

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 1022-1031.DOI: 10.6048/j.issn.1001-4330.2025.04.027
• Animal Husbandry Veterination · Agricultural Eeconomy • Previous Articles Next Articles
MA Lan(
), LIU Yingyu(
), Zulihumaer Aili, ZHENG Baili, DOU Tao, CAI Yuxuan, CHENG Yaling
Received:2024-08-11
Online:2025-04-20
Published:2025-06-20
Supported by:
马兰(
), 刘英玉(
), 祖力胡马尔·艾力, 郑百利, 豆涛, 蔡雨萱, 程雅玲
通讯作者:
刘英玉(1984-),女,重庆涪陵人,副教授,博士,硕士生导师,研究方向为畜产品质量与安全,(E-mail)xjlyy1028@163.com
作者简介:马兰(2000-),女,新疆昌吉人,硕士研究生,研究方向为畜产品质量与安全,(E-mail)1904098208@qq.com
基金资助:CLC Number:
MA Lan, LIU Yingyu, Zulihumaer Aili, ZHENG Baili, DOU Tao, CAI Yuxuan, CHENG Yaling. Molecular characteristics and drug resistance analysis of Staphylococcus aureus in a goose slaughterhouse in Xinjiang[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 1022-1031.
马兰, 刘英玉, 祖力胡马尔·艾力, 郑百利, 豆涛, 蔡雨萱, 程雅玲. 新疆某鹅屠宰场中金黄色葡萄球菌的分子特征和耐药性分析[J]. 新疆农业科学, 2025, 62(4): 1022-1031.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.04.027
| 基因 Gene | 引物序列(5’-3’) Primer sequence (5’-3’) | Tm (℃) | 长度(bp) Length(bp) |
|---|---|---|---|
| nuc | F-ATCATTATTGTAGGTGTATTAG | 54 | 223 |
| R-CAGGCGTATTCGGTTTC | |||
| SPA | F-TAAAGACGATCCTTCGGTGAGC | 60 | 300-450 |
| R-CAGCAGTAGTGCCGTTTGCTT | |||
| sea | F-GAAAAAAGTCTGAATTGCAGGGAACA | 57 | 560 |
| R-CAAATAAATCGTAATTAACCGAAGGTTC | |||
| seb | F-ATTCTATTAAGGACACTAAGTTAGGGA | 57 | 404 |
| R-ATCCCGTTTCATAAGGCGAGT | |||
| sec | F-GTAAAGTTACAGGTGGCAAAACTTG | 56 | 297 |
| R-CATATCATACCAAAAAGTATTGCCGT | |||
| sed | F-GAGGTGTCACTCCACACGAA | 56 | 349 |
| R-TGAAGGTGCTCTGTGGATAATG | |||
| see | F-ACCGATTGACCGAAGAAAAA | 56 | 264 |
| R-ATTGCCCTTGAGCATCAAAC | |||
| seg | F-AGAATTAGCTAACAATTATAAAGATAAAAAAG | 52 | 496 |
| R-TCAGTGAGTATTAAGAAATACTTCCAT | |||
| seh | F-TGATTTAGCTCAGAAGTTTAAAAATAAAAATG | 52 | 466 |
| R-TTTCTTAGTATATAGATTTACATCAATATG | |||
| sel | F-CACCAGAATCACACCGCTTA | 54 | 205 |
| R-CTGTTTGATGCTTGCCATTG | |||
| sei | F-TGGAACAGGACAAGCTGAAA | 53 | 529 |
| R-TGTTTGCCATTAACCCAAA | |||
| sek | F-ATGAATCTTATGATTTAATTTCAGAATCAA | 51 | 545 |
| R-ATTTATATCGTTTCTTTATAAGAAATATCG | |||
| sem | F-ATGAAAAGAATACTTATCATTGTTGTTTTATTG | 53 | 720 |
| R-CTTCAACTTTCGTCCTTATAAGATATTTC | |||
| seu | F-AAACATTAAAGCCCAAGAG | 48 | 215 |
| R-ACACCGCCATACATACAC |
Tab.1 The primers used in this study
| 基因 Gene | 引物序列(5’-3’) Primer sequence (5’-3’) | Tm (℃) | 长度(bp) Length(bp) |
|---|---|---|---|
| nuc | F-ATCATTATTGTAGGTGTATTAG | 54 | 223 |
| R-CAGGCGTATTCGGTTTC | |||
| SPA | F-TAAAGACGATCCTTCGGTGAGC | 60 | 300-450 |
| R-CAGCAGTAGTGCCGTTTGCTT | |||
| sea | F-GAAAAAAGTCTGAATTGCAGGGAACA | 57 | 560 |
| R-CAAATAAATCGTAATTAACCGAAGGTTC | |||
| seb | F-ATTCTATTAAGGACACTAAGTTAGGGA | 57 | 404 |
| R-ATCCCGTTTCATAAGGCGAGT | |||
| sec | F-GTAAAGTTACAGGTGGCAAAACTTG | 56 | 297 |
| R-CATATCATACCAAAAAGTATTGCCGT | |||
| sed | F-GAGGTGTCACTCCACACGAA | 56 | 349 |
| R-TGAAGGTGCTCTGTGGATAATG | |||
