Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (3): 565-575.DOI: 10.6048/j.issn.1001-4330.2024.03.005
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Physiology and Biochemistry • Previous Articles Next Articles
DANG Xuwei1(), LIN Xinyuan1, HE Zheng1, CHEN Yan1, CI Baoxia1, MA Xuehua1, GUO Chenli2, HE Yaxing1, LIU Yang1,3(
), MA Fuyu1,3(
)
Received:
2023-07-15
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
LIU Yang(1989-),male,from Qinghai,associate professor,doctoral student,research field:efficient use of water and fertilizer and precision cultivation of crops,(E-mail)Supported by:
党旭伟1(), 林馨园1, 贺正1, 陈燕1, 慈宝霞1, 马学花1, 郭晨荔2, 贺亚星1, 刘扬1,3(
), 马富裕1,3(
)
通讯作者:
刘扬(1989-),女,青海民和人,副教授,博士,硕士生导师,研究方向为作物水肥高效利用及精准栽培,(E-mail)作者简介:
党旭伟(1997-),男,新疆石河子人,硕士研究生,研究方向为作物水分高效利用与精准栽培,(E-mail)dxw202009@163.com
基金资助:
CLC Number:
DANG Xuwei, LIN Xinyuan, HE Zheng, CHEN Yan, CI Baoxia, MA Xuehua, GUO Chenli, HE Yaxing, LIU Yang, MA Fuyu. Extraction and accuracy evaluation of cotton canopy temperature under drip irrigation based on uav thermal infrared remote sensing[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 565-575.
党旭伟, 林馨园, 贺正, 陈燕, 慈宝霞, 马学花, 郭晨荔, 贺亚星, 刘扬, 马富裕. 基于无人机热红外遥感图像提取滴灌棉花冠层温度及精度评价[J]. 新疆农业科学, 2024, 61(3): 565-575.
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 80.88 | 79.29 | 77.41 | 78.50 | 81.52 |
Canny算法 | 93.48 | 91.60 | 90.02 | 92.50 | 91.90 | |
召回率 Recall | Otsu算法 | 90.08 | 93.54 | 95.58 | 95.55 | 93.68 |
Canny算法 | 94.99 | 96.00 | 97.41 | 92.47 | 95.22 |
Tab.1 Accuracy evaluation of different extraction methods(2021)(%)
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 80.88 | 79.29 | 77.41 | 78.50 | 81.52 |
Canny算法 | 93.48 | 91.60 | 90.02 | 92.50 | 91.90 | |
召回率 Recall | Otsu算法 | 90.08 | 93.54 | 95.58 | 95.55 | 93.68 |
Canny算法 | 94.99 | 96.00 | 97.41 | 92.47 | 95.22 |
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 78.52 | 80.89 | 81.32 | 81.67 | 80.60 |
Canny算法 | 93.14 | 96.11 | 90.21 | 91.59 | 92.76 | |
召回率 Recall | Otsu算法 | 90.95 | 91.40 | 89.35 | 89.96 | 90.42 |
Canny算法 | 93.52 | 96.78 | 90.31 | 91.32 | 92.98 |
Tab.1 Accuracy evaluation of different extraction methods(2022)(%)
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 78.52 | 80.89 | 81.32 | 81.67 | 80.60 |
Canny算法 | 93.14 | 96.11 | 90.21 | 91.59 | 92.76 | |
召回率 Recall | Otsu算法 | 90.95 | 91.40 | 89.35 | 89.96 | 90.42 |
Canny算法 | 93.52 | 96.78 | 90.31 | 91.32 | 92.98 |
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 65.38 | 62.40 | 59.65 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 37.33 | 32.37 | 29.95 |
预测差值 Predicted difference | 11.81 | 5.85 | 3.43 |
Tab.3 Characteristic values of canopy temperature(2021)
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 65.38 | 62.40 | 59.65 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 37.33 | 32.37 | 29.95 |
预测差值 Predicted difference | 11.81 | 5.85 | 3.43 |
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 68.8 | 64.69 | 63.54 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 32.48 | 31.40 | 30.54 |
预测差值 Predicted difference | 4.72 | 3.64 | 2.78 |
Tab.4 Characteristic values of canopy temperature(2022)
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 68.8 | 64.69 | 63.54 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 32.48 | 31.40 | 30.54 |
预测差值 Predicted difference | 4.72 | 3.64 | 2.78 |
Fig.8 Correlation analysis between image extraction temperature and ground measured temperature(2021) Note:A:original image,B:Otsu algorithm,C:removing 1% at both ends of Otsu algorithm histogram,D:Canny algorithm,E:removing 1% at both ends of Canny histogram,the same as below
[1] |
ZHAO B, Adama T, Ata-UI-Karim S T, et al. Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images[J]. Precision Agriculture, 2022, 23(3):748-767.
