新疆农业科学 ›› 2021, Vol. 58 ›› Issue (8): 1547-1557.DOI: 10.6048/j.issn.1001-4330.2021.08.022
杨征鹤1, 杨会民2, 喻晨2, 陈毅飞2, 周欣2, 马艳2, 王学农2
收稿日期:
2020-06-10
出版日期:
2021-08-20
发布日期:
2021-08-09
作者简介:
杨征鹤(1994-),男,山东菏泽人,研究生,研究方向为设施农业装备, (E-mail)247329956@qq.com
基金资助:
YANG Zhenghe1, YANG Huimin2, YU Chen2, CHEN Yifei2, ZHOU Xin2, MA Yan2, WANG Xuenong2
Received:
2020-06-10
Published:
2021-08-20
Online:
2021-08-09
Supported by:
摘要: 【目的】回顾与总结国内外设施蔬菜自动对靶喷药技术的研究现状与进展,为该技术在设施蔬菜自动对靶喷药机器人的发展应用上提供理论和科学依据。【方法】采用相关文献资料、实地调研的方法,汇总、整理及分析。【结果】导航技术国外主要采用基于GPS、机器视觉、激光雷达等技术开发的路径识别及智能避障技术,国内主要采用电磁诱导、基于GPS、激光雷达和视觉技术的道路边缘获取与道路识别技术。病虫害检测现阶段国外主要采用图像识别、红外成像和高光谱及基于深度学习的病虫害识别技术,技术较为成熟,国内现阶段主要采用图像识别技术,利用作物颜色、纹理及形状特征进行识别。国外对靶喷药采用机器视觉、激光主动视觉和超声波技术并结合传感器对目标作物进行识别,利用变速喷药技术在生菜、番茄等作物上进行了应用,国内开发了温室自主喷药机器人,采用机器视觉技术获取靶标病虫害位置信息,对喷头进行单独控制,以达到精准对靶施药的效果。【结论】导航技术、病虫害识别技术及对靶喷药技术是自动对靶喷药技术的核心。导航方面在温室中利用机器视觉和激光雷达技术相比GPS技术更加可靠、灵活,精准度更高,高光谱与病虫害识别技术可提高病虫害识别的效率,对靶喷药技术中目标作物的识别与冠层稠密程度的判断是发展趋势。
中图分类号:
杨征鹤, 杨会民, 喻晨, 陈毅飞, 周欣, 马艳, 王学农. 设施蔬菜自动对靶喷药技术研究现状与分析[J]. 新疆农业科学, 2021, 58(8): 1547-1557.
YANG Zhenghe, YANG Huimin, YU Chen, CHEN Yifei, ZHOU Xin, MA Yan, WANG Xuenong. Research Status and Analysis of Automatic Target Spraying Technology for Facility Vegetables[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1547-1557.