| see | F-ACCGATTGACCGAAGAAAAA | 56 | 264 |
| R-ATTGCCCTTGAGCATCAAAC | |||
| seg | F-AGAATTAGCTAACAATTATAAAGATAAAAAAG | 52 | 496 |
| R-TCAGTGAGTATTAAGAAATACTTCCAT | |||
| seh | F-TGATTTAGCTCAGAAGTTTAAAAATAAAAATG | 52 | 466 |
| R-TTTCTTAGTATATAGATTTACATCAATATG | |||
| sel | F-CACCAGAATCACACCGCTTA | 54 | 205 |
| R-CTGTTTGATGCTTGCCATTG | |||
| sei | F-TGGAACAGGACAAGCTGAAA | 53 | 529 |
| R-TGTTTGCCATTAACCCAAA | |||
| sek | F-ATGAATCTTATGATTTAATTTCAGAATCAA | 51 | 545 |
| R-ATTTATATCGTTTCTTTATAAGAAATATCG | |||
| sem | F-ATGAAAAGAATACTTATCATTGTTGTTTTATTG | 53 | 720 |
| R-CTTCAACTTTCGTCCTTATAAGATATTTC | |||
| seu | F-AAACATTAAAGCCCAAGAG | 48 | 215 |
| R-ACACCGCCATACATACAC |
| 抗生素名称 Antibiotic names | 浓度范围 Concentration range | 判定标准 Criterion(mg/mL) | ||
|---|---|---|---|---|
| (mg/mL) | 敏感(S) | 中介(I) | 耐药(R) | |
| 恩诺沙星(Enrofloxacin,ENR) | 0.004~4 | 0.25 | 0.5~1 | ≥ 2 |
| 卡那霉素(Kanamycin,KAN) | 0.5~125 | ≤ 16 | 32 | ≥ 64 |
| 氯霉素(Chloramphenicol,CHL) | 1~64 | ≤ 8 | 16 | ≥ 32 |
| 头孢噻呋(Ceftiofur,CF) | 0.125~16 | ≤ 2 | 4 | ≥ 8 |
| 阿奇霉素(Azithromycin,AZM) | 0.25~64 | ≤ 2 | 4 | ≥ 8 |
| 头孢西丁钠(Cefoxitin Sodium,FOX) | 0.5~64 | ≤ 4 | - | ≥ 8 |
| 庆大霉素(Gentamicin,GEN) | 0.064~32 | ≤ 4 | 8 | ≥ 16 |
| 阿莫西林/克拉维酸钾(Amoxicillin/clavulanate acid,AMC) | 0.032~64 | ≤ 4/2 | - | ≥ 8/4 |
| 环丙沙星(Ciprofloxacin,CIP) | 0.008~8 | ≤ 1 | 2 | ≥ 4 |
| 万古霉素(Vancomycin,VAN) | 0.25~64 | ≤ 2 | 4~8 | ≥ 16 |
| 磺胺异恶唑(Sulfisoxazole,SIZ) | 1~1024 | ≤ 256 | - | ≥512 |
| 氨苄西林(Ampicillin,AMP) | 0.25~32 | ≤ 0.25 | - | ≥ 0.5 |
Tab.2 Criteria for the determination of 12 antibiotics
| 抗生素名称 Antibiotic names | 浓度范围 Concentration range | 判定标准 Criterion(mg/mL) | ||
|---|---|---|---|---|
| (mg/mL) | 敏感(S) | 中介(I) | 耐药(R) | |
| 恩诺沙星(Enrofloxacin,ENR) | 0.004~4 | 0.25 | 0.5~1 | ≥ 2 |
| 卡那霉素(Kanamycin,KAN) | 0.5~125 | ≤ 16 | 32 | ≥ 64 |
| 氯霉素(Chloramphenicol,CHL) | 1~64 | ≤ 8 | 16 | ≥ 32 |
| 头孢噻呋(Ceftiofur,CF) | 0.125~16 | ≤ 2 | 4 | ≥ 8 |
| 阿奇霉素(Azithromycin,AZM) | 0.25~64 | ≤ 2 | 4 | ≥ 8 |
| 头孢西丁钠(Cefoxitin Sodium,FOX) | 0.5~64 | ≤ 4 | - | ≥ 8 |
| 庆大霉素(Gentamicin,GEN) | 0.064~32 | ≤ 4 | 8 | ≥ 16 |
| 阿莫西林/克拉维酸钾(Amoxicillin/clavulanate acid,AMC) | 0.032~64 | ≤ 4/2 | - | ≥ 8/4 |
| 环丙沙星(Ciprofloxacin,CIP) | 0.008~8 | ≤ 1 | 2 | ≥ 4 |
| 万古霉素(Vancomycin,VAN) | 0.25~64 | ≤ 2 | 4~8 | ≥ 16 |
| 磺胺异恶唑(Sulfisoxazole,SIZ) | 1~1024 | ≤ 256 | - | ≥512 |
| 氨苄西林(Ampicillin,AMP) | 0.25~32 | ≤ 0.25 | - | ≥ 0.5 |
| 来源 Source | 样本量 (份) Sample size (no) | 阳性样 本数(份) Number of positive samples (no) | 阳性分离率 Positive separation rate (%) |
|---|---|---|---|
| D | 10 | 2 | 20.0 |
| G | 25 | 9 | 36.0 |
| S | 35 | 12 | 34.3 |
| T | 55 | 22 | 40.0 |
| R | 28 | 4 | 14.3 |
| 总计 Total | 153 | 49 | 32.0 |
Tab.3 Prevalence of S.aureus in different slaughtering stages
| 来源 Source | 样本量 (份) Sample size (no) | 阳性样 本数(份) Number of positive samples (no) | 阳性分离率 Positive separation rate (%) |
|---|---|---|---|