DOI |
[2] | 杨文攀, 李长春, 杨浩, 等. 基于无人机热红外与数码影像的玉米冠层温度监测[J]. 农业工程学报, 2018, 34(17):68-75,301. |
YANG Wenpan, LI Changchun, YANG Hao, et al. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery[J]. Transactions of the Chinese Society for Agricultural Engineering, 2018, 34(17):68-75,301. | |
[3] | 蔡甲冰, 许迪, 司南, 等. 基于冠层温度和土壤墒情的实时监测与灌溉决策系统[J]. 农业机械学报, 2015, 46(12):133-139. |
CAI Jiabing, XU Di, SI Nan, et al. Real-time monitoring system of crop canopy temperature and soil moisture for irrigation decision-making[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12):133-139. | |
[4] | 史长丽, 郭家选, 梅旭荣, 等. 夏玉米农田表面温度影响因素分析[J]. 中国农业科学, 2006, 39(1):48-56. |
SHI Changli, GUO Jiaxuan, MEI Xurong, et al. Analysis of the factors influencing surface temperature in summer maize field[J]. Scientia Agricultura Sinica, 2006, 39(1):48-56. | |
[5] |
Tanner C B. Plant temperatures[J]. Agronomy Journal, 1963, 55(2):210-211.
DOI URL |
[6] | 杨明欣, 高鹏, 陈文彬, 等. 基于机器学习的油青菜心水分胁迫研究[J]. 华南农业大学学报, 2021, 42(5):117-126. |
YANG Mingxin, GAO Peng, CHEN Wenbin, et al. Research of Brassica chinensis var.parachinensis under water stress based on machine learning[J]. Journal of South China Agricultural University, 2021, 42(5):117-126. | |
[7] | Bian J, Zhang Z T, Chen J Y, et al. Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery[J]. Remote Sensing, 2019, 11(3):267. |
[8] | 张宏鸣, 王佳佳, 韩文霆, 等. 基于热红外遥感影像的作物冠层温度提取[J]. 农业机械学报, 2019, 50(4):203-210. |
ZHANG Hongming, WANG Jiajia, HAN Wenting, et al. Crop canopy temperature extraction based on thermal infrared remote sensing images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4):203-210. | |
[9] |
冯子恒, 宋莉, 张少华, 等. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5):890-906.
DOI |
FENG Zhihong, SONG Li, ZHANG Shaohua, et al. Wheat powdery mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2022, 55(5):890-906.
DOI |
|
[10] |
Zhou Z, Majeed Y, Diverres Naranjo G, et al. Assessment for crop water stress with infrared thermal imagery in precision agriculture:a review and future prospects for deep learning applications[J]. Computers and Electronics in Agriculture, 2021, 182:106019.
DOI URL |
[11] |
Hou M J, Tian F, Ortega-Farias S, et al. Estimation of crop transpiration and its scale effect based on ground and UAV thermal infrared remote sensing images[J]. European Journal of Agronomy, 2021, 131:126389.
