75a | |
2019~ 2020 | SH | 233.84a | 68.51a | 165.33a | 70.70a | 75.53b | 53.58a | 24.47b |
HH | 149.39b | 40.68b | 108.72b | 72.77a | 71.59a | 43.15b | 28.41b | |
FP | 91.82c | 23.55c | 68.26c | 74.35a | 66.94a | 33.71c | 33.06a | |
CK | 30.77d | 8.99d | 21.78d | 70.78a | 62.88b | 12.85d | 37.12a |
年份 Year | 处理 Treatment | 需氮量 Nitrogen requirement (kg/mg) | 氮素吸收效率 Nitrogen uptake efficiency (kg/kg) | 氮素利用效率 Nitrogen use efficiency (kg/kg) | 氮肥偏生产力 Nitrogen partial factor productivity (kg/kg) |
---|---|---|---|---|---|
2018~2019 | SH | 32.579a | 0.640a | 30.695c | 19.648c |
HH | 25.849b | 0.629a | 38.687c | 24.326b | |
FP | 20.053c | 0.629a | 49.867b | 31.368a | |
CK | 16.610d | / | 53.735a | / | |
2019~2020 | SH | 29.166a | 0.605a | 34.287c | 20.725c |
HH | 22.999b | 0.578b | 43.481b | 25.029b | |
FP | 20.639b | 0.574b | 48.451b | 27.810a | |
CK | 15.855c | / | 63.072a | / |
表7 氮素利用效率及需氮量差异
Tab.7 Difference of nitrogen use efficiency
年份 Year | 处理 Treatment | 需氮量 Nitrogen requirement (kg/mg) | 氮素吸收效率 Nitrogen uptake efficiency (kg/kg) | 氮素利用效率 Nitrogen use efficiency (kg/kg) | 氮肥偏生产力 Nitrogen partial factor productivity (kg/kg) |
---|---|---|---|---|---|
2018~2019 | SH | 32.579a | 0.640a | 30.695c | 19.648c |
HH | 25.849b | 0.629a | 38.687c | 24.326b | |
FP | 20.053c | 0.629a | 49.867b | 31.368a | |
CK | 16.610d | / | 53.735a | / | |
2019~2020 | SH | 29.166a | 0.605a | 34.287c | 20.725c |
HH | 22.999b | 0.578b | 43.481b | 25.029b | |
FP | 20.639b | 0.574b | 48.451b | 27.810a | |
CK | 15.855c | / | 63.072a | / |
相关系数 Correlation coefficient | 籽粒产量 Grain yield | 收获穗数 Spike number | 穗粒数 Grain number per spike | 千粒重 1000-grain weight | 花前干物质 量转运量 Pre flowering dry matter mass transport capacity | 花后干物质 量积累量 Accumulation of dry matter quality after flowering | 花前氮素 转运量 Nitrogen transport capacity before flowering | 花后氮素 积累量 Nitrogen accumulation after flowering | 需氮量 Nitrogen requirement | 氮素吸收效率 Nitrogen uptake efficiency | 氮素利用效率 Nitrogen utilization efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|
收获穗数 Spike number | 0.84** | ||||||||||
穗粒数 Grain number per spike | 1.00** | 0.85** | |||||||||
千粒重 1000-grain weight | 0.89** | 0.64 | 0.90** | ||||||||
花前干物质量转运量 Pre flowering dry matter mass transport capacity | 0.92** | 0.59 | 0.91** | 0.85** | |||||||
花后干物质量积累量 Accumulation of dry matter quality after flowering | 0.98** | 0.91** | 0.98** | 0.86** | 0.82** | ||||||
花前氮素转运量 Nitrogen transport capacity before flowering | 0.92** | 0.84** | 0.91** | 0.76* | 0.80** | 0.93** | |||||
花后氮素积累量 Nitrogen accumulation after flowering | -0.03 | -0.26 | 0.00 | 0.19 | 0.15 | -0.12 | -0.32 | ||||
需氮量 Nitrogen requirement | 0.93** | 0.78* | 0.93** | 0.81** | 0.86** | 0.91** | 0.97** | -0.10 | |||
氮素吸收效率 Nitrogen uptake efficiency | 0.89** | 0.62 | 0.90** | 0.86** | 0.95** | 0.81** | 0.68* | 0.33 | 0.76* | ||
