新疆农业科学 ›› 2023, Vol. 60 ›› Issue (5): 1263-1270.DOI: 10.6048/j.issn.1001-4330.2023.05.026
王宁1,2(), 史应武1,2, 牛新湘2,3, 杨红梅1,2, 楚敏1,2, 詹发强1, 包慧芳1, 杨蓉1, 龙宣杞1, 丁荣荣4(
)
收稿日期:
2022-08-28
出版日期:
2023-05-20
发布日期:
2023-05-22
通信作者:
丁荣荣(1978-),女,新疆呼图壁人,助理研究员,研究方向为作物病虫害防治, (E-mail) 462726314@qq.com作者简介:
王宁(1979-),女,山东人,副研究员,研究方向为微生物发酵, (E-mail) 150700126@qq.com
基金资助:
WANG Ning1,2(), SHI Yingwu1,2, NIU Xinxiang2,3, YANG Hongmei1,2, CHU Min1,2, ZHAN Faqiang1, BAO Huifang1, YANG Rong1, LONG Xuanqi1, DING Rongrong4(
)
Received:
2022-08-28
Published:
2023-05-20
Online:
2023-05-22
Supported by:
摘要:
【目的】研究棉花根际溶磷菌WJP-7发酵培养基优化及防病增产效果。【方法】采用实验室筛选的高效溶磷菌株P.taiwanensis WJP-7为出发菌株,在优化的假单胞菌发酵培养基上增殖培养。【结果】利用正交试验优化摇瓶发酵培养基,培养基配方为蛋白胨 20 g/L,MgCl2 15 g/L,K2SO4 1.4 g/L。使活菌数达到3.6×109CFU/mL。摇瓶增菌发酵最优培养基发酵验证试验结果最高活菌数为3.60×109CFU/mL。菌株WJP-7水剂处理对花期黄萎病防治效果为44.57%,絮期防治效果为50.53%。施用WJP-7水剂对棉田土壤除全氮含量增加不显著,对其它养分和pH值均有显著影响(P<0.05)。菌剂增产率为14.35%和19.51%,【结论】优化了台湾假单胞菌WJP-7摇瓶发酵培养基,菌株WJP-7水剂处理对棉花黄萎病防治效果为50.53%,对棉田土壤除全氮含量不显著外,对其它养分和pH值均显著影响(P<0.05),具有明显的增产效果。
中图分类号:
王宁, 史应武, 牛新湘, 杨红梅, 楚敏, 詹发强, 包慧芳, 杨蓉, 龙宣杞, 丁荣荣. 棉花根际溶磷菌WJP-7发酵培养基优化及防病增产效果[J]. 新疆农业科学, 2023, 60(5): 1263-1270.
WANG Ning, SHI Yingwu, NIU Xinxiang, YANG Hongmei, CHU Min, ZHAN Faqiang, BAO Huifang, YANG Rong, LONG Xuanqi, DING Rongrong. Inoculation technology and field application of cotton rhizosphere phosphorus-solubilizing P.Taiwanensis WJP-7[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1263-1270.
