

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (7): 1812-1820.DOI: 10.6048/j.issn.1001-4330.2025.07.026
• Agricultural machinery equipment column • Previous Articles
DING Yewei1(
), LIU Yanbin1, YANG Huimin2, CHEN Yifei2(
), CHEN Tiaotiao1, LIANG Zhenwei1, LUO Wenjie2, WANG Xuenong2
Received:2024-12-07
Online:2025-07-20
Published:2025-09-05
Correspondence author:
CHEN Yifei
Supported by:
丁业威1(
), 刘延彬1, 杨会民2, 陈毅飞2(
), 陈挑挑1, 梁振伟1, 罗文杰2, 王学农2
通讯作者:
陈毅飞
作者简介:丁业威(2004-),男,江西南昌人,本科,研究方向为农业机械化及其自动化,(E-mail)2756314295@qq.com
基金资助:CLC Number:
DING Yewei, LIU Yanbin, YANG Huimin, CHEN Yifei, CHEN Tiaotiao, LIANG Zhenwei, LUO Wenjie, WANG Xuenong. Study on mechanical characteristics of stem of Apocynum apocynum L. during overwintering dormancy[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1812-1820.
丁业威, 刘延彬, 杨会民, 陈毅飞, 陈挑挑, 梁振伟, 罗文杰, 王学农. 越冬休眠期罗布麻茎秆力学特性分析[J]. 新疆农业科学, 2025, 62(7): 1812-1820.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.07.026
| 直径 Diameter (mm) | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 SD |
|---|---|---|---|---|
| 3 | 0.114 | 0.099 | 0.104 | 0.006 |
| 4 | 0.209 | 0.149 | 0.184 | 0.024 |
| 5 | 0.304 | 0.173 | 0.230 | 0.047 |
| 6 | 0.351 | 0.207 | 0.284 | 0.053 |
| 7 | 0.473 | 0.281 | 0.358 | 0.074 |
Tab.1 Proportion of stem cavity η
| 直径 Diameter (mm) | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 SD |
|---|---|---|---|---|
| 3 | 0.114 | 0.099 | 0.104 | 0.006 |
| 4 | 0.209 | 0.149 | 0.184 | 0.024 |
| 5 | 0.304 | 0.173 | 0.230 | 0.047 |
| 6 | 0.351 | 0.207 | 0.284 | 0.053 |
| 7 | 0.473 | 0.281 | 0.358 | 0.074 |
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 162.87 | 143.51 | 150.93 | 8.53 |
| 4 | 223.28 | 200.71 | 210.71 | 10.10 |
| 5 | 309.36 | 229.86 | 277.42 | 38.25 |
| 6 | 312.90 | 204.52 | 246.28 | 49.48 |
| 7 | 290.56 | 177.24 | 237.13 | 54.00 |
Tab.2 The radial compression load of skinless stem
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 162.87 | 143.51 | 150.93 | 8.53 |
| 4 | 223.28 | 200.71 | 210.71 | 10.10 |
| 5 | 309.36 | 229.86 | 277.42 | 38.25 |
| 6 | 312.90 | 204.52 | 246.28 | 49.48 |
| 7 | 290.56 | 177.24 | 237.13 | 54.00 |
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 189.10 | 155.22 | 165.49 | 15.86 |
| 4 | 281.41 | 207.71 | 243.97 | 30.32 |
| 5 | 433.64 | 324.05 | 387.62 | 51.61 |
| 6 | 442.14 | 318.75 | 363.62 | 57.59 |
| 7 | 389.72 | 264.97 | 328.52 | 63.21 |
Tab.3 The radial compression load of a skinned stem
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 189.10 | 155.22 | 165.49 | 15.86 |
| 4 | 281.41 | 207.71 | 243.97 | 30.32 |
| 5 | 433.64 | 324.05 | 387.62 | 51.61 |
| 6 | 442.14 | 318.75 | 363.62 | 57.59 |
| 7 | 389.72 | 264.97 | 328.52 | 63.21 |
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 22.41 | 18.35 | 20.76 | 1.82 |