| D | 10 | 2 | 20.0 |
| G | 25 | 9 | 36.0 |
| S | 35 | 12 | 34.3 |
| T | 55 | 22 | 40.0 |
| R | 28 | 4 | 14.3 |
| 总计 Total | 153 | 49 | 32.0 |
| 编号 Number | SPA型 SPA type | 样本来源 Sample source | 耐药谱 Drug resistance spectrum | 肠毒素基因谱 Gene profile of enterotoxin |
|---|---|---|---|---|
| CZT-5 | t034 | S | CHL-AZM-CIP-SIZ | / |
| CZT-9 | t034 | S | AZM-CIP-SIZ-AMP | / |
| DZC-3 | t034 | S | AZM-AMP | / |
| JXG-4 | t034 | G | AZM-CIP | / |
| JXG-8 | t034 | G | AZM-CIP-SIZ-AMP | / |
| JXG-9 | t034 | G | ENR-CHL-AZM-CIP-SIZ | / |
| TTG-11 | t034 | G | ENR-AZM-CIP-SIZ-AMP | seb-seg |
| KTD-2 | t034 | D | ENR-AZM-CIP-SIZ-AMP | / |
| JTT-15 | t034 | T | CHL-CIP | / |
| TMT-1 | t034 | T | CHL-CIP | / |
| TMT-11 | t034 | T | KAN-AZM-CIP-AMP | / |
| TMT13 | t034 | T | ENR-AZM-CIP-SIZ-AMP | / |
| TMT-2 | t034 | T | CHL-AZM-CIP-SIZ-AMP | / |
| YLT-8 | t034 | T | AZM-CIP-SIZ-AMP | / |
| R-25 | t034 | R | CHL-AZM-CIP-VAN-SIZ-AMP | seg |
| BZB-5 | t078 | S | AZM-AMP | seb-seg-sei-sem-seu |
| BZB-8 | t078 | S | AZM-SIZ-AMP | seb-seg-seu |
| BZB-7 | t078 | S | ENR-CIP-AMP | / |
| TGR | t078 | G | AZM-VAN-SIZ-AMP | seb-seg-sei-seu |
| TGR-1 | t078 | G | AZM-CIP-SIZ-AMP | seb-seg-sei-sem |
| TGR-5 | t078 | G | KAN-AZM-CIP-AMP | / |
| KTD-5 | t078 | D | AZM-CIP-SIZ-AMP | seb-seg-sei-sem-seu |
| JTT-1 | t078 | T | AZM-SIZ-AMP | seg-sei |
| JTT-11 | t078 | T | AZM | seb-seg-sei-seu |
| JTT-12 | t078 | T | CHL-AZM-SIZ | seg |
| TMT3 | t078 | T | AZM-CIP-SIZ-AMP | seb |
| JTT-2 | t078 | T | AZM-SIZ-AMP | seb |
| YLT-13 | t078 | T | AZM-SIZ-AMP | seb-seg |
| YLT-14 | t078 | T | AZM-AMP | seb-sei-seu |
| YLT-4 | t078 | T | AZM-CIP-SIZ-AMP | / |
| YLT-5 | t078 | T | AZM-SIZ-AMP | seb-seg-sei-sem |
| R-10 | t078 | R | AZM-SIZ-AMP | seb-seg-sei-seu |
| R-23 | t078 | R | AZM-AMP | seg-sei-seu |
| DZC-2 | t502 | S | AMP | seg-sei-sem-seu |
| JMT-5 | t502 | T | ENR-CF-FOX-CIP-VAN-SIZ-AMP | seg-seh-sei-seu |
| JMT-9 | t502 | T | CIP-VAN-SIZ-AMP | seg-sei-sem-seu |
| TMT-7 | t502 | T | AZM-SIZ-AMP | seg-sei-sem-seu |
| TMT-8 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| TMT-9 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| YLT-15 | t502 | T | AMP | seg-seu |
| R-17 | t502 | R | AZM-AMP | seg-sem-seu |
| CZT-10 | t701 | S | / | / |
| JXG-3 | t701 | G | / | sea-sem |
| JXG-6 | t1376 | G | AMP | / |
| YLT-1 | t002 | T | / | / |
| CZT-8 | t091 | S | FOX-SIZ-AMP | / |
| BZB-2 | unknown | S | FOX-AMP | / |
| BZB-6 | unknown | S | AZM-CIP-SIZ-AMP | / |
| CSD-4 | unknown | S | ENR-CHL-CIP-VAN-SIZ | / |
Tab.4 Summary of SPA typing, virulence gene profiles and antimicrobial resistance profiles of 49 S.aureus isolates
| 编号 Number | SPA型 SPA type | 样本来源 Sample source | 耐药谱 Drug resistance spectrum | 肠毒素基因谱 Gene profile of enterotoxin |
|---|---|---|---|---|
| CZT-5 | t034 | S | CHL-AZM-CIP-SIZ | / |
| CZT-9 | t034 | S | AZM-CIP-SIZ-AMP | / |
