Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (3): 766-774.DOI: 10.6048/j.issn.1001-4330.2025.03.027
• Animal Husbandry Veterinarian • Previous Articles Next Articles
ZHANG Yanwei1,2(), XU Xinming3, YU Lijuan2, TIAN Yuezhen2, XIE Mengwan1,2, TANG Liping1,2, ZHENG Peiyu1,2, SONG Nannan1,2, DI Jiang2(
)
Received:
2024-08-22
Online:
2025-03-20
Published:
2025-05-14
Correspondence author:
DI Jiang
Supported by:
张彦威1,2(), 徐新明3, 于丽娟2, 田月珍2, 谢梦婉1,2, 唐丽苹1,2, 郑培宇1,2, 宋楠楠1,2, 狄江2(
)
通讯作者:
狄江
作者简介:
张彦威(1997-),男,新疆石河子人,硕士研究生,研究方向为动物遗传育种,(E-mail) original10012@163.com
基金资助:
CLC Number:
ZHANG Yanwei, XU Xinming, YU Lijuan, TIAN Yuezhen, XIE Mengwan, TANG Liping, ZHENG Peiyu, SONG Nannan, DI Jiang. Genome-wide selection signaling reveals candidate genes associated with double-coated fleece in Hotan sheep[J]. Xinjiang Agricultural Sciences, 2025, 62(3): 766-774.
张彦威, 徐新明, 于丽娟, 田月珍, 谢梦婉, 唐丽苹, 郑培宇, 宋楠楠, 狄江. 全基因组选择信号筛选和田羊异质被毛相关候选基因[J]. 新疆农业科学, 2025, 62(3): 766-774.
品种 Breeds | 数量 Numbers | 原始数据 Raw Base(bp) | 有效数据 Clean Base(bp) | 有效数据率 Effective Rate(%) | Q20(%) | Q30(%) | GC含量 GC Content (%) |
---|---|---|---|---|---|---|---|
和田羊 Hetian sheep | 15 | 31 326 299 320 | 31 260 865 560 | 99.79 | 97.59 | 93.28 | 44.08 |
中国美利奴 Chinese Merino | 15 | 30 628 533 060 | 30 565 940 940 | 99.80 | 97.35 | 92.75 | 44.34 |
Tab.1 Average statistics of sequencing data of Hetian sheep and Chinese merino sheep
品种 Breeds | 数量 Numbers | 原始数据 Raw Base(bp) | 有效数据 Clean Base(bp) | 有效数据率 Effective Rate(%) | Q20(%) | Q30(%) | GC含量 GC Content (%) |
---|---|---|---|---|---|---|---|
和田羊 Hetian sheep | 15 | 31 326 299 320 | 31 260 865 560 | 99.79 | 97.59 | 93.28 | 44.08 |
中国美利奴 Chinese Merino | 15 | 30 628 533 060 | 30 565 940 940 | 99.80 | 97.35 | 92.75 | 44.34 |
品种 Breeds | 有效条数 Clean reads | 比对后条数 Mapped reads | 比对率 Mapping rate(%) | 平均测序深度 Average depth(X) | 1X覆盖度 Coverage 1X(%) | 4X覆盖度 Coverage 4X(%) |
---|---|---|---|---|---|---|
和田羊 Hetian sheep | 203 772 939 | 202 894 709 | 99.57 | 9.93 | 95.26 | 88.33 |
中国美利奴 Chinese Merino | 208 405 770 | 207 622 159 | 99.62 | 10.03 | 95.37 | 89.05 |
Tab.2 Statistical table of average sequencing depth and coverage of Hetian sheep and Chinese merino sheep
品种 Breeds | 有效条数 Clean reads | 比对后条数 Mapped reads | 比对率 Mapping rate(%) | 平均测序深度 Average depth(X) | 1X覆盖度 Coverage 1X(%) | 4X覆盖度 Coverage 4X(%) |
---|---|---|---|---|---|---|
和田羊 Hetian sheep | 203 772 939 | 202 894 709 | 99.57 | 9.93 | 95.26 | 88.33 |
中国美利奴 Chinese Merino | 208 405 770 | 207 622 159 | 99.62 | 10.03 | 95.37 | 89.05 |
项目Items | 类别Categories | SNPs | |
---|---|---|---|
基因上游1 kb区域 | 73,578 | ||
外显子区域Exonic | 使基因获得终止密码的变异 | 269 | |
使基因失去终止密码的变异 | 53 | ||
同义变异 | 64 719 | ||
非同义变异 | 33 948 | ||
内含子区Intronic | 4 456 025 | ||
剪接位点Splicing site | 191 | ||
基因下游1 kb区域1 kb region downstream of gene | 75 763 | ||
基因上游1 kb区域,同时也在另一基因下游1 kb区域upstream/downstream | 1 982 | ||
基因间区Intergenic | 7 212 892 | ||
转换Ts | 8 722 670 | ||
颠换Tv | 3 313 523 | ||
Ts/Tv | 2.632 | ||