氮素利用效率 Nitrogen utilization efficiency | -0.97** | -0.78* | -0.97** | -0.89** | -0.92** | -0.94** | -0.93** | -0.04 | -0.98** | -0.87** | |
氮肥偏生产力 Nitrogen partial factor productivity | 0.74* | 0.46 | 0.75* | 0.76* | 0.84** | 0.65 | 0.46 | 0.46 | 0.54 | 0.96** | -0.69* |
表8 相关性比较
Tab.8 Correlation analysis
相关系数 Correlation coefficient | 籽粒产量 Grain yield | 收获穗数 Spike number | 穗粒数 Grain number per spike | 千粒重 1000-grain weight | 花前干物质 量转运量 Pre flowering dry matter mass transport capacity | 花后干物质 量积累量 Accumulation of dry matter quality after flowering | 花前氮素 转运量 Nitrogen transport capacity before flowering | 花后氮素 积累量 Nitrogen accumulation after flowering | 需氮量 Nitrogen requirement | 氮素吸收效率 Nitrogen uptake efficiency | 氮素利用效率 Nitrogen utilization efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|
收获穗数 Spike number | 0.84** | ||||||||||
穗粒数 Grain number per spike | 1.00** | 0.85** | |||||||||
千粒重 1000-grain weight | 0.89** | 0.64 | 0.90** | ||||||||
花前干物质量转运量 Pre flowering dry matter mass transport capacity | 0.92** | 0.59 | 0.91** | 0.85** | |||||||
花后干物质量积累量 Accumulation of dry matter quality after flowering | 0.98** | 0.91** | 0.98** | 0.86** | 0.82** | ||||||
花前氮素转运量 Nitrogen transport capacity before flowering | 0.92** | 0.84** | 0.91** | 0.76* | 0.80** | 0.93** | |||||
花后氮素积累量 Nitrogen accumulation after flowering | -0.03 | -0.26 | 0.00 | 0.19 | 0.15 | -0.12 | -0.32 | ||||
需氮量 Nitrogen requirement | 0.93** | 0.78* | 0.93** | 0.81** | 0.86** | 0.91** | 0.97** | -0.10 | |||
氮素吸收效率 Nitrogen uptake efficiency | 0.89** | 0.62 | 0.90** | 0.86** | 0.95** | 0.81** | 0.68* | 0.33 | 0.76* | ||
氮素利用效率 Nitrogen utilization efficiency | -0.97** | -0.78* | -0.97** | -0.89** | -0.92** | -0.94** | -0.93** | -0.04 | -0.98** | -0.87** | |
氮肥偏生产力 Nitrogen partial factor productivity | 0.74* | 0.46 | 0.75* | 0.76* | 0.84** | 0.65 | 0.46 | 0.46 | 0.54 | 0.96** | -0.69* |
[1] | 石雄高, 裴雪霞, 党建友, 等. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022,(1):1-10. |
SHI Xionggao, PEI Xuexia, DANG Jianyou, et al. Research progress on high-yield, high-quality, high-efficiency and ecology cultivation of wheat micro-sprinkling and drip fertigation[J]. Crops, 2022, (1): 1-10. | |
[2] | 吴芬, 徐萍, 郭海谦, 等. 冬小麦产量差和资源利用效率差及调控途径研究进展[J]. 中国生态农业学报, 2020, 28(10):1551-1567. |
WU Fen, XU Ping, GUO Haiqian, et al. Advances in research regarding the yield gap and resource use efficiency of winter wheat cultivation and the related regulatory approaches[J]. Chinese Journal of Ecological Agriculture, 2020, 28 (10): 1551-1567. | |
[3] | Kedruk A C, Kiriziy D A, Sokolovska-Sergienko O G, et al. Response of the photosynthetic apparatus of winter wheat varieties to the combined action of drought and high temperature[J]. Fiziol.rast.genet, 2021, 53: 387-405. |
[4] |
Meier E A, Hunt J R, Hochman Z. Evaluation of nitrogen bank, a soil nitrogen management strategy for sustainably closing wheat yield gaps[J]. Field Crops Research, 2021, 261: 108017.
