Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (2): 436-445.DOI: 10.6048/j.issn.1001-4330.2025.02.021
• Facility Agriculture • Previous Articles Next Articles
ZHANG Caihong1,2(), JIANG Luyan2, WANG Guoqiang1,2(
), LIU Tao1,2, DE Xianming2
Received:
2024-08-05
Online:
2025-02-20
Published:
2025-04-17
Correspondence author:
WANG Guoqiang
Supported by:
张彩虹1,2(), 姜鲁艳2, 王国强1,2(
), 刘涛1,2, 德贤明2
通讯作者:
王国强
作者简介:
张彩虹(1981-),女,甘肃张掖人,副研究员,硕士,研究方向为设施农业工程与装备,(E-mail)93052504@qq.com
基金资助:
CLC Number:
ZHANG Caihong, JIANG Luyan, WANG Guoqiang, LIU Tao, DE Xianming. Study on basic physical and chemical properties of low energy consumption deep winter production solar greenhouse[J]. Xinjiang Agricultural Sciences, 2025, 62(2): 436-445.
张彩虹, 姜鲁艳, 王国强, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室对土壤基础理化性质的影响[J]. 新疆农业科学, 2025, 62(2): 436-445.
温室类型 Greenhouse type | 土壤理化指标Soil physic chemical index | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
土壤总氮 TN (%) | 土壤总碳 TC (%) | 土壤孔隙 含水量 WFPS (%) | 表层无机 氮含量 Inorganic nitrogen (mg/kg) | 中层无机 氮含量 Inorganic nitrogen (mg/kg) | 深层无机 氮含量 Inorganic nitrogen (mg/kg) | 土壤矿化 Soil mineralization rate (mg/(N kg·d)) | |||||||||
新型日光温室 New greenhouse | 0.16±0.04 | 1.665±0.05 | 60±5 | 152.25 | 143.89 | 130.11 | 3.41 | ||||||||
传统温室 Traditional greenhouse | 0.16±0.04 | 1.655±0.05 | 60±5 | 154.62 | 141.68 | 129.02 | 3.38 |
Tab.1 Comparison of the two environmental factors of the solar greenhouse
温室类型 Greenhouse type | 土壤理化指标Soil physic chemical index | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
土壤总氮 TN (%) | 土壤总碳 TC (%) | 土壤孔隙 含水量 WFPS (%) | 表层无机 氮含量 Inorganic nitrogen (mg/kg) | 中层无机 氮含量 Inorganic nitrogen (mg/kg) | 深层无机 氮含量 Inorganic nitrogen (mg/kg) | 土壤矿化 Soil mineralization rate (mg/(N kg·d)) | |||||||||
新型日光温室 New greenhouse | 0.16±0.04 | 1.665±0.05 | 60±5 | 152.25 | 143.89 | 130.11 | 3.41 | ||||||||
传统温室 Traditional greenhouse | 0.16±0.04 | 1.655±0.05 | 60±5 | 154.62 | 141.68 | 129.02 | 3.38 |
Fig.3 Dynamic diagram of soil temperature at different depths at night in winter in two kinds of solar greenhouses Notes:In the figure, A is the lowest temperature in winter, and B is the highest temperature in winter
土壤环境因子 Soil environmental factor | 土壤温度 Soil Temperature (%) | 土壤含水量 soil moisture (%) | 土壤总氮 TN (%) | 土壤总碳 TC (%) | 无机氮含量 Inorganic nitrogen (mg/kg) |
---|---|---|---|---|---|
土壤温度TN(%) | 1 | — | — | — | — |
土壤含水量TC(%) | -0.67* | 1 | — | — | — |
土壤总氮TN(%) | 0.31 | 0.68* | 1 | — | — |
土壤总碳TC(%) | 0.36 | 0.71* | 0.41 | 1 | — |
无机氮含量Inorganic nitrogen(mg/kg) | 0.64* | 0.88* | 0.91* | 0.35 | 1 |
Tab.2 Correlation of physicochemical indexes of soil in the new solar greenhouse
土壤环境因子 Soil environmental factor | 土壤温度 Soil Temperature (%) | 土壤含水量 soil moisture (%) | 土壤总氮 TN (%) | 土壤总碳 TC (%) | 无机氮含量 Inorganic nitrogen (mg/kg) |
---|---|---|---|---|---|
土壤温度TN(%) | 1 | — | — | — | — |
土壤含水量TC(%) | -0.67* | 1 | — | — | — |
土壤总氮TN(%) | 0.31 | 0.68* | 1 | — | — |
土壤总碳TC(%) | 0.36 | 0.71* | 0.41 | 1 | — |