位点总数Total | 12 036 193 |
Tab.3 SNPs classification results
项目Items | 类别Categories | SNPs | |
---|---|---|---|
基因上游1 kb区域 | 73,578 | ||
外显子区域Exonic | 使基因获得终止密码的变异 | 269 | |
使基因失去终止密码的变异 | 53 | ||
同义变异 | 64 719 | ||
非同义变异 | 33 948 | ||
内含子区Intronic | 4 456 025 | ||
剪接位点Splicing site | 191 | ||
基因下游1 kb区域1 kb region downstream of gene | 75 763 | ||
基因上游1 kb区域,同时也在另一基因下游1 kb区域upstream/downstream | 1 982 | ||
基因间区Intergenic | 7 212 892 | ||
转换Ts | 8 722 670 | ||
颠换Tv | 3 313 523 | ||
Ts/Tv | 2.632 | ||
位点总数Total | 12 036 193 |
染色体 CHROM | 开始位置/bp BIN_START | 结束位置/bp BIN_END | Fst | Log2θπRatio CM-HT | 基因 GENE |
---|---|---|---|---|---|
Chr.2 | 218 802 583 | 218 802 754 | 0.290 624 | 1.687 196 657 | BMPR2 |
Chr.10 | 20 495 317 | 20 495 320 | 0.448 557 | 2.558 174 077 | LPAR6 |
Chr.11 | 22 587 426 | 22 587 429 | 0.615 329 | 2.647 344 435 | RARA |
Chr.11 | 22 635 131 | 22 635 134 | 0.606 593 | 2.564 477 692 | CDC6 |
Chr.18 | 21 203 099 | 21 203 102 | 0.279 822 | 1.710 228 359 | BNC1 |
Tab.4 Candidate genes associated with wool traits in Hetian sheep
染色体 CHROM | 开始位置/bp BIN_START | 结束位置/bp BIN_END | Fst | Log2θπRatio CM-HT | 基因 GENE |
---|---|---|---|---|---|
Chr.2 | 218 802 583 | 218 802 754 | 0.290 624 | 1.687 196 657 | BMPR2 |
Chr.10 | 20 495 317 | 20 495 320 | 0.448 557 | 2.558 174 077 | LPAR6 |
Chr.11 | 22 587 426 | 22 587 429 | 0.615 329 | 2.647 344 435 | RARA |
Chr.11 | 22 635 131 | 22 635 134 | 0.606 593 | 2.564 477 692 | CDC6 |
Chr.18 | 21 203 099 | 21 203 102 | 0.279 822 | 1.710 228 359 | BNC1 |
主要富集通路的名称 Names of major enrichment pathways | 主要通路所富集的基因 Genes enriched by major pathways |
---|---|
毛囊发育 hair follicle development | EDAR、PIAS4、LAMA5、VANGL2、LDB1、CD109、LGR5、LGR4 |
PI3K-Akt信号通路 PI3K-Akt signaling pathway | LAMA5、CSF3、PRKAA1、FLT1、LAMA2、LAMA3、PRKCA、GHR、RELN、LPAR5、LPAR6、CDK4、CCNE1、CREB3L2、KIT、EIF4E、JAK1 |
生长激素的合成、 分泌和作用 Growth hormone synthesis、 secretion and action | GHR、MAP2K4、PLCB4、SOCS1、SST、CREB3L2、PLCG2、PRKCA |
Rap1信号通路 Rap1 signaling pathway | PLCB4、FLT1、LPAR5、CNR1、CALML6、KIT、PRKCA、PRKD1、TLN2、ITGAL |
磷脂酶D信号通路 Phospholipase D signaling pathway | PLCB4、LPAR5、LPAR6、DGKB、DGKA、KIT、PLCG2、PRKCA、CYTH1 |
Tab.5 Main enrichment pathways related to wool traits
主要富集通路的名称 Names of major enrichment pathways | 主要通路所富集的基因 Genes enriched by major pathways |
---|---|
毛囊发育 hair follicle development | EDAR、PIAS4、LAMA5、VANGL2、LDB1、CD109、LGR5、LGR4 |
PI3K-Akt信号通路 PI3K-Akt signaling pathway | LAMA5、CSF3、PRKAA1、FLT1、LAMA2、LAMA3、PRKCA、GHR、RELN、LPAR5、LPAR6、CDK4、CCNE1、CREB3L2、KIT、EIF4E、JAK1 |
生长激素的合成、 分泌和作用 Growth hormone synthesis、 secretion and action | GHR、MAP2K4、PLCB4、SOCS1、SST、CREB3L2、PLCG2、PRKCA |
Rap1信号通路 Rap1 signaling pathway | PLCB4、FLT1、LPAR5、CNR1、CALML6、KIT、PRKCA、PRKD1、TLN2、ITGAL |
磷脂酶D信号通路 Phospholipase D signaling pathway | PLCB4、LPAR5、LPAR6、DGKB、DGKA、KIT、PLCG2、PRKCA、CYTH1 |
[1] |
Wang H Y, Li S W, Wu T H, et al. The effect of androgen on wool follicles and keratin production in Hetian sheep[J]. Brazilian Journal of Biology, 2021, 81(3): 526-536.