DOI URL |
[5] |
方辉, 范贵强, 高永红, 等. 施氮对不同小麦品种光合荧光特性及产量的影响[J]. 新疆农业科学, 2022, 59(1):55-62.
DOI |
FANG Hui, FAN Guiqiang, GAO Yonghong, et al. Effects of Nitrogen Application on Photosynthetic fluorescence and yield of different wheat varieties[J]. Xinjiang Agricultural Sciences, 2022, 59 (1): 55-62.
DOI |
|
[6] | 范婷, 赵凯敏, 周仪佳, 等. 稻茬小麦不同栽培模式产量差异形成的群体结构分析[J]. 麦类作物学报, 2021, 41(5):594-603. |
FAN Ting, ZHAO Kaimin, ZHOU Yijia, et al. Analysis of population structure for yield gap of wheat after rice under different cultivation modes[J]. Journal of Triticeae Crops, 2021, 41 (5): 594-603. | |
[7] | 段剑钊. 黄淮南部冬小麦缩差增效技术途径及生理机制研究[D]. 郑州: 河南农业大学, 2018. |
DUAN Jianzhao. Studies on physiological mechanism and technical approach of reducing yield gap and increasing efficiency in the south of Huang-Huai wheat-producing area[D]. Zhengzhou: Henan Agricultural University, 2018. | |
[8] | 马小龙, 王朝辉, 曹寒冰, 等. 黄土高原旱地小麦产量差异与产量构成及氮磷钾吸收利用的关系[J]. 植物营养与肥料学报, 2017, 23(5): 1135-1145. |
MA Xiaolong, WANG Zhaohui, CAO Hanbing, et al. Yield variation of winter wheat and its relation to yield components, NPK uptake and utilization in drylands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23 (5): 1135-1145. | |
[9] | 魏海燕, 凌启鸿, 张洪程, 等. 作物群体质量及其关键调控技术[J]. 扬州大学学报(农业与生命科学版), 2018, 39(2):1-9. |
WEI Haiyan, LING Qihong, ZHANG Hongcheng, et al. The quality of crop population and its key regulation technology[J]. Journal of Yangzhou University (Agriculture and Life Sciences Ed.), 2018, 39 (2): 1-9. | |
[10] |
王妍, 徐俊, 游蕊, 等. 稻茬小麦不同光效型群体的光合物质生产积累及转运差异分析[J]. 中国农学通报, 2020, 36(17):7-15.
DOI |
WANG Yan, XU Jun, YOU Rui, et al. Photosynthetic Material Production, Accumulation and Transport Characteristics of Different Photosynthetic Efficiency Wheat Population in Rice-Wheat Rotation[J]. Chinese Agricultural Science Bulletin, 2020, 36 (17): 7-15.
DOI |
|
[11] | 吕广德, 亓晓蕾, 张继波, 等. 中、高产型小麦干物质和氮素累积转运对水氮的响应[J]. 植物营养与肥料学报, 2021, 27(9):1534-1547. |
LYU Guangde, QI Xiaolei, ZHANG Jibo, et al. Response of nitrogen and dry matter accumulation in middle and highyield wheat cultivars to water and nitrogen supply[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27 (9): 1534-1547. | |
[12] | 樊玉参, 石玉, 于振文, 等. 不同产量潜力小麦品种氮素积累与转运的差异[J]. 麦类作物学报, 2021,(12):1-7. |
FAN Yucan, SHI Yu, YU Zhenwen, et al. Difference of nitrogen accumulation and translocation of wheat varieties with different yield potential[J]. Journal of Wheat Crops, 2021, (12): 1-7. | |
[13] | 张晶晶. 不同产量水平麦田下氮素利用及其产量形成的差异[D]. 泰安: 山东农业大学, 2021. |
ZHANG Jingjing. Differences of Nitrogen Utilization and Yield Formation in Wheat Fields with Different Yield Levels[D]. Tai’an: Shandong Agricultural University, 2021. | |
[14] | 王立红, 张宏芝, 王重, 等. 新疆冬小麦不同产量水平群体特性分析[J]. 麦类作物学报, 2020, 40(5):594-600. |
WANG Lihong, ZHANG Hongzhi, WANG Zhong, et al. Population characteristics of different yield levels of winter wheat in Xinjiang[J]. Journal of Triticeae Crops, 2020, 40 (5): 594-600. | |
[15] |
何刚, 王朝辉, 李富翠, 等. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响[J]. 中国农业科学, 2016, 49(9): 1657-1671.