无机氮含量Inorganic nitrogen(mg/kg) | 0.64* | 0.88* | 0.91* | 0.35 | 1 |
[1] | McNulty J. Solar Greenhouses Generate Electricity and Grow Crops at Same Time, UC Santa Cruz Study Reveals[N]. UC Santa Cruz Magazine, 2017-12-3 |
[2] | 万敏, 杨魏, 刘竹青, 等. 不同通风方式日光温室微环境模拟与作物蒸腾研究[J]. 农业机械学报, 2024, 55(1): 328-338, 349. |
WAN Min, YANG Wei, LIU Zhuqing, et al. Microenvironment simulation and crop transpiration analysis of solar greenhouse with different ventilation modes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(1): 328-338, 349. | |
[3] | 祝宁, 齐长红, 何秉青, 等. 日光温室秋冬茬番茄环境调控技术[J]. 蔬菜, 2021,(S1):73-76. |
ZHU N, QI C, HE B, et al. Environmental control technology of autumn and winter stubble of tomato in solar greenhouse[J]. Vegetables, 2021,(S1): 73-76. | |
[4] | 蔡连卫, 齐长红, 刘民, 等. 日光温室越冬茬高品质番茄栽培环境调控技术[J]. 蔬菜, 2023,(9): 49-51. |
CAI Lianwei, QI Changhong, LIU Min, et al. Environmental control technologies for high-quality tomato cultivation in greenhouse of overwintering stubble[J]. Vegetables, 2023,(9): 49-51. | |
[5] |
赵明雨, 姚名泽, 李波, 等. 日光温室作物腾发量估算模型的研究综述[J]. 节水灌溉, 2023,(4): 73-81.
DOI |
ZHAO Mingyu, YAO Mingze, LI Bo, et al. Review on the estimation model of crop evapotranspiration in solar greenhouse[J]. Water Saving Irrigation, 2023,(4): 73-81.
DOI |
|
[6] | 田恬, 田永强, 高丽红. 设施菜田土壤质量研究进展[J]. 中国蔬菜, 2021,(10): 35-44. |
TIAN Tian, TIAN Yongqiang, GAO Lihong. Research progress on soil quality of protected vegetable fields[J]. China Vegetables, 2021,(10): 35-44. | |
[7] | 刘雪, 邬存珊, 秦宇婷. 北方日光温室番茄白粉病发病环境因子探究[J]. 农业工程技术, 2022, 42(4): 72-74. |
LIU Xue, WU Cunshan, QIN Yuting. Exploration on environmental factors of tomato powdery mildew in northern solar greenhouse[J]. Agricultural Engineering Technology, 2022, 42(4): 72-74. | |
[8] | 陈正法, 张茜茜, 梁称福. 我国日光温室研究进展及发展趋势[J]. 中国农学通报, 1999, 15(5): 37-40, 59. |
CHEN Zhengfa, ZHANG Qianqian, LIANG Chengfu. Research progress and development trend of solar greenhouse in China[J]. Chinese Agricultural Science Bulletin, 1999, 15(5): 37-40, 59. | |
[9] | 苏安峻. 岳普湖县日光温室性能评价及其蔬菜茬口安排[D]. 乌鲁木齐: 新疆农业大学, 2016. |
SU Anjun. Performance evaluation of solar greenhouse and yupuhu crops in China[D]. Urumqi: Xinjiang Agricultural University, 2016. | |
[10] | 何芬, 司长青, 侯永, 等. 两种不同墙体结构的日光温室光热环境测试及性能分析[J]. 北方园艺, 2022,(22): 44-50. |
HE Fen, SI Changqing, HOU Yong, et al. Test and performance analysis of thermal and light environment in solar greenhouse with two different wall structures[J]. Northern Horticulture, 2022,(22): 44-50. | |
[11] | 程丽, 张国辉, 杨帅, 等. 高寒地区冬季不同类型日光温室内环境的比较[J]. 北方园艺, 2023,(12): 44-50. |
CHENG Li, ZHANG Guohui, YANG Shuai, et al. Comparative analysis of internal environment of different types of solar greenhouses in winter in alpine regions[J]. Northern Horticulture, 2023,(12): 44-50. | |
[12] | 王春玲, 李爽, 安巧霞, 等. 南疆阿拉尔地区不同类型日光温室热环境性能评价及结构优化[J]. 塔里木大学学报, 2023, 35(3): 84-94. |
WANG Chunling, LI Shuang, AN Qiaoxia, et al. Thermal environment performance evaluation and structure improvement of different types of solar greenhouse in Alar area of South Xinjiang[J]. Journal of Tarim University, 2023, 35(3): 84-94. | |