DOI URL |
[12] | 夏清, 张振鑫, 王婷婷, 等. 基于改进Sobel算子的红外图像边缘提取算法[J]. 激光与红外, 2013, 43(10):1158-1161. |
XIA Qing, ZHANG Zhenxin, WANG Tingting, et al. Edge extraction algorithm of infrared thermal image based on improved sobel operator[J]. Laser & Infrared, 2013, 43(10):1158-1161. | |
[13] |
Liu M, Guan H O, Ma X D, et al. Recognition method of thermal infrared images of plant canopies based on the characteristic registration of heterogeneous images[J]. Computers and Electronics in Agriculture, 2020, 177:105678.
DOI URL |
[14] |
Zhang L Y, Niu Y X, Zhang H H, et al. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring[J]. Frontiers in Plant Science, 2019, 10:1270.
DOI PMID |
[15] | 徐洪刚, 陈震, 程千, 等. 无人机热红外反演土壤含水率的方法[J]. 排灌机械工程学报, 2022, 40(11):1181-1188. |
XU Honggang, CHEN Zhen, CHENG Qian, et al. Inversion of soil moisture content based on UAV thermal infrared image[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(11):1181-1188. | |
[16] |
Sepúlveda-Reyes D, Ingram B, Bardeen M, et al. Selecting canopy zones and thresholding approaches to assess grapevine water status by using aerial and ground-based thermal imaging[J]. Remote Sensing, 2016, 8(10):822.
DOI URL |
[17] | 张智韬, 边江, 韩文霆, 等. 剔除土壤背景的棉花水分胁迫无人机热红外遥感诊断[J]. 农业机械学报, 2018, 49(10):250-260. |
ZHANG Zhitao, BIAN Jiang, HAN Wenting, et al. CUI T. Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil background[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):250-260. | |
[18] | 张智韬, 许崇豪, 谭丞轩, 等. 覆盖度对无人机热红外遥感反演玉米土壤含水率的影响[J]. 农业机械学报, 2019, 50(8):213-225. |
ZHANG Zhitao, XU Chonghao, TAN Chengxuan, et al. Influence of coverage on soil moisture content of field corn inversed from thermal infrared remote sensing of UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8):213-225. | |
[19] | 程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2):348-357. |
CHENG Lina, ZHONG Cairong, LI Xiaoyan, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2):348-357.
DOI URL |
|
[20] | 胡克满, 罗少龙, 胡海燕. 应用Canny算子的织物疵点检测改进算法[J]. 纺织学报, 2019, 40(1):153-158. |
HU Keman, LUO Shaolong, HU Haiyan. Improved algorithm for fabric defect detection based on Canny operator[J]. Journal of Textile Research, 2019, 40(1):153-158. | |
[21] | 陈玉婷, 刘洞波, 施怡澄, 等. 基于小波模极大值和自适应Canny算子的织物疵点检测算法[J]. 湖南工程学院学报(自然科学版), 2022, 32(2):54-58,65. |
CHEN Yuting, LIU Dongbo, SHI Yicheng, et al. Heredity analysis and cluster structure charateristics of agcu alloy at different cooling rates and pressures[J]. Journal of Hunan Institute of Engineering(Natural Science Edition), 2022, 32(2):54-58,65. | |
[22] | 张智韬, 许崇豪, 谭丞轩, 等. 基于无人机热红外遥感的玉米地土壤含水率诊断方法[J]. 农业机械学报, 2020, 51(3):180-190. |
ZHANG Zhitao, XU Chonghao, TAN Chengxuan, et al. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV[J]. Journal of Hnnan Institute of Engineering(Natural Science Edition), 2020, 51(3):180-190. | |
[23] |
Ranjan A, Sinha R, Singla-Pareek S L, et al. Shaping the root system architecture in plants for adaptation to drought stress[J]. Physiologia Plantarum, 2022, 174(2):e13651.
DOI URL |
[24] | Lu S, Zhang T, Tian F. Evaluation of crop water status and vegetation dynamics for alternate partial root-zone drip irrigation of alfalfa:Observation with an unmanned aerial vehicle[J]. Frontiers in Environmental Science, 843. |
[25] |
Riveros-Burgos C, Ortega-Farías S, Morales-Salinas L, et al. Assessment of the clumped model to estimate olive orchard evapotranspiration using meteorological data and UAV-based thermal infrared imagery[J]. Irrigation Science, 2021, 39(1):63-80.