[1] 农业农村部规划设计研究院设施农业研究所. 我国设施园艺装备发展现状和建议[J].农机科技推广,2019,(1):27-28, 30. Facilities Agriculture Institute, Academy of Agricultural Planning and Engineering, MARA. Development status and Suggestions of facility horticultural equipment in China [J]. Agricultural Machinery Science and Technology Promotion, 2019,(1):27-28, 30. [2] 许红军,秦勇,吴慧,等.新疆蔬菜产业现状及发展对策[J].中国蔬菜,2016,(9):8-11. XU Hongjun, QIN Yong, WU Hui, et al. Status quo and development strategies of Xinjiang vegetable industry [J]. China Vegetables, 2016, (9): 8-11. [3] 何雄奎.蔬菜高效施药装备与技术研发应用[J].蔬菜,2018,(8):1-7. HE Xiongkui. R & D and Application of Vegetable Efficient Pesticide Application Equipment and Technology [J]. Vegetables, 2018,(8):1-7. [4] 何雄奎.我国植保无人机喷雾系统与施药技术[J].农业工程技术,2018,38(9):33-38. HE Xiongkui. China's plant protection uav spray system and application technology [J]. Agricultural Engineering Technology, 2008, 38(9):33-38. [5] 翟长远,朱瑞祥,张佐经,等.精准施药技术现状分析[J].农机化研究,2010,32(5):9-12. ZHAI Changyuan, ZHU Ruixiang, ZHANG Zuojing, et al. Current situation analysis of precision drug application technology [J]. Agricultural Mechanization Research, 2010, 32(5):9-12. [6] 王广莲,张颖鑫.现阶段植保机械和施药技术研究[J].吉林农业,2019,(3):43. WANG Guanglian, ZHANG Yingxin. Research on plant protection machinery and application technology at the present stage [J]. Jilin Agriculture, 2019,(3):43. [7] 韩景红.我国植保机械和施药技术的现状问题及对策[J].农业与技术,2018,38(12):91. HAN Jinghong. Current situation and countermeasures of plant protection machinery and application technology in China [J]. Agriculture and Technology, 2008, 38(12):91. [8] 刁智华,刁春迎,魏玉泉,等.精准施药机器人关键技术研究进展[J].农机化研究,2017,39(11):1-6. DIAO Zhihua, DIAO Chunying, WEI Yuquan, et al. Research progress of key technology of precision medicine robot [J]. Agricultural Mechanization Research, 2017, 39(11): 1-6. [9] 何雄奎,严苛荣,储金宇,等.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,(6):78-80. HE Xiongkui, YAN Kerong, CHU Jinyu, et al. Design and experimental study of automatic target setting electrostatic sprayers in orchards[J]. Journal of Agricultural Engineering, 2003,(6):78-80. [10] 张波,翟长远,李瀚哲,等.精准施药技术与装备发展现状分析[J].农机化研究,2016,38(4):1-5, 28. ZHANG Bo, ZHAI Changyuan, LI Hanzhe, et al. Analysis of the development status of precision medicine technology and equipment [J]. Agricultural Mechanization Research, 2016, 38(4): 1-5, 28. [11] Chun-chieh Yang, Shiv O., et al. Development of aherbicide qpplication map using artificial nearal networks and fuzzy logic [J]. Agricultural System, 2003,(76):561-574. [12] Albert Stoll, Heinz Dieter Kutzbach. Guidance of a Forage Harvester with GPS [J]. Kluwer Academic Publishers, 2000, 2(3). [13] Ray Eaton, Jay Katupitiya, Kheng Wah Siew, et al. Autonomous farming: modelling and control of agricultural machinery in a unified framework [J]. Inderscience Publishers, 2010, 8(1/2/3/4). [14] Yoshisada Nagasaka, Naonobu Umeda, Yutaka Kanetai, et al. Autonomous guidance for rice transplanting using global positioning and