[13] | 刘长梅, 赵欣茹, 汪晓宇, 等. 不同类型日光温室环境性能及越冬茬黄瓜栽培效果比较研究[J]. 江苏农业科学, 2023, 51(3):147-155. |
LComparative study on environmental performance of different types of solar greenhouse and cultivation effect of overwintering stubble cucumber[J]. Jiangsu Agricultural Science, 2023, 51(3): 147-155. | |
[14] | 杨定伟, 荆海薇, 景炜婷, 等. 不同墙体材料的装配式日光温室的热性能对比分析[J]. 中国农业大学学报, 2023, 28(10): 194-205. |
YANG Dingwei, JING Haiwei, JING Weiting, et al. Comparative analysis of thermal performance of fabricated solar greenhouses with different wall materials[J]. Journal of China Agricultural University, 2023, 28(10): 194-205. | |
[15] | 马承伟, 姜宜琛, 程杰宇, 等. 日光温室钢管屋架管网水循环集放热系统的性能分析与试验[J]. 农业工程学报, 2016, 32(21): 209-216. |
MA Chengwei, JIANG Yichen, CHENG Jieyu, et al. Analysis and experiment of performance on water circulation system of steel pipe network formed by roof truss for heat collection and release in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 209-216. | |
[16] | 马彩雯. 新疆戈壁日光温室太阳能主-被动式蓄热墙体及保温被热性能评价方法研究[Z]. 新疆农业科学院农业机械化研究所, 2018-07-03. |
Ma C W. Study on evaluation method of solar main-passive heat storage wall and thermal insulation in Gobi, Xinjiang[Z]. Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, 2018-07-03. | |
[17] | 王永维, 苗香雯, 崔绍荣, 等. 温室地下蓄热系统换热特性研究[J]. 农业工程学报, 2003, 19(6): 248-251. |
WANG Yongwei, MIAO Xiangwen, CUI Shaorong, et al. Heat exchanging characteristics of underground heat storage system in greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 248-251. | |
[18] | 马承伟, 卜云龙, 籍秀红, 等. 日光温室墙体夜间放热量计算与保温蓄热性评价方法的研究[J]. 上海交通大学学报(农业科学版), 2008, 26(5): 411-415. |
MA Chengwei, BU Yunlong, JI Xiuhong, et al. Method for calculation of heat release at night and evaluation for performance of heat preservation of wall in solar greenhouse[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2008, 26(5): 411-415. | |
[19] | Yang S H, Rhee J Y. Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating[J]. Applied Energy, 2013, 105: 244-251. |
[20] | Attar I, Naili N, Khalifa N, et al. Experimental study of an air conditioning system to control a greenhouse microclimate[J]. Energy Conversion and Management, 2014, 79: 543-553. |
[21] | 刘旺. 空气能热泵系统在日光温室的应用效果[J]. 中国蔬菜, 2021,(8): 87-91. |
LIU Wang. Application effect of air energy heat pump system in solar greenhouse[J]. China Vegetables, 2021,(8): 87-91. | |
[22] | 程智慧, 陈学进, 赖琳玲, 等. 设施番茄果实生长与环境因子的关系[J]. 生态学报, 2011, 31(3): 742-748. |
CHENG Zhihui, CHEN Xuejin, LAI Linling, et al. Relationship between tomato fruit growth and environmental factors under protected facility cultivation[J]. Acta Ecologica Sinica, 2011, 31(3): 742-748. | |
[23] | 毛丽萍, 任君, 张剑国, 等. 日光温室秋冬茬番茄果实发育期的适宜夜温[J]. 应用生态学报, 2014, 25(5): 1408-1414. |
MAO Liping, REN Jun, ZHANG Jianguo, et al. Optimal nighttime temperature for tomato plant in greenhouse in autumn and winter[J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1408-1414.