因素 Factor | A蛋白胨 A Peptone (g/L) | B氯化镁 B Mgcl2 (g/L) | C硫酸钾 C K2SO4 (g/L) |
---|---|---|---|
Level 1 | 5 | 5 | 0.7 |
Level 2 | 10 | 10 | 1.4 |
Level 3 | 20 | 15 | 2.1 |
表1 因素水平
Tab.1 the table of factor level
因素 Factor | A蛋白胨 A Peptone (g/L) | B氯化镁 B Mgcl2 (g/L) | C硫酸钾 C K2SO4 (g/L) |
---|---|---|---|
Level 1 | 5 | 5 | 0.7 |
Level 2 | 10 | 10 | 1.4 |
Level 3 | 20 | 15 | 2.1 |
试验号 Test number | A | B | C | OD600 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.53 |
2 | 1 | 2 | 2 | 0.60 |
3 | 1 | 3 | 3 | 0.58 |
4 | 2 | 1 | 2 | 1.23 |
5 | 2 | 2 | 3 | 1.30 |
6 | 2 | 3 | 1 | 1.34 |
7 | 3 | 1 | 3 | 1.58 |
8 | 3 | 2 | 1 | 1.70 |
9 | 3 | 3 | 2 | 1.83 |
K1 | 0.57 | 1.11 | 1.19 | |
K2 | 1.29 | 1.20 | 1.22 | |
K3 | 1.70 | 1.25 | 1.15 | |
R | 1.14 | 0.14 | 0.07 |
表2 L9(34)正交试验
Tab.2 L9(34)Orthogonal experimental results
试验号 Test number | A | B | C | OD600 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.53 |
2 | 1 | 2 | 2 | 0.60 |
3 | 1 | 3 | 3 | 0.58 |
4 | 2 | 1 | 2 | 1.23 |
5 | 2 | 2 | 3 | 1.30 |
6 | 2 | 3 | 1 | 1.34 |
7 | 3 | 1 | 3 | 1.58 |
8 | 3 | 2 | 1 | 1.70 |
9 | 3 | 3 | 2 | 1.83 |
K1 | 0.57 | 1.11 | 1.19 | |
K2 | 1.29 | 1.20 | 1.22 | |
K3 | 1.70 | 1.25 | 1.15 | |
R | 1.14 | 0.14 | 0.07 |
因素 Factor | III型 平方和 Type III of sum squares | 自由度 DOF | 均方 Mean square | F | P |
---|---|---|---|---|---|
蛋白胨 Peptone | 1.974 | 2 | 0.987 | 420.929 | 0.002 |
氯化镁 Magnesium chloride | 0.029 | 2 | 0.014 | 6.118 | 0.140 |
硫酸钾 Potassium sulfate | 0.007 | 2 | 0.003 | 1.427 | 0.412 |
误差 Error | 0.005 | 2 | 0.002 |
表3 方差分析
Tab.3 Analysis of variance
因素 Factor | III型 平方和 Type III of sum squares | 自由度 DOF | 均方 Mean square | F | P |
---|---|---|---|---|---|
蛋白胨 Peptone | 1.974 | 2 | 0.987 | 420.929 | 0.002 |
氯化镁 Magnesium chloride | 0.029 | 2 | 0.014 | 6.118 | 0.140 |
硫酸钾 Potassium sulfate | 0.007 | 2 | 0.003 | 1.427 | 0.412 |
误差 Error | 0.005 | 2 | 0.002 |
处理 Treatment | 病指Disease index | 防效Control effect(%) | ||
---|---|---|---|---|
花期 Flowering period | 絮期 Boll opening period | 花期 Flowering period | 絮期 Boll opening period | |
30×108 CFU/mL WJP-7水剂 30×108CFU/mL WJP-7 Water agent | 2.51 | 3.26 | 44.57 | 50.53 |
65×108 CFU/g芽孢杆菌可湿性粉剂 65×108CFU/g Bacillus wettable powder | 1.12 | 2.45 | 75.22 | 62.82 |
清水Fresh water | 4.52 | 6.59 |
表4 不同处理对棉花黄萎病的防治效果比较
Tab.4 Effect of different treatments on cotton Verticillium wilt
处理 Treatment | 病指Disease index | 防效Control effect(%) | ||
---|---|---|---|---|
花期 Flowering period | 絮期 Boll opening period | 花期 Flowering period | 絮期 Boll opening period | |
30×108 CFU/mL WJP-7水剂 30×108CFU/mL WJP-7 Water agent | 2.51 | 3.26 | 44.57 | 50.53 |
65×108 CFU/g芽孢杆菌可湿性粉剂 65×108CFU/g Bacillus wettable powder | 1.12 | 2.45 | 75.22 | 62.82 |
清水Fresh water | 4.52 | 6.59 |
样品 Specimen | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phos- phorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Alkaline hydrolysis nitrogen (mg/kg) | 速效磷 Rapidly available phosphorus (mg/kg) | 速效钾 Rapidly available potassium (mg/kg) | pH值 | 总盐 Total salt (g/kg) |
---|---|---|---|---|---|---|---|---|---|
T1 | 17.54a | 0.89a | 1.19a | 20.70a | 72.24b | 40.93a | 443.83a | 6.99a | 3.28b |
T2 | 17.95a | 0.92a | 1.14a | 20.82a | 75.39a | 35.26b | 445.13a | 7.02a | 3.15b |
CK | 14.46b | 0.82a | 0.91b | 20.03c | 63.12b | 28.15c | 404.59b | 6.70b | 6.80a |
表5 不同菌剂下棉田土壤理化性质变化