gyroscopes[J]. Elsevier B.V. , 2004,43(3). [15] Norremark, M. Griepentrog, H.W. Nielsen, J., et al. The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops [J]. Elsevier Ltd, 2008,101(4). [16] Okamoto, H. Hamada, K. Kataoka, et al. Automatic guidance system with crop row sensor [J]. Proceedings of the Automation Technology for Off-road Equipment, 2002: 307-316. [17] Benson E,Reid J F, Zhang Q. Machine vision-based guidance system for agricultural grain harvesters using cut-edge detection [J]. Biosystems Engineering,2003, 86(4): 389-398. [18] Sharon Nissimov, Jacob Goldberger, Victor Alchanatis. Obstacle detection in a greenhouse environment using the Kinect sensor [J]. Elsevier B.V. , 2015:113. [19] Josafat Delfin,Héctor M. Becerra, Gustavo Arechavaleta. Humanoid navigation using a visual memory with obstacle avoidance [J]. Robotics and Autonomous Systems, 2018. [20] Reiser D , Miguel G, Manuel Vázquez Arellano, et al. Crop Row Detection in Maize for Developing Navigation Algorithms Under Changing Plant Growth Stages [M]. Robot 2015: Second Iberian Robotics Conference. Springer International Publishing, 2016. [21] M. Yokota, A. Mizushima, K. Ishii, et al. 3-D Map Generation by a Robot Tractor Equipped With a Laser Range Finder[C]. Automation Technology for Off-road Equipment Conference, 2004. [22] Ulrich Weiss, Peter Biber. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor [J]. Elsevier B.V, 2011, 59(5). [23] Houssein H E, Audun K. Combining Hector SLAM and Artificial Potential Field for Autonomous Navigation Inside a Greenhouse [J]. Robotics, 2018, 7(2):22. [24] 杨世胜,张宾,于曙风,等.电磁诱导农用喷雾机器人路径导航系统的设计与实现[J].机器人,2007,(1):78-81, 87. YANG Shisheng, ZHANG Bin, YU Shufeng, et al. Design and implementation of path navigation system for electromagnetic induced agricultural spray robot [J]. Robotics, 2007,(1): 78-81, 87. [25] 贾士伟,李军民,邱权,等.基于激光测距仪的温室机器人道路边缘检测与路径导航[J].农业工程学报,2015,31(13):39-45. JIA Shiwei, LI Junmin, QIU Quan, et al. Road edge detection and path navigation of greenhouse robot based on laser rangefinder [J]. Journal of Agricultural Engineering, 2015, 31(13): 39-45. [26] 张群,宋健,曹高华,等.视觉导航温室机器人路径识别算法与实验[J].实验室研究与探索, 2018,37(5):14-16, 41. ZHANG Qun, SONG Jian, CAO Gaohua, et al. Path recognition algorithm and experiment of visual navigation greenhouse robot [J]. Laboratory research and exp loration, 2008, 37(5): 14-16, 41. [27] Jiang Jin. Research on robot mobile obstacle avoidance control based on visual information [J]. IOP Conference Series: Earth and Environmental Science, 2018, 128(1). [28] 谭晨佼,李轶林,王东飞, 等.农业机械自动导航技术研究进展[J].农机化研究,2020,42(5):7-14, 32. TAN Chenjiao, LI Yilin, WANG Dongfei, et al. Research progress of automatic navigation technology for agricultural machinery [J]. Agricultural Mechanization Research, 2020, 42(5): 7-14, 32. [29] 邱白晶,闫润,马靖,等.变量喷雾技术研究进展分析[J].