| DZC-3 | t034 | S | AZM-AMP | / |
| JXG-4 | t034 | G | AZM-CIP | / |
| JXG-8 | t034 | G | AZM-CIP-SIZ-AMP | / |
| JXG-9 | t034 | G | ENR-CHL-AZM-CIP-SIZ | / |
| TTG-11 | t034 | G | ENR-AZM-CIP-SIZ-AMP | seb-seg |
| KTD-2 | t034 | D | ENR-AZM-CIP-SIZ-AMP | / |
| JTT-15 | t034 | T | CHL-CIP | / |
| TMT-1 | t034 | T | CHL-CIP | / |
| TMT-11 | t034 | T | KAN-AZM-CIP-AMP | / |
| TMT13 | t034 | T | ENR-AZM-CIP-SIZ-AMP | / |
| TMT-2 | t034 | T | CHL-AZM-CIP-SIZ-AMP | / |
| YLT-8 | t034 | T | AZM-CIP-SIZ-AMP | / |
| R-25 | t034 | R | CHL-AZM-CIP-VAN-SIZ-AMP | seg |
| BZB-5 | t078 | S | AZM-AMP | seb-seg-sei-sem-seu |
| BZB-8 | t078 | S | AZM-SIZ-AMP | seb-seg-seu |
| BZB-7 | t078 | S | ENR-CIP-AMP | / |
| TGR | t078 | G | AZM-VAN-SIZ-AMP | seb-seg-sei-seu |
| TGR-1 | t078 | G | AZM-CIP-SIZ-AMP | seb-seg-sei-sem |
| TGR-5 | t078 | G | KAN-AZM-CIP-AMP | / |
| KTD-5 | t078 | D | AZM-CIP-SIZ-AMP | seb-seg-sei-sem-seu |
| JTT-1 | t078 | T | AZM-SIZ-AMP | seg-sei |
| JTT-11 | t078 | T | AZM | seb-seg-sei-seu |
| JTT-12 | t078 | T | CHL-AZM-SIZ | seg |
| TMT3 | t078 | T | AZM-CIP-SIZ-AMP | seb |
| JTT-2 | t078 | T | AZM-SIZ-AMP | seb |
| YLT-13 | t078 | T | AZM-SIZ-AMP | seb-seg |
| YLT-14 | t078 | T | AZM-AMP | seb-sei-seu |
| YLT-4 | t078 | T | AZM-CIP-SIZ-AMP | / |
| YLT-5 | t078 | T | AZM-SIZ-AMP | seb-seg-sei-sem |
| R-10 | t078 | R | AZM-SIZ-AMP | seb-seg-sei-seu |
| R-23 | t078 | R | AZM-AMP | seg-sei-seu |
| DZC-2 | t502 | S | AMP | seg-sei-sem-seu |
| JMT-5 | t502 | T | ENR-CF-FOX-CIP-VAN-SIZ-AMP | seg-seh-sei-seu |
| JMT-9 | t502 | T | CIP-VAN-SIZ-AMP | seg-sei-sem-seu |
| TMT-7 | t502 | T | AZM-SIZ-AMP | seg-sei-sem-seu |
| TMT-8 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| TMT-9 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| YLT-15 | t502 | T | AMP | seg-seu |
| R-17 | t502 | R | AZM-AMP | seg-sem-seu |
| CZT-10 | t701 | S | / | / |
| JXG-3 | t701 | G | / | sea-sem |
| JXG-6 | t1376 | G | AMP | / |
| YLT-1 | t002 | T | / | / |
| CZT-8 | t091 | S | FOX-SIZ-AMP | / |
| BZB-2 | unknown | S | FOX-AMP | / |
| BZB-6 | unknown | S | AZM-CIP-SIZ-AMP | / |
| CSD-4 | unknown | S | ENR-CHL-CIP-VAN-SIZ | / |
| 毒力基因 Virulence gene | 不同屠宰环节中菌株毒素编码基因携带率(菌株数) The carrying rate of strain toxin coding gene in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| sea | / | 11.1(1) | / | / | / | 2.0(1) |
| seb | 50.0(1) | 33.3(3) | 16.7(2) | 27.3(6) | 25.0(1) | 26.5(13) |
| seg | 50.0(1) | 33.3(3) | 33.3(4) | 50.0(11) | 100.0(4) | 46.9(23) |
| seh | / | / | / | 4.5(1) | / | 2.0(1) |
| sei | 50.0(1) | 22.2(2) | 16.7(2) | 40.9(9) | 50.0(2) | 32.7(16) |
| sem | 50.0(1) | 22.2(2) | 16.7(2) | 27.3(6) | 25.0(1) | 24.5(12) |
| seu | / | 11.1(1) | 25.0(3) | 31.8(7) | 75.0(3) | 28.6(14) |
Tab.5 Detection rate of virulence genes in different slaughtering and processing stages(%)