Tab.5 Effects of bacterial agents on the physicochemical properties of soil in cotton fields
样品 Specimen | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phos- phorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Alkaline hydrolysis nitrogen (mg/kg) | 速效磷 Rapidly available phosphorus (mg/kg) | 速效钾 Rapidly available potassium (mg/kg) | pH值 | 总盐 Total salt (g/kg) |
---|---|---|---|---|---|---|---|---|---|
T1 | 17.54a | 0.89a | 1.19a | 20.70a | 72.24b | 40.93a | 443.83a | 6.99a | 3.28b |
T2 | 17.95a | 0.92a | 1.14a | 20.82a | 75.39a | 35.26b | 445.13a | 7.02a | 3.15b |
CK | 14.46b | 0.82a | 0.91b | 20.03c | 63.12b | 28.15c | 404.59b | 6.70b | 6.80a |
处理 Treatment | 单位面积株数/株 Number of plants/667m2 | 单铃重 Single boll weight(g) | 衣分 Fibre optic tube yield(%) | 单位面积铃数 Number of bolls/667m2 | 籽棉产量 Seed cotton yield(kg) |
---|---|---|---|---|---|
T1 | 10 700a | 5.36a | 44.2a | 81 570a | 437.22b |
T2 | 10 800a | 5.51a | 44.9a | 82 930a | 456.94a |
CK | 10 000b | 5.12b | 43.3b | 74 680b | 382.36c |
表6 不同处理下棉花产量性状变化
Tab.6 Effects of different treatments on cotton yield traits
处理 Treatment | 单位面积株数/株 Number of plants/667m2 | 单铃重 Single boll weight(g) | 衣分 Fibre optic tube yield(%) | 单位面积铃数 Number of bolls/667m2 | 籽棉产量 Seed cotton yield(kg) |
---|---|---|---|---|---|
T1 | 10 700a | 5.36a | 44.2a | 81 570a | 437.22b |
T2 | 10 800a | 5.51a | 44.9a | 82 930a | 456.94a |
CK | 10 000b | 5.12b | 43.3b | 74 680b | 382.36c |
[1] | 毛树春, 李亚兵, 董合忠. 中国棉花辉煌 70 年[J]. 棉花学报, 2019, 46(7): 1-14. |
MAO Shuchun, LI Yabin, DONG Hezhong. Brilliant 70 years of China cotton[J]. Cotton Science, 2019, 46(7): 1-14. | |
[2] | 孔庆平, 孔杰, 徐海江, 等. 新疆棉花集约高效生产技术研发策略[J]. 新疆农业科学, 2015, 52(7) : 1352-1358. |
KONG Qingping, KONG Jie, XU Haijiang, et al. Research and development strategy of intensive and efficient production technology in Xinjiang cotton[J]. Xinjiang Agricultural Sciences, 2015, 52(7): 1352-1358. | |
[3] | 中华人民共和国国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2021. |
National Bureau of statistics of the people’s Republic of China. China Statistical Yearbook[J]. Beijing: China Statistics Press, 2021. | |
[4] | 张蚌蚌, 王数, 石建初, 等. 新疆盐碱地膜下滴灌棉田可持续利用系统分析[J]. 中国农业大学学报, 2017, 22(11): 36-48. |
ZHANG Bangbang, WANG Shu, SHI Jianchu, et al. Systematic Analysis on Saline-alkali and Sustainable Utilization of Drip-irrigated Cotton Field Under Mulch in Xinjiang[J]. Journal of China Agricultural University, 2017, 22(11): 36-48. | |
[5] | 刘海洋, 王琦, 王伟, 等. 新疆棉花黄萎病的发生现状及其病原菌的分子鉴定与ISSR分析[J]. 植物保护学报, 2018, 45(6): 1194-1203. |
LIU Haiyang, WANG Qi, WANG Wei, et al. Molecular identification and ISSR analysis of Verticillium dahliae and the current status of cotton Verticillium wilt in Xinjiang[J]. Journal of Plant Protection, 2018, 45(6): 1194-1203. | |
[6] | 赵远伟. 棉花幼苗根系对盐胁迫的响应及机制[D]. 保定: 河北农业大学, 2014. |
ZHAO Yuanwei. Response and Mechanism of Cotton Seedling Root to Salt Stress[D]. Baoding: Hebei Agricultural University, 2014. | |
[7] | 李琪. 土壤溶磷微生物对柑橘种植年限及外源磷添加的响应机制[D]. 武汉: 华中农业大学, 2021. |
LI Qi. Response mechanism of soil phosphorus soluble microorganisms to citrus planting years and exogenous phosphorus addition[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[8] |
Che J, Zhu YL, Li YH, et al. Response of bacterial communities in saline-alkali soil to different pesticide stresses[J]. Environ Sci Pollut Res Int, 2022, 28(1): 1-11.