PMID |
|
[24] | Bernier H, Raghavan G S V, Paris J. Evaluation of a soil heat exchanger-storage system for a greenhouse. Part I: System performance[J]. Canadian Agricultural Engineering, 1991, 33(1): 93-98. |
[25] | Santamouris M, Mihalakakou G, Balaras C A, et al. Energy conservation in greenhouses with buried pipes[J]. Energy, 1996, 21(5): 353-360. |
[26] | Kurpaska S, Slipek Z. Optimization of greenhouse substrate heating[J]. Journal of Agricultural Engineering Research, 2000, 76(2): 129-139. |
[27] | 高立婷, 戴思慧, 徐新明, 等. 温室温湿度耦合控制方法研究[J]. 农机化研究, 2021, 43(12): 24-30. |
GAO Liting, DAI Sihui, XU Xinming, et al. Research on temperature and humidity coupling control method of greenhouse[J]. Journal of Agricultural Mechanization Research, 2021, 43(12): 24-30. | |
[28] | 孙培博, 王志鹏, 孙振华. 温室蔬菜栽培温度的科学调控[J]. 中国果菜, 2008, 28(3): 45. |
SUN Peibo, WANG Zhipeng, SUN Zhenhua. Scientific regulation of vegetable cultivation temperature in the greenhouse[J]. China Fruit & Vegetable, 2008, 28(3): 45. | |
[29] | 刘叶瑞, 刘孝敏, 柴云娥, 等. 寒冷气候区双膜日光温室室内环境因子试验研究[J]. 甘肃科学学报, 2023, 35(3): 54-60. |
LIU Yerui, LIU Xiaomin, CHAI Yune, et al. Experimental study on indoor environmental factors of double-film solar greenhouse in cold region[J]. Journal of Gansu Sciences, 2023, 35(3): 54-60. | |
[30] |
李乐乐, 钞锦龙, 杨朔, 等. 不同光照强度对温室大棚温湿环境的影响[J]. 浙江农业科学, 2022, 63(3): 517-523.
DOI |
LI Lele, Chao Jinlong, Yang Shuo, et al. Effect of light intensity on temperature and humidity of greenhouse[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(3): 517-523. | |
[31] |
李飞, 王俊鹏, 梁斌, 等. 施用不同有机物料对设施菜地土壤氮素淋溶损失的影响[J]. 华北农学报, 2020, 35(S1): 256-261.
DOI |
LI Fei, WANG Junpeng, LIANG Bin, et al. Effects of different organic materials on nitrogen leaching loss in greenhouse[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 256-261. | |
[32] | 张学科. 日光温室不同水肥措施下水氮迁移特性[J]. 西北农业学报, 2016, 25(12): 1884-1889. |
ZHANG Xueke. Migration characteristic of water and nitrogen by different water and fertilizer in sunlight greenhouse[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(12): 1884-1889. | |
[33] | 滕艳敏, 韩卉, 郝梓依, 等. 不同蔬菜种植模式对土壤淋溶水总氮、总磷和COD的影响[J]. 中国生态农业学报, 2017, 25(5): 759-768. |
TENG Yanmin, HAN Hui, HAO Ziyi, et al. Effect of vegetable cropping system on total nitrogen, phosphorus and COD in farmland leachate[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 759-768. | |
[34] | 梁斌, 唐玉海, 王群艳, 等. 滴灌和施用秸秆降低日光温室番茄地氮素淋溶损失[J]. 农业工程学报, 2019, 35(7): 78-85. |
LIANG Bin, TANG Yuhai, WANG Qunyan, et al. Drip irrigation and application of straw reducing nitrogen leaching loss in tomato greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 78-85. | |
[35] | 王学军. 日光温室土壤次生盐渍化分析[J]. 北方园艺, 1998,(S1): 12-13. |
WANG Xuejun. Analysis of secondary salinization of soil in a solar greenhouse[J]. Northern Horticulture, 1998,(S1): 12-13. | |
[36] | 吴金水, 郭胜利, 党廷辉. 半干旱区农田土壤无机氮积累与迁移机理[J]. 生态学报, 2003, 23(10): 2040-2042, 2041-2049. |
WU Jinshui, GUO Shengli, DANG Tinghui. Mechanisms in the accumulation and movement of mineral N in soil profiles of farming land in a semi-arid region[J]. Acta Ecologica Sinica, 2003, 23(10): 2040-2042, 2041-2049. | |
[37] | Hu J, Gettel G, Fan Z B, et al. Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production[J]. Agriculture, Ecosystems & Environment, 2021, 313: 107379. |
[38] |
Lv H F, Lin S, Wang Y F, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental Pollution, 2019, 245: 694-701.