| 毒力基因 Virulence gene | 不同屠宰环节中菌株毒素编码基因携带率(菌株数) The carrying rate of strain toxin coding gene in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| sea | / | 11.1(1) | / | / | / | 2.0(1) |
| seb | 50.0(1) | 33.3(3) | 16.7(2) | 27.3(6) | 25.0(1) | 26.5(13) |
| seg | 50.0(1) | 33.3(3) | 33.3(4) | 50.0(11) | 100.0(4) | 46.9(23) |
| seh | / | / | / | 4.5(1) | / | 2.0(1) |
| sei | 50.0(1) | 22.2(2) | 16.7(2) | 40.9(9) | 50.0(2) | 32.7(16) |
| sem | 50.0(1) | 22.2(2) | 16.7(2) | 27.3(6) | 25.0(1) | 24.5(12) |
| seu | / | 11.1(1) | 25.0(3) | 31.8(7) | 75.0(3) | 28.6(14) |
| 抗生素 Antibiotic | 不同屠宰环节中菌株耐药率(菌株数) Drug resistance rate in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| ENR | 100.0(2) | 11.1(1) | 16.7(2) | 9.1(2) | / | 14.3(7) |
| KAN | / | / | / | 9.1(2) | / | 4.1(2) |
| CHL | 50.0(1) | / | 16.7(2) | 18.2(4) | 25.0(1) | 16.3(8) |
| CF | / | / | / | 4.5(1) | / | 2.0(1) |
| AZM | 100.0(2) | 77.8(7) | 50.0(6) | 63.6(14) | 100.0(4) | 67.3(33) |
| FOX | / | / | 16.7(2) | 4.5(1) | / | 6.1(3) |
| GEN | / | / | / | / | / | 0.0(0) |
| AMC | / | / | / | / | / | 0.0(0) |
| CIP | 100.0(2) | 66.7(6) | 41.7(5) | 45.5(10) | 25.0(1) | 49.0(24) |
| VAN | / | 11.1(1) | 8.3(1) | 9.1(2) | 25.0(1) | 10.2(5) |
| SIZ | 100.0(2) | 55.6(5) | 50.0(6) | 68.2(15) | 50.0(2) | 61.2(30) |
| AMP | 100.0(2) | 66.7(6) | 75.0(9) | 68.2(15) | 100.0(4) | 73.5(36) |
Tab.6 Detecti on rate of virulence genes in different slaughtering and processing stages(%)
| 抗生素 Antibiotic | 不同屠宰环节中菌株耐药率(菌株数) Drug resistance rate in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| ENR | 100.0(2) | 11.1(1) | 16.7(2) | 9.1(2) | / | 14.3(7) |
| KAN | / | / | / | 9.1(2) | / | 4.1(2) |
| CHL | 50.0(1) | / | 16.7(2) | 18.2(4) | 25.0(1) | 16.3(8) |
| CF | / | / | / | 4.5(1) | / | 2.0(1) |
| AZM | 100.0(2) | 77.8(7) | 50.0(6) | 63.6(14) | 100.0(4) | 67.3(33) |
| FOX | / | / | 16.7(2) | 4.5(1) | / | 6.1(3) |
| GEN | / | / | / | / | / | 0.0(0) |
| AMC | / | / | / | / | / | 0.0(0) |
| CIP | 100.0(2) | 66.7(6) | 41.7(5) | 45.5(10) | 25.0(1) | 49.0(24) |
| VAN | / | 11.1(1) | 8.3(1) | 9.1(2) | 25.0(1) | 10.2(5) |
| SIZ | 100.0(2) | 55.6(5) | 50.0(6) | 68.2(15) | 50.0(2) | 61.2(30) |
| AMP | 100.0(2) | 66.7(6) | 75.0(9) | 68.2(15) | 100.0(4) | 73.5(36) |
| [1] | 江涛. 鹅葡萄球菌病的流行病学、临床特点、诊断和防治[J]. 现代畜牧科技, 2020,(12): 150-151. |
| JIANG Tao. Epidemiology, clinical characteristics, diagnosis and control of goose staphylococcosis[J]. Modern Animal Husbandry Science & Technology, 2020,(12): 150-151. | |
| [2] | Köck R, Schaumburg F, Mellmann A, et al. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany[J]. PLoS One, 2013, 8(2): e55040. |
| [3] | 张婧, 张易, 施春雷. 食源性金黄色葡萄球菌肠毒素基因及其表达检测[J]. 中国食品学报, 2020, 20(1): 246-251. |
| ZHANG Jing, ZHANG Yi, SHI Chunlei. The detection of enterotoxin gene and its expression of foodborne Staphylococcus aureus[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 246-251. | |