DOI |
[9] | 张贺. 施磷对滨海盐碱地不同水埋深下棉花产量影响的机制研究[D]. 南京: 南京农业大学, 2019. |
ZHANG He. Effect of phosphorus application on cotton yield under different water depth in coastal saline-alkali land[D]. Nanjing: Nanjing Agricultural University, 2019. | |
[10] |
Ducousso D A, Fontaine J, Lounès H, et al. Diversity of phosphate chemical forms in soils and their contributions on soil microbial community structure changes[J]. Microorganisms, 2022, 10(3): 609.
DOI URL |
[11] | 李晶. 枯草芽孢杆菌NCD-2解磷相关基因的克隆及抑菌物质的分离鉴定[D]. 保定: 河北大学, 2009. |
LI Jing. Cloning of the Lecithin-Solubilizing Related Gene and Identification of Antifungal Substances from Bacillus Subtilis NCD-2[D]. Baoding: Hebei University, 2019. | |
[12] | Chang I P, Kommedahl T. Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms[J]. Phytopathology, 1968, 58, 1395-1401. |
[13] | 陶光灿, 王素英, 郭兴强, 等. 以固氮菌和解磷菌筛选拮抗作物病害的细菌组合[J]. 应用生态学报, 2006, (3): 3462-3467. |
TAO Guangcan, WANG Suying, GUO Xingqiang, et al. Screening of mixed crop disease-resistant bacterial inoculants from N2-fixing and P-solubilzing bacterial isolates[J]. Chinese Journal of Applied Ecology, 2006,(3): 3462-3467. | |
[14] |
Vassileva N, Vassileva M, Nikolaeva I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends[J]. Applied Microbiology and Biotechnology, 2006, 71(2): 137-144.
PMID |
[15] | 吴亚丽, 刘冬, 张丽君, 等. 正交试验优化培养基因工程菌(E.colipGEX)产降血压肽培养基的组成[J]. 氨基酸和生物资源, 2006, (1): 76-79. |
WU Yali, LIU Dong, ZHANG Lijun, et al. Optimized Culture of Engineered Bacteria (E.coli/pGEX) by Orthogonal Test[J]. Amino Acids & Biotic Resources, 2006,(1): 76-79. | |
[16] | 宁华. 正交试验优化基因工程菌(E.Coli/pWSY)产黑色素培养基的组成[J]. 华中师范大学学报(自然科学版), 2000,(2):220-222. |
NING Hua. The suitable medium of engineering bacteria (E.Coli/p WSY) for melanin fermentation obtained by means of orthogonal optimization[J]. Journal of Central China Normal University (Natural Sciences Ed.), 2000, (2): 220-222. | |
[17] | 彭玉麟, 薛晓梅, 史延茂, 等. 用正交试验法选择运动发酵单胞菌的最佳发酵合成培养基[J]. 河北省科学院学报, 1991, (1): 58-68. |
PENG Yulin, XUE Xiaomei, SHI Yanmao, et al. The selection of optimum synthetic medium of zymomonasmobilis by orthogonal design[J]. Journal of the Hebei Academy of Sciences, 1991, (1): 58-68. | |
[18] | 彭玉麟, 王斌, 薛晓梅, 等. 用正交试验法选择运动发酵单胞菌的最佳发酵培养基[J]. 食品与发酵工业, 1990, (5): 5-8,4. |
PENG Yulin, WANG Bin, XUE Xiaomei, et al. The Selection of Optimal Medium of Zymomonas mobilis by Orthogonal Design[J]. Food and Fermentation Industries, 1990, (5): 5-8,4. | |
[19] | 李美. 溶磷菌筛选及对小麦、玉米促生长作用研究[D]. 兰州: 兰州理工大学, 2021. |
LI Mei. Screening of phosphorus-solubilizing bacteria and its effect on promoting growth of Wheat and maize[D]. Lanzhou: Lanzhou University of Technology, 2021. | |
[20] | 李凌凌, 杨进, 孙妤婕, 等. 台湾假单胞菌的分离、鉴定及其对难溶性磷酸盐的溶解特性[J]. 武汉科技大学学报, 2019, 42(5): 354-364. |
LI Lingling, YANG Jin, SUN Yujie, et al. Isolation and identification of Pseudomonas taiwanensis and its solubility in insoluble phosphate[J]. Journal of Wuhan University of Science and Technology, 2019, 42(5): 354-364. | |
[21] |
Nandre V S, Bachate S P, Salunkhe R C, et al. Enhanced Detoxification of Arsenic Under Carbon Starvation: A New Insight into Microbial Arsenic Physiology[J]. Curr Microbiol, 2017, 74(5): 614-622.