农业机械学报,2015,46(3):59-72. QIU Baijing, YAN Run, MA Jing, et al. Analysis on the research progress of variable spray technology [J]. Journal of Agricultural Machinery, 2015, 46(3): 59-72. [30] Noa, Schor, Avital, et al. Robotic Disease Detection in Greenhouses: Combined Detection of Powdery Mildew and Tomato Spotted Wilt Virus [J]. IEEE Robotics & Automation Letters, 2016. [31] 王彦翔,张艳,杨成娅,等.基于深度学习的农作物病害图像识别技术进展[J].浙江农业学报,2019,31(4):669-676. WANG Yanxiang, ZHANG Yan, YANG Chengya, et al. Advances in image recognition of crop diseases based on deep learning [J]. Acta Agriculturae Zhejiangensis, 2009, 31(4):669-676. [32] Pandey P,Ge Y F,Stoerger V,et al.High through put in vivo analysis of plant leaf chemical properties using hyper-spectral imaging[J].Frontiers in Plant Science,2017,8: 1348. [33] Tian Y, Zhao C, Lu S, et al. SVM-based Multiple Classifier System for recognition of wheat leaf diseases[C]. World Automation Congress. IEEE, 2012. [34] Mohanty Sharada P, Hughes David P, Salathé Marcel. Using Deep Learning for Image-Based Plant Disease Detection [J]. Pubmed, 2016:7. [35] 柴阿丽.基于计算机视觉和光谱分析技术的蔬菜叶部病害诊断研究[D].北京:中国农业科学院,2011. CHAI Ali. Diagnosis of vegetable leaf disease based on computer vision and spectral analysis [D]. Beijing: Chinese academy of agricultural sciences, 2011. [36] 秦淑芳.基于图像处理技术的甘蓝型油菜的虫害程度检测[D].武汉:武汉轻工大学,2019. QIN Shufang. Pest detection of brassica napus based on image processing technology [D]. Wuhan:Wuhan University of Light Industry, 2019. [37] Zhao Yanru, Li Xiaoli, Yu Keqiang, et al. Hyperspectral Imaging for Determining Pigment Contents in Cucumber Leaves in Response to Angular Leaf Spot Disease.[J]. Pubmed, 2016:6. [38] 张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,34(1):56-61. ZHANG Shanwen, XIE Zeqi, ZHANG Qingqing. Application of convolutional neural network in the identification of cucumber leaf disease [J]. Acta Agriculturae Jiangsu, 2008, 34(1): 56-61. [39] 邹永杰,张永军,秦永彬,等.应用于番茄病虫害检测的HOG特征与LBP特征的结合[J].南京师范大学学报(工程技术版),2019,19(3):21-28. ZOU Yongjie, ZHANG Yongjun, QIN Yongbin, et al. Combination of HOG feature and LBP feature in tomato pest disease detection [J]. Journal of nanjing normal university (Engineering technology edition) , 2019,19(3): 21-28. [40] Stajnko Denis,Berk Peter,Le?nik Mario, et al. Programmable ultrasonic sensing system for targeted spraying in orchards [J]. Pubmed, 2012, 12(11). [41] Garrido Miguel, Perez-Ruiz Manuel, Valero Constantino, et al. Active optical sensors for tree stem detection and classification in nurseries [J]. Pubmed, 2014,14(6). [42] Llorens Jordi, Gil Emilio, Llop Jordi, et al. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods [J]. Pubmed, 2011, 11(2). [43] Komasilovs V, Stalidzans E, Osadcuks V, et al. Specification development of robotic system for pesticide spraying in greenhouse[C]// IEEE International Symposium on Computational Intelligence & Informatics. IEEE, 2014. [44] 赵源深. 西红柿采摘机器人目标识别、定位与控制技术研究[D].上海:上海交通大学,2018. ZHAO Yuanshen. Research on target recognition, positioning and control technology of tomato-picking robot [D]. Shanghai: Shanghai Jiaotong University, 2018. [45] 陆江.