Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (8): 1996-2005.DOI: 10.6048/j.issn.1001-4330.2023.08.021
• Plant Protection · Microbes • Previous Articles Next Articles
WANG Yan1(), WU Xingbao1, QIN Xinhui1, ZHANG Yongjiu1, YANG Li1, ZHAO Halin2
Received:
2022-11-05
Online:
2023-08-20
Published:
2023-08-14
Correspondence author:
WANG Yan (1983-), female, born in Qingyang, Gansu Province, doctor, lecturer, her research direction is ecological restoration and soil salinization, (E-mail)821934145@qq.comSupported by:
王燕1(), 武兴宝1, 秦新惠1, 张永久1, 杨丽1, 赵哈林2
作者简介:
王燕(1983-),女,甘肃庆阳人,讲师,博士,研究方向为生态恢复和土壤盐渍化,(E-mail)821934145@qq.com
基金资助:
CLC Number:
WANG Yan, WU Xingbao, QIN Xinhui, ZHANG Yongjiu, YANG Li, ZHAO Halin. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in farmland salinization in arid oasis[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1996-2005.
王燕, 武兴宝, 秦新惠, 张永久, 杨丽, 赵哈林. 荒漠绿洲农田盐渍化过程中的土壤碳、氮、磷生态化学计量特征[J]. 新疆农业科学, 2023, 60(8): 1996-2005.
作物 Crop | 不同盐 渍化农田 Different salinized stages | 有机碳 Soil organic carbon (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|
大麦 Barley | CK | 7.82±1.40A | 0.86±0.19A | 1.37±0.12AB | 9.33±0.35B | 5.74±1.06A | 0.63±0.15A |
S1 | 8.18±0.76A | 0.87±0.10A | 1.49±0.14A | 9.50±0.73B | 5.55±0.64A | 0.59±0.11AB | |
S2 | 6.36±0.63B | 0.65±0.07B | 1.30±0.01B | 9.78±0.19AB | 4.91±0.48AB | 0.50±0.05AB | |
S3 | 5.04±0.25BC | 0.57±0.06BC | 1.27±0.05B | 8.98±0.51B | 4.00±0.33BC | 0.45±0.06BC | |
S4 | 4.22±0.36C | 0.40±0.04C | 1.30±0.04B | 10.50±0.33A | 3.23±0.24C | 0.31±0.02C | |
苜蓿 Alfalfa | CK | 5.33±0.39ABC | 0.52±0.06AB | 1.61±0.17A | 10.31±0.31A | 3.32±0.10B | 0.32±0.00BC |
S1 | 6.30±0.73A | 0.62±0.08A | 1.66±0.06A | 10.25±0.93A | 3.79±0.44AB | 0.37±0.04B | |
S2 | 5.83±0.25AB | 0.63±0.05A | 1.38±0.11B | 9.25±0.35B | 4.24±0.25A | 0.46±0.03A | |
S3 | 4.76±1.04BC | 0.47±0.10B | 1.39±0.10B | 10.09±0.44AB | 3.40±0.53B | 0.34±0.05BC | |
S4 | 4.22±0.36C | 0.40±0.04B | 1.30±0.04B | 10.50±0.33A | 3.23±0.24B | 0.31±0.02C |
Tab.1 Mean values of soil C, N, P content and stoichiometry in different salinized stages in two farmlands
作物 Crop | 不同盐 渍化农田 Different salinized stages | 有机碳 Soil organic carbon (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|
大麦 Barley | CK | 7.82±1.40A | 0.86±0.19A | 1.37±0.12AB | 9.33±0.35B | 5.74±1.06A | 0.63±0.15A |