DOI PMID |
[22] | Chaudhary P, Khati P, Chaudhary A, et al. Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizosphericmicrobiome[J]. PLoS One, 2021, 6(4). |
[23] | 李恒, 万邦隆, 董芸, 等. 农业微生物细菌发酵工艺研究进展[J]. 云南化工, 2022, 49(1): 1-5. |
LI Heng, WAN Banglong, DONG Yun, et al. Research progress of fermentation process of agricultural microorganisms[J]. Yunnan Chemical Technology, 2022, 49(1): 1-5. | |
[24] | 陈慧, 曹曦, 王鑫彤, 等. 具有抗哈维氏弧菌活性共生真菌HLZ-3菌株的筛选、鉴定及其培养条件[J]. 微生物学通报, 2019, 46(10): 2475-2481. |
CHEN Hui, CAO Xi, WANG Xintong, et al. Screening, identification and culture conditions of symbiotic fungus HLZ-3 with antibacterial activity against Vibrio harveyi Chinese[J]. Microbiology China, 2019, 46(10): 2475-2481. | |
[25] |
赵建, 袁玲, 黄建国. 寡雄腐霉发酵参数优化及发酵液的生防效应[J]. 中国农业科学, 2013, 46(2): 292-299.
DOI |
ZHAO Jian, YUAN Ling, HUANG Jianguo. Fermentation Parameter Optimization of Pythium oligandrum and Biocontrol Effect of the Fermentation Broth[J]. Scientia Agricultura Sinica, 2013, 46(2): 292-299.
DOI |
|
[26] | 刘国防. 高效油脂降解菌剂构建与效果研究[D]. 杭州: 浙江大学, 2012. |
LIU Guofang. Construction of Microbial Inoculum and Its Effects on Oil and Grease Wastewater Treatment[D]. Hangzhou: Zhejiang University, 2012. | |
[27] |
何明川, 王志江, 谢永辉, 等. 烟草黑胫病拮抗菌的筛选、鉴定及发酵条件优化[J]. 中国生物防治学报, 2022, 38(2): 428-439.
DOI |
HE Mingchuan, WANG Zhijiang, XIE Yonghui, et al. Screening, identification and fermentation conditions optimization of antagonistic bacterium against tobacco black shank[J]. Chinese Journal of Biological Control, 2022, 38(2): 428-439.
DOI |
|
[28] | 曾舒泉, 钮徐融, 魏聪聪, 等. 烟草黑胫病拮抗菌HZ15的发酵条件优化[J]. 江西农业学报, 2021, 33(12): 14-20. |
ZENG Shuquan, NIU Xurong,; WEI Congcong, et al. Optimization of Fermentation Conditions for Antagonistic Bacterium HZ15 against Tobacco Black Shank[J]. Acta Agriculturae Jiangxi, 2021, 33(12): 14-20. | |
[29] | 黄慧婧, 高香辉, 陈舒, 等. 一株番茄青枯病菌拮抗细菌的筛选、发酵条件优化及田间小区防效[J]. 微生物学通报, 2022, 49(2): 606-619. |
HUANG Huijing, GAO Xianghui, CHEN Shu, et al. Screening, fermentation condition optimization, and field control effect evaluation of an antagonistic bacterium against Ralstonia so lanacearum[J]. Microbiology China, 2022, 49(2): 606-619. |
[1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[2] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[3] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[4] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
[5] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
[6] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[7] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[8] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[9] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[10] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[11] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[12] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[13] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[14] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[15] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1009
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||