DOI |
[26] | 张智韬, 于广多, 吴天奎, 等. 基于无人机遥感影像的玉米冠层温度提取及作物水分胁迫监测[J]. 农业工程学报, 2021, 37(23):82-89. |
ZHANG Zhitao, YU Guangduo, WU Tiankui, et al. Temperature extraction of maize canopy and crop water stress monitoring based on UAV remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23):82-89. | |
[27] | 杨帅, 陈俊英, 周永财, 等. 无人机热红外遥感反演玉米根域土壤含水率方法研究[J]. 节水灌溉, 2021,(3):12-18. |
YANG Shuai, CHEN Junying, ZHOU Yongcai, et al. A Study on the method of UAV thermal infrared remote sensing to retrieve soil moisture content in corn root zone[J]. Water Saving Irrigation, 2021,(3):12-18. |
[1] | SHAO Yajie, LI Ke, DING Wenhao, LIN Tao, CUI Jianping, GUO Rensong, WANG Liang, WU Fengquan, WANG Xin, TANG Qiuxiang. Study on cotton biomass estimation based on multi-spectral imaging features of unmanned aerial vehicle [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1328-1335. |
[2] | LIU Taijie, CHEN Bing, YANG Li, WANG Jing, ZHAO Jing, LI Xiang, TANG Guanglan, WANG Gang, HAN Huanyong, WANG Fangyong. Effects of different spraying machinery and pesticide combination on the defoliation,the ripeness,yield and quality of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 852-860. |
[3] | AI Pengrui, MA Yingjie. Effects of Field Microclimate on Physiological and Ecological Indexes of Cotton under Intercropping Mode [J]. Xinjiang Agricultural Sciences, 2021, 58(9): 1594-1602. |
[4] | LONG Xiang, ZHAO Qingzhan, WANG Xuewen, MA Yongjian, JIANG Ping. Analysis of Spectral Change of Cotton During Growth Period Based on Endmember Extraction of UAV Hyperspectral Image [J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1207-1216. |
[5] | ZHU Xiaofeng, XU Binqiang, SONG Bo, XIONG Jinming, GAO Guanrong, YAN Xiaojing, Abudukeyoumu Kader, YANG Sen. Field Control Evaluation of Plant Protection UAV Spreading Pesticide against Chromaphis juglandicola and Cnidocampa flavescens in Walnut Orchard [J]. Xinjiang Agricultural Sciences, 2021, 58(11): 2077-2083. |
[6] | GAO Xin, FAN Zheru, WANG Zhong, LI Jianfeng, ZHANG Hongzhi, ZHANG Yueqiang. Correlation Analysis of Canopy Temperature and Yield Characteristics of One Xinjiang Spring Wheat RIL under Different Irrigation Conditions [J]. Xinjiang Agricultural Sciences, 2021, 58(11): 1961-1970. |
[7] | WANG Fangbin, LIU Kai, SUN Jialin, YIN Xin, HOU Zhenan. Effects of Nitrogen Reduction on NH3 Volatilization, Nutrient Uptake and Cotton Yield in Drip-irrigated Cotton Fields [J]. Xinjiang Agricultural Sciences, 2020, 57(9): 1746-1753. |
[8] | WANG Zhihui, DING Xinhua, JIA Zunzun, FU Kaiyun, Tursun Ahmat, HE Jiang, GUO Wenchao. An Ultra Low Spray Control Technique for Corn Borer Based on Synergist and Insecticide [J]. Xinjiang Agricultural Sciences, 2020, 57(2): 311-318. |
[9] | ZHAO Jing, XIN Fang, ZHOU Yue-ting, ZHAO Chang-rong, HAN Xiao-qiang, LIU Zheng, LIN Ke-jian, FU Wei. Comparison of Regulatory Effects of Multi-rotor Plant Protection Unmanned Aerial Vehicles and Conventional Spraying of DPC on Cotton [J]. Xinjiang Agricultural Sciences, 2018, 55(11): 2096-2104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||