| [4] | Wang X Z, Lin D Z, Huang Z Q, et al. Clonality, virulence genes, and antibiotic resistance of Staphylococcus aureus isolated from blood in Shandong, China[J]. BMC Microbiology, 2021, 21(1): 281. |
| [5] | Lopes G V, Bastos C P, da Silva W P. The effect of sodium chloride and temperature on the levels of transcriptional expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolates from broiler carcasses[J]. Brazilian Journal of Microbiology, 2021, 52(4): 2343-2350. |
| [6] | 吴任之, 张翼, 刘柳, 等. 生鲜猪肉中金黄色葡萄球菌的耐药特征、毒力基因及agr分型[J]. 微生物学杂志, 2022, 42(1): 34-42. |
| WU Renzhi, ZHANG Yi, LIU Liu, et al. Resistance characteristics, virulence genes and agr typing of Staphylococcus aureus in fresh pork[J]. Journal of Microbiology, 2022, 42(1): 34-42. | |
| [7] | Abolghait S K, Fathi A G, Youssef F M, et al. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers[J]. International Journal of Food Microbiology, 2020, 328: 108669. |
| [8] |
Strommenger B, Kettlitz C, Weniger T, et al. Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing[J]. Journal of Clinical Microbiology, 2006, 44(7): 2533-2540.
DOI PMID |
| [9] | 马鑫, 苏静, 孟卫卫, 等. 新疆食源性金黄色葡萄球菌分离株的分子分型与耐药性分析[J]. 疾病预防控制通报, 2018, 33(6): 74-78. |
| MA Xin, SU Jing, MENG Weiwei, et al. Molecular typing and antimicrobial resistance of food-borne Staphylococcus aureus isolated in Xinjiang[J]. Bulletin of Disease Control & Prevention (China), 2018, 33(6): 74-78. | |
| [10] | GB 4789.10-2016.食品安全国家标准食品微生物学检验金黄色葡萄球菌检验[S]. |
| GB 4789.10-2016.National standard for Food safety Microbiology test for food Staphylococcus aureus test[S]. | |
| [11] |
Varshney A K, Mediavilla J R, Robiou N, et al. Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York[J]. Applied and Environmental Microbiology, 2009, 75(21): 6839-6849.
DOI PMID |
| [12] | Liu Y Y, Zheng X F, Xu L, et al. Prevalence, antimicrobial resistance, and molecular characterization of Staphylococcus aureus isolated from animals, meats, and market environments in Xinjiang, China[J]. Foodborne Pathogens and Disease, 2021, 18(10): 718-726. |
| [13] | Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement: M100-S23[S]. 2019. |
| [14] | 邵莉萍, 张继瑜, 马志永. 临床常用几种抗菌药物对HPS抗菌活性研究[J]. 安徽农业科学, 2017, 45(33): 113-114, 117. |
| SHAO Liping, ZHANG Jiyu, MA Zhiyong. Study on antibacterial activity of several commonly used antibacterial drugs on HPS[J]. Journal of Anhui Agricultural Sciences, 2017, 45(33): 113-114,117. | |
| [15] | Ou Q T, Peng Y, Lin D X, et al. A meta-analysis of the global prevalence rates of Staphylococcus aureus and methicillin-resistant S. aureus contamination of different raw meat products[J]. Journal of Food Protection, 2017, 80(5): 763-774. |
| [16] |
Althaus D, Zweifel C, Stephan R. Analysis of a poultry slaughter process: Influence of process stages on the microbiological contamination of broiler carcasses[J]. Italian Journal of Food Safety, 2017, 6(4): 7097.