DOI |
HE Gang, WANG Zhaohui, LI Fucui, et al. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland[J]. Scientia Agricultura Sinica, 2016, 49 (9): 1657-1671.
DOI |
|
[16] | 赵全志, 黄丕生, 凌启鸿. 水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J]. 中国农业科学, 2001, 34(3):304-310. |
ZHAO Quanzhi, HUANG Pisheng, LING Qihong. Relations between canopy apparent photosynthesis and store matter in stem and sheath between and yield nitrogen regulations in rice[J]. Scientia Agricultura Sinica, 2001, 34 (3): 304-310. | |
[17] | 杨磊, 孙敏, 林文, 等. 群体结构对旱地小麦土壤耗水与物质生产形成的影响[J]. 生态学杂志, 2021, 40(5):1356-1365 |
YANG Lei, SUN Min, LIN Wen, et al. Effects of population structure on soil water consumption and dry matter production of dryland wheat[J]. Chinese Journal of Ecology, 2021, 40 (5): 1356-1365. | |
[18] | 牛俊义. 地膜春小麦根系生长、物质分配及叶片衰老研究[D]. 兰州: 甘肃农业大学, 2002. |
NIU Junyi. Research on root growth, material distribution and leaf senescence of spring wheat with plastic film[D]. Lanzhou: Gansu Agricultural University, 2002. | |
[19] | 郑成岩, 于振文, 马兴华, 等. 高产小麦耗水特性及干物质的积累与分配[J]. 作物学报, 2008,(8):1450-1458. |
ZHENG Chengyan, YU Zhenwen, Ma Xinghua, et al. Water consumption characteristics and dry matter accumulation and distribution of high-yielding wheat[J]. Acta Agronomica Sinica, 2008,(8): 1450-1458. | |
[20] | 王玉杰, 王永华, 韩磊, 等. 不同栽培管理模式对冬小麦花后干物质积累与分配特征及产量的影响[J]. 麦类作物学报, 2011, 31(5):894-900. |
WANG Yujie, WANG Yonghua, HAN Lei, et al. Effect of different cultivation and management mode on the characteristics of accumulation and distribution of dry matter and the yield of winter wheat after anthesis[J]. Journal of Triticeae Crops, 2011, 31 (5): 894-900. | |
[21] | 盖盼盼, 马尚宇, 耿兵婕, 等. 渍水和增温对小麦根系形态、生理和地上部物质积累的影响[J]. 南京农业大学学报:1-14[2022-03-16]. http://kns.cnki.net/kcms/detail/32.1148.S.20220207.1051.002.html. |
GAI Panpan, MA Shangyu, GENG Bingjie, et al. Effects of waterlogging and increasing temperature on the morphology, physiology and above-ground matter accumulation of wheat roots[J]. Journal of Nanjing Agricultural University, 1-14 [2022-03-16] http://kns.cnki.net/kcms/detail/32.1148.S.20220207.1051.002.html. | |
[22] | 丁彤彤, 李朴芳, 曹丽, 等. 干旱胁迫下不同基因型小麦干物质转运对产量形成的影响[J]. 干旱地区农业研究, 2021, 39(6):62-72. |
DING Tongong, LI Pufang, CAO Li, et al. Effects of dry matter translocation on yield formation of wheat with different genotypes under drought stress[J]. Agricultural Research in the Arid Areas, 2021, 39 (6): 62-72. | |
[23] |
杨舒蓉, 付路平, 费帅鹏, 等. 北部冬麦区主栽品种光合产物贮运特性研究[J]. 核农学报, 2021, 35(8):1740-1750.