DOI PMID |
[2] | 何元园. 和田地毯用毛结构性能及其评价体系研究[D]. 乌鲁木齐: 新疆大学, 2016. |
HE Yuanyuan. Study on structural properties and evaluation system of wool for Hotan carpet[D]. Urumqi: Xinjiang University, 2016. | |
[3] | 郭欣芸. 羊毛纤维品质对地毯性能的影响[D]. 乌鲁木齐: 新疆大学, 2017. |
GUO Xinyun. Influence of wool fiber quality on carpet performance[D]. Urumqi: Xinjiang University, 2017. | |
[4] | Tian D H, Han B Y, Li X, et al. Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing[J]. Animal Bioscience, 2023, 36(7): 991-1002. |
[5] |
Li X K, Su R, Wan W T, et al. Identification of selection signals by large-scale whole-genome resequencing of Cashmere goats[J]. Scientific Reports, 2017, 7(1): 15142.
DOI PMID |
[6] | Lv F H, Cao Y H, Liu G J, et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci[J]. Molecular Biology and Evolution, 2022, 39(2): msab353. |
[7] | 国家畜禽遗传资源委员会组. 中国畜禽遗传资源志-羊志[M]. 北京: 中国农业出版社, 2011. |
National Livestock andPoultry Resources Commission. Animal genetic resources in China[M]. Beijing: China Agriculture Press, 2011. | |
[8] |
Manangwa O, De Meeûs T, Grébaut P, et al. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania[J]. Molecular Ecology Resources, 2019, 19(3): 757-772.
DOI PMID |
[9] | He X M, Qin Z L, Teng R, et al. Characterization of growth secondary hair in Min pig activated by follicle stem cell stimulated by Wnt and BMP signaling pathway[J]. Animals, 2023, 13(7): 1239. |
[10] | Li A G, Koster M I, Wang X J. Roles of TGFβ signaling in epidermal/appendage development[J]. Cytokine & Growth Factor Reviews, 2003, 14(2): 99-111. |
[11] | Liu Z H, Liu Z C, Mu Q, et al. Identification of key pathways and genes that regulate Cashmere development in Cashmere goats mediated by exogenous melatonin[J]. Frontiers in Veterinary Science, 2022, 9: 993773. |
[12] |
Akiyama M. Isolated autosomal recessive woolly hair/hypotrichosis: genetics, pathogenesis and therapies[J]. Journal of the European Academy of Dermatology and Venereology, 2021, 35(9): 1788-1796.
DOI PMID |
[13] |
Zhao B R, Luo H P, He J M, et al. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep[J]. BMC Biology, 2021, 19(1): 197.
DOI PMID |
[14] | Zhao B R, Luo H P, Huang X X, et al. Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep[J]. Genetics, Selection, Evolution, 2021, 53(1): 56. |
[15] | Gong G, Fan Y X, Yan X C, et al. Identification of genes related to hair follicle cycle development in Inner Mongolia Cashmere goat by WGCNA[J]. Frontiers in Veterinary Science, 2022, 9: 894380. |
[16] | Wang X X, Liu Y H, He J, et al. Regulation of signaling pathways in hair follicle stem cells[J]. Burns & Trauma, 2022, 10: tkac022. |
[17] | Bae S, Yoon Y G, Kim J Y, et al. Melatonin increases growth properties in human dermal papilla spheroids by activating AKT/GSK3β/β-Catenin signaling pathway[J]. PeerJ, 2022, 10: e13461. |
[18] |
Wu T H, Zhang Y M, Krishnan S, et al. Bioactive small molecule enhances skin burn wound healing and hair follicle regeneration by activating PI3K/AKT signaling pathway: a preclinical evaluation in animal model[J]. Journal of Biomedical Nanotechnology, 2022, 18(2): 463-473.