DOI PMID |
| [17] | Vossenkuhl B, Brandt J, Fetsch A, et al. Comparison of spa types, SCCmec types and antimicrobial resistance profiles of MRSA isolated from turkeys at farm, slaughter and from retail meat indicates transmission along the production chain[J]. PLoS One, 2014, 9(5): e96308. |
| [18] | 王琳, 赵格, 赵建梅, 等. 肉鸡屠宰环节金黄色葡萄球菌污染定量评估研究[J]. 中国食品卫生杂志, 2020, 32(3): 300-306. |
| WANG Lin, ZHAO Ge, ZHAO Jianmei, et al. Study on the quantitative assessment of Staphylococcus aureus in the broiler chicken slaughtering line[J]. Chinese Journal of Food Hygiene, 2020, 32(3): 300-306. | |
| [19] |
Yan X, Wang B, Tao X, et al. Characterization of Staphylococcus aureus strains associated with food poisoning in Shenzhen, China[J]. Applied and environmental microbiology, 2012, 78(18): 6637-6642.
DOI PMID |
| [20] | Li G H, Wu S Z, Luo W, et al. Staphylococcus aureus ST6-t701 isolates from food-poisoning outbreaks (2006-2013) in Xi’an, China[J]. Foodborne Pathogens and Disease, 2015, 12(3): 203-206. |
| [21] | Liao F, Gu W P, Yang Z S, et al. Molecular characteristics of Staphylococcus aureus isolates from food surveillance in southwest China[J]. BMC Microbiology, 2018, 18(1): 91. |
| [22] | 李方, 苏静, 孟卫卫, 等. 新疆食品中金黄色葡萄球菌肠毒素特征及耐药性分析[J]. 中国国境卫生检疫杂志, 2022, 45(6): 466-469. |
| LI Fang, SU Jing, MENG Weiwei, et al. Distribution of Staphylococcus aureus Enterotoxin and drug resistance in Xinjiang Food[J]. Chinese Journal of Frontier Health and Quarantine, 2022, 45(6): 466-469. | |
| [23] | 任强. 新疆南疆地区奶牛乳源金黄色葡萄球菌分子特性研究[D]. 阿拉尔: 塔里木大学, 2020. |
| REN Qiang. Study on molecular characteristics of Staphylococcus aureus from dairy cows in southern Xinjiang[D]. Aral: Tarim University, 2020. | |
| [24] | 张鹏飞, 王婷, 钟楠, 等. 食源性耐甲氧西林金黄色葡萄球菌生物被膜的形成及相关基因的检测[J]. 现代食品科技, 2020, 36(10): 41-49. |
| ZHANG Pengfei, WANG Ting, ZHONG Nan, et al. Detection of biofilm formation and biofilm-related genes of food-borne methicillin-resistant Staphylococcus aureus[J]. Modern Food Science and Technology, 2020, 36(10): 41-49. | |
| [25] |
Umeda K, Nakamura H, Yamamoto K, et al. Molecular and epidemiological characterization of staphylococcal foodborne outbreak of Staphylococcus aureus harboring seg, sei, sem, sen, seo, and selu genes without production of classical enterotoxins[J]. International Journal of Food Microbiology, 2017, 256: 30-35.
DOI PMID |
| [26] | Sallam K I, Abd-Elghany S M, Elhadidy M, et al. Molecular characterization and antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus in retail chicken[J]. Journal of Food Protection, 2015, 78(10): 1879-1884. |
| [27] | Igbinosa E O, Beshiru A, Igbinosa I H, et al. Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria[J]. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1122059. |
| [28] | Wu S, Huang J H, Wu Q P, et al. Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity[J]. Frontiers in Microbiology, 2018, 9: 2767. |
| [29] | Gan T, Shu G, Fu H L, et al. Antimicrobial resistance and genotyping of Staphylococcus aureus obtained from food animals in Sichuan Province, China[J]. BMC Veterinary Research, 2021, 17(1): 177. |
| [30] | Ning K M, Zhou R S, Li M X. Antimicrobial resistance and molecular typing of Staphylococcus aureus isolates from raw milk in Hunan Province[J]. PeerJ, 2023, 11: e15847. |
| [31] | Lin Q, Sun H H, Yao K, et al. The prevalence, antibiotic resistance and biofilm formation of Staphylococcus aureus in bulk ready-to-eat foods[J]. Biomolecules, 2019, 9(10): 524. |
| [1] | HE Tengfei, LIU Yingyu, ZHANG Liuqing, CHEN Wang, LI Zeya, HU Yun, JIANG Jindou, Zulihumaer Aili. Analysis of sequence analysis of pD353 plasmids of Staphylococcus aureus D353, the source of cattle and sheep in Xinjiang [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1806-1812. |