DOI |
YANG Shurong, FU Luping, FEI Shuaipeng, et al. Accumulation and partitioning characteristics of photosynthetic product of 7 Main Cultivars in Northern Winter Wheat Zone[J]. Journal of Nuclear Agriculture Sciences, 2021, 35 (8): 1740-1750. | |
[24] | 张丽霞, 杨永辉, 尹钧, 等. 水肥一体化对小麦干物质和氮素积累转运及产量的影响[J]. 农业机械学报, 2021, 52(2):275-282. |
ZHANG Lixia, YANG Yonghui, YIN Jun, et al. Effects of Drip Fertigation on Accumulation and Translocation of Dry Matter and Nitrogen together with Yield in Wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (2): 275-282. | |
[25] | 于振文. 小麦产量与品质生理及栽培技术[M], 北京: 中国农业出版社, 2006. |
YU Zhenwen. Wheat yield and quality physiology and cultivation techniques[M]. Beijing: China Agricultural Press, 2006. |
[1] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[2] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[3] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
[4] | 杜云, 张婧婧, 雷嘉诚, 李博, 李永福. 冬小麦需水量的预测模型对比分析[J]. 新疆农业科学, 2024, 61(7): 1590-1596. |
[5] | 杨明花, 刘强, 冯国瑞, 廖必勇, 达吾来·杰克山, 彭云承, 布阿依夏木·那曼提, 陈艳萍. 鲜食糯玉米适宜采收期与籽粒含水量分析[J]. 新疆农业科学, 2024, 61(7): 1626-1630. |
[6] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
[7] | 王润琪, 贾永红, 王玉娇, 刘跃, 李丹丹, 董艳雪, 古力尼尕尔·吐尔洪, 张路路, 张金汕, 石书兵. 不同滴灌量对匀播冬小麦生长发育和产量的影响[J]. 新疆农业科学, 2024, 61(5): 1048-1056. |
[8] | 谢忠, 叶含春, 王振华, 李海强, 刘健, 陈睿, 许宇双. 浅埋滴灌水氮配施对冬小麦生长发育、产量及水分利用效率的影响[J]. 新疆农业科学, 2024, 61(5): 1057-1066. |
[9] | 张钊, 张贵龙, 汤秋香, 闫雪影, 张艳军. 有机无机肥配施对潮土麦田肥力和冬小麦产量的影响[J]. 新疆农业科学, 2024, 61(5): 1067-1076. |
[10] | 施俊杰, 侯献飞, 于月华, 李强, 苗昊翠, 贾东海, 顾元国, 汪天玲. 不同覆盖模式与补充灌溉对花生光合特性及干物质积累速率的影响[J]. 新疆农业科学, 2024, 61(5): 1122-1130. |
[11] | 贾东海, 宋贤明, 顾元国, 李强, 曾幼玲, 苗昊翠, 郭美丽, 侯献飞. 化肥减量配施微生物菌肥对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 781-790. |
[12] | 侯献飞, 宋贤明, 李强, 顾元国, 苗昊翠, 曾幼玲, 郭美丽, 贾东海. 水氮耦合对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 791-803. |
[13] | 宋贤明, 侯献飞, 顾元国, 苗昊翠, 李强, 郭美丽, 曾幼玲, 贾东海. 种植密度和行距对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 804-813. |
[14] | 孙法福, 赖宁, 耿庆龙, 李永福, 吕彩霞, 信会男, 李娜, 陈署晃. 基于SPAD值的滴灌冬小麦氮肥推荐模型分析[J]. 新疆农业科学, 2024, 61(10): 2366-2373. |
[15] | 邵疆, 赵云, 胡相伟, 刘杰, 纳斯如拉·克热木, 石书兵, 冯国郡. 不同时期干旱胁迫对谷子产量及干物质积累的影响[J]. 新疆农业科学, 2024, 61(10): 2388-2395. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||