DOI PMID |
[19] | Bao Q, Ma X M, Jia C J, et al. Resequencing and signatures of selective scans point to candidate genetic variants for hair length traits in long-haired and normal-haired Tianzhu white yak[J]. Frontiers in Genetics, 2022, 13: 798076. |
[20] | Jaapar M S, Chung E L T, Nayan N, et al. Digestibility, growth performance, body measurement and hormone of sheep fed with different levels of Brachiaria decumbens diets[J]. Tropical Life Sciences Research, 2023, 34(1): 67-83. |
[21] |
Liu K X, Zhang L Y, Qi Q, et al. Growth hormone treatment improves the development of follicles and oocytes in prepubertal lambs[J]. Journal of Ovarian Research, 2023, 16(1): 132.
DOI PMID |
[22] |
Brooks A J, Waters M J. The growth hormone receptor: mechanism of activation and clinical implications[J]. Nature Reviews Endocrinology, 2010, 6(9): 515-525.
DOI PMID |
[23] | Waters M. The growth hormone receptor[J]. Growth Hormone & IGF Research: Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 2006 |
[24] |
Wynn P C, Wallace A L, Kirby A C, et al. Effects of growth hormone administration on wool growth in merino sheep[J]. Australian Journal of Biological Sciences, 1988, 41(2): 177-187.
PMID |
[25] | Liang B M, Bai T Y, Zhao Y, et al. Two mutations at KRT74 and EDAR synergistically drive the fine-wool production in Chinese sheep[J]. Journal of Advanced Research, 2024, 57: 1-13. |
[26] | 陈磊, 贺三刚, 刘书东, 等. 绵羊EDAR基因的克隆、序列分析及其在毛囊发育过程中的表达[J]. 西北农业学报, 2017, 26(10): 1415-1421. |
CHEN Lei, HE Sangang, LIU Shudong, et al. Cloning, sequencing and quantitative expression of EDAR gene in sheep during hair follicle development period[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(10): 1415-1421. | |
[27] |
Kinzel B, Pikiolek M, Orsini V, et al. Functional roles of Lgr4 and Lgr5 in embryonic gut, kidney and skin development in mice[J]. Developmental Biology, 2014, 390(2): 181-190.
DOI PMID |
[28] |
Vorstenbosch J, Nguyen C M, Zhou S F, et al. Overexpression of CD109 in the epidermis differentially regulates ALK1 versus ALK5 signaling and modulates extracellular matrix synthesis in the skin[J]. Journal of Investigative Dermatology, 2017, 137(3): 641-649.
DOI PMID |
[29] |
Wegner J, Loser K, Apsite G, et al. Laminin α5 in the keratinocyte basement membrane is required for epidermal-dermal intercommunication[J]. Matrix Biology, 2016, 56: 24-41.
DOI PMID |
[30] |
Devenport D, Fuchs E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles[J]. Nature Cell Biology, 2008, 10(11): 1257-1268.
DOI PMID |
[31] | Jin M L, Lu J, Fei X J, et al. Selection signatures analysis reveals genes associated with high-altitude adaptation in Tibetan goats from Nagqu, Tibet[J]. Animals, 2020, 10(9): 1599. |
[1] | TANG Li, TIAN Kechuan, ZHANG Xinning, LIU Li, Abulikemu Adili, YANG Zhi, YANG Cunming, ZHANG Xiaoxue, HUANG Xixia, TIAN Yuezhen. Clustering and principal component analysis of Hotan sheep body weight indexes in different growth stages [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2853-2860. |
[2] | YANG Yong, FAN Rong, ZHANG Xuejun, LI Meihua, LING Yueming, ZHANG Hong, YANG Wenli, JIANG Xue, ZHANG Yongbing, YI Hongping. QTL Mapping and Candidate Gene Analysis of Sucrose Content in the Center Flesh of Muskmelon [J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2446-2455. |
[3] | YANG Hui-guo;YU Jian-guo;HAO Geng;CHEN Tong. Study on Mitochondrial DNA D-loop Sequence of Hotan Sheep [J]. , 2013, 50(5): 959-962. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 1
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||