| [2] | LIU Jiangna, ZHANG Xiying, LI Rongxia, ZHANG Xiaowei, BAI Yunfeng, ZHANG Aiping. Molecular characteristics and promoter analysis of SlLCY-B2 gene in tomato [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1460-1465. |
| [3] | TANG Bihui, ZHANG Lihua, LI Haiying, ZHANG Chong, JIANG Tinghao, ZHAO Xiaoyu, JIANG Teng, DING Yawen, WU Yingping, ZHAO Quanzhuang. A comparative study on reproductive performance, serum hormone levels and gene expression between Yili goose and hortobágy goose [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1271-1280. |
| [4] | FAN Xue, SHAO Wei, ZHAO Yankun, DU Xiaohui, CHEN He, WANG Fulan, WANG Shuai. Differential Expression of Drug Resistance and Virulence Genes in Streptococcus agalactiae Isolated from Cattle [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2310-2317. |
| [5] | WANG Xiaoli, HAN Rui, ZHANG Quancheng, ZHAO Pengcheng, WANG Jungang. Study on the Differences of Three key Enzyme Activities of Different Geographical Populations of Aphis gossypii in Xinjiang and Their Correlation with Resistance [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 2007-2013. |
| [6] | TAN Huilin, WU Zhonghong, JIN Yongseng, NIU Guiyang, BAO Dongdong, CHEN Haiyuan, ZHANG Zhidong. Determination of StaphlococcusAureus in Food and Evaluation of the Fast Kit [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 410-416. |
| [7] | SUN Yali, CHU Fenfei, Gulimirei Kakeshi, Baharguli Ayupu, Gulijiang Xukuerhan. Comparative Analysis of Photosynthetic Physiological Responses of Different Gooseberry Varieties to Salt Stress [J]. Xinjiang Agricultural Sciences, 2021, 58(5): 829-837. |
| [8] | SUN Huiqin, XUAN Huiyong, MAI Zhanhai, YANG Ziyan, XIA Lining. Investigation on Drug Resistance and Detection of Related Resistance Genes of Escherichia coli from Pigs [J]. Xinjiang Agricultural Sciences, 2021, 58(1): 190-196. |
| [9] | XU Lan, LIU Yingyu, MAI Duo, ZHU Mingyue, JIANG Jindou, LU Wei, ZHU Menghan, ZHENG Xiaofeng, PENG Bin. Investigation of Staphylococcus aureus Pollution and Virulence Gene Detection in Xinjiang Cattle and Sheep Industry Chain [J]. Xinjiang Agricultural Sciences, 2021, 58(1): 182-189. |
| [10] | YANG Ziyan, YAO Xiaohui, MAmuer Akmuhan, WANG Shufeng, WANG Kai, XIA Lining. Investigation of Drug Resistance of Different Animal Fecal Staphylococci and Detection of Drug Resistance Genes [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 967-973. |
| [11] | LIU Yingyu, ZHENG Xiaofeng, LI Ruipeng, ZHENG Xiaoqin, ZHU Menghan, XU Lan, ZHU Mingyue, LU Wei, YAO Gang. Pollution Distribution and Drug Resistance of Salmonella from Cattle and Sheep in Designated Slaughterhouse and Trade Markets [J]. Xinjiang Agricultural Sciences, 2020, 57(2): 326-332. |
| [12] | ZHANG Ling, TONG Pan-pan, ZHANG Yi, Ma Xiao-yu, ZHANG Meng-meng, LIU Lu-yao, YAO Gang, CHEN Tong-jin-yue, SU Zhan-qiang. Analysis of Drug Resistance, Virulence Genes and Serotypes of STEC in a Large-scale Sheep Farm in Xinjiang [J]. Xinjiang Agricultural Sciences, 2020, 57(10): 1921-1930. |
| [13] | CHEN Yue-yue, WANG Kai, WANG Shu-feng, YAO Xiao-hui, XUAN Hui-yong, Mamuer Akemuhan, XIA Li-ning. Investigation into Drug Resistance of Escherichia coli from Different Animal Sources in Yili, Xinjiang [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1560-1568. |
| [14] | HAN Meng-li, ZHANG Xing-xing, WU Tong-zhong, GUO Qiang-qiang, HUANG Xin, ZHONG Fa-gang. Isolation and Identification of Pasteurella multocida Rabbits [J]. Xinjiang Agricultural Sciences, 2018, 55(7): 1333-1342. |
| [15] | Mamuer Akemuhan, Kuerbannaimu Kadier, YAO Xiao-hui, WANG Shu-feng, WANG Kai, XIA Li-ning. Comparison of Drug Resistance of Different Parts of Pigs Carrying Staphylococcus in Different Growth Stages in Yanqi County of Xinjiang [J]. Xinjiang Agricultural Sciences, 2018, 55(2): 379-382. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||