DOI PMID |
[39] | Wang D Y, Guo L P, Zheng L, et al. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in Northern China[J]. Agricultural Water Management, 2019, 213: 913-921. |
[40] | 孟繁超, 吕昊峰, 董静, 等. 智能灌溉施肥对设施番茄水氮利用效率的影响[J]. 灌溉排水学报, 2022, 41(S1): 7-12. |
MENG Fanchao, LYU Haofeng, DONG Jing, et al. Effects of intelligent irrigation fertilization on water and nitrogen use efficiency of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2022, 41(S1): 7-12. | |
[41] | 李明悦, 朱静华, 廉晓娟, 等. 滴灌施肥条件下设施蔬菜施肥效应研究[J]. 天津农业科学, 2013, 19(8): 25-27. |
LI Mingyue, ZHU Jinghua, LIAN Xiaojuan, et al. Study on fertilization effect of facility vegetables under drip fertigation[J]. Tianjin Agricultural Sciences, 2013, 19(8): 25-27. | |
[42] | 骆晓声, 吕宏伟, 寇长林. 有机肥替代氮肥及节水对设施番茄和辣椒菜田氮淋溶的影响[J]. 中国土壤与肥料, 2021,(2): 96-101. |
LUO Xiaosheng, LYU Hongwei, KOU Changlin. Effects of mineral nitrogen substitution by organic fertilizer nitrogen and water saving on nitrogen leaching in tomato and pepper greenhouse vegetable fields[J]. Soil and Fertilizer Sciences in China, 2021,(2): 96-101. | |
[43] |
谷晓博, 李援农, 黄鹏, 等. 水氮互作对冬油菜氮素吸收和土壤硝态氮分布的影响[J]. 中国农业科学, 2018, 51(7): 1283-1293.
DOI |
GU Xiaobo, LI Yuannong, HUANG Peng, et al. Effects of irrigation and nitrogen coupling on nitrogen absorption and soil nitrate content of winter oilseed rape[J]. Scientia Agricultura Sinica, 2018, 51(7): 1283-1293.
DOI |
|
[44] | 肖自添. 温室基质培番茄水氮耦合效应研究[D]. 北京: 中国农业科学院, 2008. |
XIAO Zitian. Study on the coupling effect of water and nitrogen in tomato[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. | |
[45] | 聂斌, 李文刚, 江丽华, 等. 不同灌溉方式对设施番茄土壤剖面硝态氮分布及灌溉水分效率的影响[J]. 水土保持研究, 2012, 19(3): 102-107. |
NIE Bin, LI Wengang, JIANG Lihua, et al. Effects of different irrigation methods on nitrate nitrogen distribution in soil profile and irrigation water use efficiency of tomato in greenhouse[J]. Research of Soil and Water Conservation, 2012, 19(3): 102-107. | |
[46] | 刘甜, 蔡喜运. 我国设施农业土壤生态存在的问题及其解决措施[J]. 农业灾害研究, 2023, 13(10): 302-304. |
LIU Tian, CAI Xiyun. Research progress on soil degradation and regulation of facility agriculture in China[J]. Journal of Agricultural Catastrophology, 2023, 13(10): 302-304. |
[1] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||