| 4 | 38.10 | 31.55 | 34.59 | 2.90 |
| 5 | 53.69 | 42.94 | 49.64 | 4.92 |
| 6 | 72.38 | 52.61 | 61.53 | 8.19 |
| 7 | 100.37 | 74.59 | 85.30 | 10.83 |
Tab.4 The bending load of a skinned stem
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 22.41 | 18.35 | 20.76 | 1.82 |
| 4 | 38.10 | 31.55 | 34.59 | 2.90 |
| 5 | 53.69 | 42.94 | 49.64 | 4.92 |
| 6 | 72.38 | 52.61 | 61.53 | 8.19 |
| 7 | 100.37 | 74.59 | 85.30 | 10.83 |
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 73.84 | 54.93 | 66.05 | 8.52 |
| 4 | 131.39 | 105.54 | 116.49 | 11.83 |
| 5 | 195.12 | 136.62 | 161.33 | 29.11 |
| 6 | 213.52 | 165.25 | 190.71 | 24.41 |
| 7 | 269.82 | 196.95 | 220.00 | 34.15 |
Tab.5 The sheared load of a skinned stem
| 直径 Diameter (mm) | 最大值 Maximum (N) | 最小值 Minimum (N) | 平均值 Mean (N) | 标准差 SD |
|---|---|---|---|---|
| 3 | 73.84 | 54.93 | 66.05 | 8.52 |
| 4 | 131.39 | 105.54 | 116.49 | 11.83 |
| 5 | 195.12 | 136.62 | 161.33 | 29.11 |
| 6 | 213.52 | 165.25 | 190.71 | 24.41 |
| 7 | 269.82 | 196.95 | 220.00 | 34.15 |
| [1] | 张权, 邓成军, 赵洁, 等. 盐分和干旱胁迫对罗布麻和白麻发芽率和发芽势的影响[J]. 农业技术与装备, 2024,(10): 30-33. |
| ZHANG Quan, DENG Chengjun, ZHAO Jie, et al. Effects of salt and drought stress on germination rate and germination potential ofApocynum venetum andPoacynum pictum[J]. Agricultural Technology & Equipment, 2024,(10): 30-33. | |
| [2] |
刘晨阳, 张立萍, 郑威强, 等. 不同含水率对罗布麻力学特性及剥麻效果的影响[J]. 新疆农业科学, 2024, 61(11): 2797-2806.
DOI |
|
LIU Chenyang, ZHANG Liping, ZHENG Weiqiang, et al. Effects of different moisture contents on the mechanical properties and peeling effect ofApocynum venetum[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2797-2806.
DOI |
|
| [3] | 隗亚军, 贾永倩, 吴倩, 等. 野生和人工栽培罗布麻叶饲用和药用价值评价[J]. 饲料研究, 2024, 47(19): 124-128. |
| KUI/WEI Yajun, JIA Yongqian, WU Qian, et al. Evaluation of feeding and medicinal value of wild and cultivatedApocynum Apocynum leaves[J]. Feed Research, 2024, 47(19): 124-128. | |
| [4] | 吕健, 巩继贤, 徐绚绚, 等. 罗布麻黄酮提取及纯化方法研究进展[J]. 针织工业, 2024,(10): 81-86. |
| LV Jian, GONG Jixian, XU Xuanxuan, et al. Research progress in the extraction and purification methods ofApocynum venetumL. flavonoids[J]. Knitting Industries, 2024,(10): 81-86. | |
| [5] |
程芬, 张兴群, 王云龙, 等. 罗布麻微生物脱胶的菌种筛选与工艺优化[J]. 纺织学报, 2022, 43(12): 82-87.
DOI |
|
CHENG Fen, ZHANG Xingqun, WANG Yunlong, et al. Optimizing microorganism degumming process of Apocynum and bacterial screening[J]. Journal of Textile Research, 2022, 43(12): 82-87.
DOI |
|
| [6] |
巩继贤, 张秋亚, 张涛, 等. 韧皮结构对罗布麻生物脱胶的影响[J]. 纺织学报, 2017, 38(12): 83-87.
DOI |
| GONG Jixian, ZHANG Qiuya, ZHANG Tao, et al. Investigation on bio-recalcitrance in biodegumming of Apocynum[J]. Journal of Textile Research, 2017, 38(12): 83-87. | |
| [7] |
甄熙, 刘旭洋, 李文杰, 等. 罗布麻群落特征及其与气候因子的关系[J]. 植物研究, 2024, 44(3): 448-458.