S1 | 8.18±0.76A | 0.87±0.10A | 1.49±0.14A | 9.50±0.73B | 5.55±0.64A | 0.59±0.11AB | |
S2 | 6.36±0.63B | 0.65±0.07B | 1.30±0.01B | 9.78±0.19AB | 4.91±0.48AB | 0.50±0.05AB | |
S3 | 5.04±0.25BC | 0.57±0.06BC | 1.27±0.05B | 8.98±0.51B | 4.00±0.33BC | 0.45±0.06BC | |
S4 | 4.22±0.36C | 0.40±0.04C | 1.30±0.04B | 10.50±0.33A | 3.23±0.24C | 0.31±0.02C | |
苜蓿 Alfalfa | CK | 5.33±0.39ABC | 0.52±0.06AB | 1.61±0.17A | 10.31±0.31A | 3.32±0.10B | 0.32±0.00BC |
S1 | 6.30±0.73A | 0.62±0.08A | 1.66±0.06A | 10.25±0.93A | 3.79±0.44AB | 0.37±0.04B | |
S2 | 5.83±0.25AB | 0.63±0.05A | 1.38±0.11B | 9.25±0.35B | 4.24±0.25A | 0.46±0.03A | |
S3 | 4.76±1.04BC | 0.47±0.10B | 1.39±0.10B | 10.09±0.44AB | 3.40±0.53B | 0.34±0.05BC | |
S4 | 4.22±0.36C | 0.40±0.04B | 1.30±0.04B | 10.50±0.33A | 3.23±0.24B | 0.31±0.02C |
Fig.1 Nutrient contents of different soil layers in different salinization stages of the two crop fields Note: Different uppercase letters indicate significant differences between different salinized stages with the same soil layers, and different lowercase letters indicate significant differences between the same soil layers salinized stages with different salinized stages (P<0.05)
作物 Crop | 土层 Soil layer (cm) | 盐渍化阶段 Salinized stage | C/N | C/P | N/P |
---|---|---|---|---|---|
苜蓿 Alfalfa | 0~10 | CK | 10.38±0.25Aa | 3.56±0.44Aa | 0.34±0.05ABa |
S1 | 10.64±0.31Aa | 3.81±0.42Aa | 0.36±0.03ABa | ||
S2 | 9.23±1.23Aa | 4.22±0.86Aa | 0.47±0.13Aa | ||
S3 | 9.90±1.18Aa | 3.60±0.56Aa | 0.37±0.08ABa | ||
S4 | 10.36±0.92Aa | 3.36±0.26Aa | 0.33±0.03Ba | ||
10~20 | CK | 10.35±0.86Aa | 3.50±0.33ABa | 0.34±0.01ABa | |
S1 | 10.48±0.56Aa | 3.84±0.52ABa | 0.37±0.03ABa | ||
S2 | 10.02±1.67Aa | 4.22±0.12Aa | 0.43±0.09Aa | ||
S3 | 10.68±0.25Aa | 3.38±0.80ABa | 0.32±0.07Ba | ||
S4 | 10.74±0.59Aa | 3.27±0.35Ba | 0.30±0.02Ba | ||
20~40 | CK | 10.13±0.37Aa | 2.81±0.70BCa | 0.28±0.08Ba | |
S1 | 9.76±1.82Aa | 3.67±0.75ABCa | 0.39±0.14ABa | ||
S2 | 8.98±1.57Aa | 4.40±0.60Aa | 0.50±0.12Aa | ||
S3 | 9.85±0.35Aa | 3.15±0.21Ca | 0.32±0.02Ba | ||
S4 | 10.46±0.14Aa | 3.06±0.17Ca | 0.29±0.02Ba | ||
大麦 Barley | 0~10 | CK | 8.74±0.93Ba | 6.37±1.69Aa | 0.74±0.27Aa |
S1 | 9.28±0.80ABa | 5.17±1.90ABa | 0.57±0.27ABa | ||
S2 | 9.79±0.08ABa | 5.29±0.46ABa | 0.54±0.05ABa | ||
S3 | 9.33±0.29ABa | 3.99±0.33Ba | 0.43±0.04ABa | ||