基于PLC的红外对靶自动喷雾装置的研制及试验[D].南京:南京农业大学,2013. LU Jiang. Development and test of infrared target automatic spray device based on PLC [D]. Nanjing: Nanjing Agricultural University, 2013. [46] Brown, D. L. Giles, D. K. Oliver, M, N., et al. Targeted spray technology to reduce pesticide in runoff from dormant orchards [J]. Elsevier Ltd, 2007, 27(3). [47] Giles D K, Slaughter D C. Precision band spraying with machine-vision guidance and adjustable yaw nozzles [J]. Transaction of ASAE, 1997,40(1): 132-140. [48] Trygve Utstumo, Frode Urdal, Anders Brevik, et al. Robotic in-row weed control in vegetables [J]. Elsevier B.V,2018:154. [49] 张霖,赵祚喜,俞龙, 等.超声波果树冠层测量定位算法与试验[J].农业工程学报,2010,26(9):192-197. ZHANG Lin, ZHAO Zuoxi, YU long,et al. Ultrasonic tree canopy measurement and location algorithm and experiment [J]. Chinese journal of agricultural engineering, 2010, 26(9):192-197. [50] Hongbin Dou, Chengliang Zhang, Lei Li,et al. Application of variable spray technology in agriculture [J]. IOP Conference Series: Earth and Environmental Science, 2018,186(5). [51] Hossein Maghsoudi, Saeid Minaei, Barat Ghobadian, et al. Ultrasonic sensing of pistachio canopy for low-volume precision spraying [J]. Elsevier B.V,2015:112. [52] Miranda-Fuentes A, A. Rodríguez-Lizana, Cuenca A, et al. Improving plant protection product applications in traditional and intensive olive orchards through the development of new prototype air-assisted sprayers [J]. Crop Protection, 2017, 94:44-58. [53] Francisco C. Páez, Víctor J. Rincón, Julián Sánchez-Hermosilla, Milagros Fernández. Implementation of a low-cost crop detection prototype for selective spraying in greenhouses [J]. Springer US, 2017, 18(6). [54] 刘慧,李宁,沈跃, 等.模拟复杂地形的喷雾靶标激光检测与三维重构[J].农业工程学报,2016,32(18):84-91. LIU Hui, LI Ning, SHEN Yue, et al. Spray target laser scanning detection and three-dimensional reconstruction under simulated complex terrain[J]. Chinese Society of Agricultural Engineering, 2016, 32(18): 84-91. [55] 郭彩玲,宗泽,张雪,等.基于三维点云数据的苹果树冠层几何参数获取[J].农业工程学报,2017,33(3):175-181. GUO Cailing, ZONG Ze, ZHANG Xue, et al. Apple tree canopy geometric parameters acquirement based on 3D point clouds [J]. Chinese Society of Agricultural Engineering, 2017, 33(3):175-181. [56] 俞龙,洪添胜,赵祚喜,等.基于超声波的果树冠层三维重构与体积测量[J].农业工程学报,2010,26(11):204-208. YU Long, HUANG Tiansheng, ZHAO Zuoxi, et al. Laser measurement and experiment of hilly fruit tree canopy volume [J]. Chinese Society of Agricultural Engineering,2010,26(11):204-208. [57] E. Gregorio, X. Torrent, F. Solanelles, et al. First measurements with a lidar system specifically designed for spray drift monitoring[J]. 2016. [58] Chen Y, Zhu H, Ozkan H E. Development of a Variable-Rate Sprayer with Laser Scanning Sensor to Synchronize Spray Outputs to Tree Structures[J]. Transactions of the ASABE, 2012, 55(3):773-781. [59] Rafiq A, Kalantari D, Mashhadimeyghani H. Construction and development of an automatic sprayer for greenhouse [J]. Agricultural Engineering International: CIGR Journal, 2014, 16(2):36-40. [60] 陈勇.