DOI |
|
ZHEN Xi, LIU Xuyang, LI Wenjie, et al. Characteristics ofApocynum venetum community and its relationship to climatic factors[J]. Bulletin of Botanical Research, 2024, 44(3): 448-458.
DOI |
|
| [8] |
杨宏伟, 陈茹, 姚国民, 等. 新疆罗布麻产业发展现状分析[J]. 新疆农业科学, 2024, 61(S1): 163-167.
DOI |
|
YANG Hongwei, CHEN Ru, YAO Guomin, et al. Analysis on the development status ofApocynum venetum industry in Xinjiang[J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 163-167.
DOI |
|
| [9] | 李淑钦, 王莹, 张勇. 新疆罗布麻产业发展探索[J]. 新疆农业科技, 2023,(4): 39-41. |
| LI Shuqin, WANG Ying, ZHANG Yong. Exploration on the development ofApocynum venetum industry in Xinjiang[J]. Xinjiang Agricultural Science and Technology, 2023,(4): 39-41. | |
| [10] | 郭占斌, 汪春, 衣淑娟. 小型手扶水稻割捆机的研究[J]. 农业机械学报, 2005, 36(3): 64-66. |
| GUO Zhanbin, WANG Chun, YI Shujuan. Overall design for small-scale rice binder supported with hands[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(3): 64-66. | |
| [11] | 李肖婷. 4GK-900型丘陵山区谷子割捆机主要部件的试验与研究[J]. 当代农机, 2021,(9): 19-21. |
| LI Xiaoting. Test and research on main components of 4GK-900 millet baler in hilly and mountainous areas[J]. Contemporary Farm Machinery, 2021,(9): 19-21. | |
| [12] | 王兴章. 4GL-90型稻麦两用收割机[J]. 农村实用工程技术, 1993, 13(3): 24. |
| WANG Xingzhang. 4GL-90 rice-wheat harvester[J]. Agricultural Engineering Technology, 1993, 13(3): 24. | |
| [13] | 司书宁. 苎麻割捆机输送打捆装置的设计与优化[D]. 北京: 中国农业科学院, 2023. |
| SI Shuning. Design and Optimization of Conveying and bundling Device for Ramie baler[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. | |
| [14] | 尹强, 李耀明, 季彬彬, 等. 自走式芦苇收获机夹持输送装置的设计与试验[J]. 农机化研究, 2023, 45(4): 113-118. |
| YIN Qiang, LI Yaoming, JI Binbin, et al. Design and experiment of clamping and conveying device for self propelled reed harvester[J]. Journal of Agricultural Mechanization Research, 2023, 45(4): 113-118. | |
| [15] | 李耀明, 秦同娣, 陈进, 等. 玉米茎秆往复切割力学特性试验与分析[J]. 农业工程学报, 2011, 27(1): 160-164. |
| LI Yaoming, QIN Tongdi, CHEN Jin, et al. Experiments and analysis on mechanical property of corn stalk reciprocating cutting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 160-164. | |
| [16] | 吴敏, 潘虹宇, 赵东林, 等. 燕麦茎秆理化组分分析与动态力学特性研究[J]. 农业机械学报, 2018, 49(S1): 447-455. |
| WU Min, PAN Hongyu, ZHAO Donglin, et al. Analysis of physicochemical composition and dynamic mechanical properties ofAvena sativastalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 447-455. | |
| [17] | Tang Z, Zhang B, Wang B, et al. Breaking paths of rice stalks during threshing[J]. Biosystems Engineering, 2021, 204: 346-357. |
| [18] | 叶大鹏, 青家兴, 林志强, 等. “绿洲一号” 穴盘苗茎秆力学特性试验[J]. 中国农机化学报, 2023, 44(10): 1-7, 44. |
|
YE Dapeng, QING Jiaxing, LIN Zhiqiang, et al. Experiment on mechanical characteristics of stem of “Oasis No.1” hole seedling[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 1-7, 44.
DOI |
|
| [19] | 杨铮, 王芳, 张智勇, 等. 葵花茎秆力学特性试验研究[J]. 农机化研究, 2020, 42(4): 150-155. |
| YANG Zheng, WANG Fang, ZHANG Zhiyong, et al. Experimental study on mechanical properties of sunflower stalk[J]. Journal of Agricultural Mechanization Research, 2020, 42(4): 150-155. | |
| [20] | 姚珺, 李明, 汤楚宙, 等. 芒草茎秆弯曲特性试验[J]. 湖南农业大学学报(自然科学版), 2011, 37(6): 681-685. |
| YAO Jun, LI Ming, TANG Chuzhou, et al. Study on bending properties ofMiscanthus[J]. Journal of Hunan Agricultural University (Natural Sciences), 2011, 37(6): 681-685. | |
| [21] | 张克平, 贾娟娟, 吴劲锋. 谷物力学特性研究进展[J]. 食品工业科技, 2014, 35(2): 369-374. |
| ZHANG Keping, JIA Juanjuan, WU Jinfeng. Research progress in the mechanical properties of cereal[J]. Science and Technology of Food Industry, 2014, 35(2): 369-374. | |
| [22] |
Tang Z, Li Y, Li X Y, et al. Structural damage modes for rice stalks undergoing threshing[J]. Biosystems Engineering, 2019, 186: 323-336.
DOI |
| [23] | 赵湛, 李耀明, 徐立章, 等. 超级稻单茎秆切割力学性能试验[J]. 农业机械学报, 2010, 41(10): 72-75. |
| ZHAO Zhan, LI Yaoming, XU Lizhang, et al. Experiment on cutting mechanical property of single super rice stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 72-75. | |
| [24] | 郭思佳, 刘新柱, 刘向东, 等. 寒地玉米秸秆力学特性研究[J]. 农机化研究, 2024, 46(6): 170-174. |
| GUO Sijia, LIU Xinzhu, LIU Xiangdong, et al. Experimental study of mechanical properties of corn straw in cold region[J]. Journal of Agricultural Mechanization Research, 2024, 46(6): 170-174. | |
| [25] | 尹政, 袁建宁, 李显旺, 等. 红麻茎秆力学特性试验研究[J]. 农机化研究, 2021, 43(12): 166-173. |
| YIN Zheng, YUAN Jianning, LI Xianwang, et al. Experimental study on mechanical properties of kenaf stalk[J]. Journal of Agricultural Mechanization Research, 2021, 43(12): 166-173. | |
| [26] | 晏科满, 邹舒畅, 唐令波, 等. 苎麻茎秆冲击断裂韧性试验与分析[J]. 农业工程学报, 2014, 30(21): 308-315. |
| YAN Keman, ZOU Shuchang, TANG Lingbo, et al. Impact test and analysis of fracture toughness of ramie stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 308-315. |
| [1] | LIU Chenyang, ZHANG Liping, ZHENG Weiqiang, LUO Haowei. Effects of different moisture contents on the mechanical properties and peeling effect of Apocynum venetum [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2797-2806. |
| [2] | SANG Zhiwei, LIANG Yajun, GONG Zhaolong, ZHENG Juyun, WANG Junduo, LI Xueyuan, CHEN Quanjia. Analysis of mechanical harvesting characters of germplasm resources of different upland cotton [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1088-1098. |
| [3] | MA Qinghua, WANG Xinghong, CAI Jingyan, TANG Zhimin, YANG Defu, ZHENG Guangshun. Effects of Different Supply Levels of Nitrogen and Phosphorus on Growth and Nutrient Uptake in Rosa multiflora [J]. Xinjiang Agricultural Sciences, 2022, 59(3): 609-616. |
| [4] | ZHANG Xiaoyan, MEI Chuang, YAN Peng, Aisajan Mamat, MA Kai, HAN Liqun, WANG Jixun, DONG Lianxin. The Relationship between the Anatomical Structure of Malus sieversii Branches and the Resistance to Agrilusmali [J]. Xinjiang Agricultural Sciences, 2021, 58(3): 540-546. |
| [5] | CHEN Yifei, YANG Huimin, MA Yan, ZHANG Xinwei, YU Chen, WANG Xuenong. The Research of the Prediction Model of Stem Diameter Variation Based on Multilayer Perceptron for Greenhouse Tomato [J]. Xinjiang Agricultural Sciences, 2020, 57(3): 562-571. |
| [6] | ZHU Yu-yong;CHEN Li;WANG Jun-gang. Impact of Free Amino Acid Composition of Plant Phloem Sap and Pea Aphid Itself When It Takes Food [J]. , 2014, 51(7): 1284-1291. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||