自动施药机器人及可变量控制系统研究[D].南京:南京林业大学,2005. CHEN Yong. Research on automatic pesticide application robot and variable control system[D]. Nanjing: Nanjing Forestry University, 2005. [61] 翟长远,朱瑞祥,张佐经,等.精准施药技术现状分析[J].农机化研究,2010,32(5):9-12. ZHAI Changyuan, ZHU Ruixiang, ZHANG Zuojing, et al. Current situation analysis of precision drug application technology [J]. Agricultural Mechanization Research, 2010, 32(5):9-12. [62] 靳文停,葛宜元,张闯闯,等.履带式温室智能喷药机器人的设计[J].农机使用与维修,2019,(1):8-11. JIN Wenting, GE Yiyuan, ZHANG Chuangchuang, et al. Design of crawler greenhouse intelligent spraying robot [J]. Agricultural Machinery Use and Maintenance, 2019,(1):8-11. [63] 赵慧芳,崔玉祥,赵亮,等.一种温室自行走喷药机的设计[J].农业技术与装备, 2019,(12): 122-123, 125. ZHAO Huifang, CUI Yuxiang, ZHAO Liang, et al. Design of a greenhouse self-propelled spraying machine[J]. Agricultural technology and equipment, 2019, (12):122-123, 125. [64] 张俊雄,曹峥勇,耿长兴,等.温室精准对靶喷雾机器人研制[J].农业工程学报,2009,25(S2):70-73. ZHANG Junxiong, CAO Zhengyong, GENG Changxing, et al. Development of precise target spraying robot for greenhouse [J]. Journal of Agricultural Engineering, 2009, 25(S2):70-73. [65] 耿长兴,张俊雄,曹峥勇,等.温室黄瓜病害对靶施药机器人设计[J].农业机械学报,2011,42(1):177-180. GENG Changxing, ZHANG Junxiong, CAO Zhengyong,et al. Design of a robot for applying greenhouse cucumber disease to its target [J]. Journal of Agricultural Machinery, 2011, 42(1):177-180. |
[1] | 张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053. |
[2] | 马艳, 肖林刚, 喻晨, 郭兆峰, 邹平, 曹新伟. 设施蔬菜LED补光技术研究进展[J]. 新疆农业科学, 2024, 61(11): 2835-2843. |
[3] | 刘凯, 吴晓, 桑思语, 许红军, 高杰. 保温被揭盖方式对日光温室内部温度的影响[J]. 新疆农业科学, 2023, 60(3): 633-642. |
[4] | 张锦强, 苏学德, 李鹏程, 杨湘, 李铭, 郭绍杰. 一年两熟夏黑葡萄日光温室温度变化与果实品质差异性分析[J]. 新疆农业科学, 2022, 59(8): 1889-1895. |
[5] | 马永杰, 王星怡, 韩聪颖, 蔺玉红, 马慧, 张雪艳. 日光温室后墙自走式雾化降温机夏季降温效果评价[J]. 新疆农业科学, 2022, 59(4): 1016-1024. |
[6] | 韩坤林, 王钊英, 杨会民, 陈毅飞, 蒋永新, 张佳喜. 基于PCA-BPNN的温室番茄果实直径预测模型[J]. 新疆农业科学, 2022, 59(2): 485-492. |
[7] | 马月虹, 李保明, 李慧霜. 新疆砌块复合墙体和砖墙日光温室的传热数值模拟分析[J]. 新疆农业科学, 2022, 59(2): 493-501. |
[8] | 阮康, 王香茹, 贵会平, 董强, 李磊磊, 魏学文, 张西岭, 张恒恒, 宋美珍. 新疆“宽早优”模式下施氮量对棉田碳足迹的影响[J]. 新疆农业科学, 2021, 58(9): 1633-1641. |
[9] | 肖林刚, 宋兵伟, 曹新伟, 王瑞, 焦锐斌. 日光温室冬季加温热负荷的计算和热风炉补温试验验证[J]. 新疆农业科学, 2021, 58(5): 903-910. |
[10] | 宋羽, 蒋程瑶, 李玉姗. 不同叶背补光模式对戈壁温室番茄品质的影响[J]. 新疆农业科学, 2021, 58(2): 294-303. |
[11] | 杨征鹤, 喻晨, 杨会民, 陈毅飞, 周欣, 马艳, 王学农. 基于LiDAR的温室番茄冠层几何参数提取[J]. 新疆农业科学, 2021, 58(10): 1909-1917. |
[12] | 阿里甫·艾尔西, 朱家辉, 李进, 王为然, 宁新民, 刘志清, 孔杰. 新疆长绒棉育种现状、趋势及研究进展[J]. 新疆农业科学, 2020, 57(3): 393-400. |
[13] | 陈毅飞, 杨会民, 马艳, 张新伟, 喻晨, 王学农. 基于多层感知机的温室内番茄茎直径变化预测模型[J]. 新疆农业科学, 2020, 57(3): 562-571. |
[14] | 宋兵伟, 吴乐天, 慈军, 王亮. 不同固化剂对新疆非耕地戈壁土的力学性能影响[J]. 新疆农业科学, 2020, 57(3): 572-580. |
[15] | 马月虹, 李保明, 王国强, 宋兵伟, 刘娜. 新疆日光温室前屋面的风载数值模拟分析[J]. 新疆农业科学, 2020, 57(12): 2325-2331. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 580
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||