S4 | 10.36±0.92Aa | 3.36±0.26Ba | 0.33±0.03Ba | ||
10~20 | CK | 9.72±0.18ABa | 4.32±0.56ABa | 0.45±0.07ABa | |
S1 | 9.98±0.36ABa | 5.94±1.87ABa | 0.60±0.20Aa | ||
S2 | 9.65±0.50ABa | 4.89±0.39Aa | 0.51±0.03Aa | ||
S3 | 8.89±1.19Ba | 3.70±0.16Ba | 0.42±0.08ABa | ||
S4 | 10.74±0.59Aa | 3.27±0.35Ba | 0.30±0.02Ba | ||
20~40 | CK | 9.55±0.18ABCa | 6.54±2.06Aa | 0.69±0.23Aa | |
S1 | 9.24±1.35BCa | 5.54±1.77Aa | 0.61±0.22Aa | ||
S2 | 9.91±0.12ABa | 4.55±1.11ABa | 0.46±0.12ABa | ||
S3 | 8.71±0.49Ca | 4.31±0.83ABa | 0.50±0.12ABa | ||
S4 | 10.46±0.14Aa | 3.06±0.17Ba | 0.29±0.02Ba |
Tab.2 Ecological stoichiometry of Soil C, N and P of different soil layer in different salinized stages in two farmland
作物 Crop | 土层 Soil layer (cm) | 盐渍化阶段 Salinized stage | C/N | C/P | N/P |
---|---|---|---|---|---|
苜蓿 Alfalfa | 0~10 | CK | 10.38±0.25Aa | 3.56±0.44Aa | 0.34±0.05ABa |
S1 | 10.64±0.31Aa | 3.81±0.42Aa | 0.36±0.03ABa | ||
S2 | 9.23±1.23Aa | 4.22±0.86Aa | 0.47±0.13Aa | ||
S3 | 9.90±1.18Aa | 3.60±0.56Aa | 0.37±0.08ABa | ||
S4 | 10.36±0.92Aa | 3.36±0.26Aa | 0.33±0.03Ba | ||
10~20 | CK | 10.35±0.86Aa | 3.50±0.33ABa | 0.34±0.01ABa | |
S1 | 10.48±0.56Aa | 3.84±0.52ABa | 0.37±0.03ABa | ||
S2 | 10.02±1.67Aa | 4.22±0.12Aa | 0.43±0.09Aa | ||
S3 | 10.68±0.25Aa | 3.38±0.80ABa | 0.32±0.07Ba | ||
S4 | 10.74±0.59Aa | 3.27±0.35Ba | 0.30±0.02Ba | ||
20~40 | CK | 10.13±0.37Aa | 2.81±0.70BCa | 0.28±0.08Ba | |
S1 | 9.76±1.82Aa | 3.67±0.75ABCa | 0.39±0.14ABa | ||
S2 | 8.98±1.57Aa | 4.40±0.60Aa | 0.50±0.12Aa | ||
S3 | 9.85±0.35Aa | 3.15±0.21Ca | 0.32±0.02Ba | ||
S4 | 10.46±0.14Aa | 3.06±0.17Ca | 0.29±0.02Ba | ||
大麦 Barley | 0~10 | CK | 8.74±0.93Ba | 6.37±1.69Aa | 0.74±0.27Aa |
S1 | 9.28±0.80ABa | 5.17±1.90ABa | 0.57±0.27ABa | ||
S2 | 9.79±0.08ABa | 5.29±0.46ABa | 0.54±0.05ABa | ||
S3 | 9.33±0.29ABa | 3.99±0.33Ba | 0.43±0.04ABa | ||
S4 | 10.36±0.92Aa | 3.36±0.26Ba | 0.33±0.03Ba | ||
10~20 | CK | 9.72±0.18ABa | 4.32±0.56ABa | 0.45±0.07ABa | |
S1 | 9.98±0.36ABa | 5.94±1.87ABa | 0.60±0.20Aa | ||
S2 | 9.65±0.50ABa | 4.89±0.39Aa | 0.51±0.03Aa | ||
S3 | 8.89±1.19Ba | 3.70±0.16Ba | 0.42±0.08ABa | ||
S4 | 10.74±0.59Aa | 3.27±0.35Ba | 0.30±0.02Ba | ||
20~40 | CK | 9.55±0.18ABCa | 6.54±2.06Aa | 0.69±0.23Aa | |
S1 | 9.24±1.35BCa | 5.54±1.77Aa | 0.61±0.22Aa | ||
S2 | 9.91±0.12ABa | 4.55±1.11ABa | 0.46±0.12ABa | ||
S3 | 8.71±0.49Ca | 4.31±0.83ABa | 0.50±0.12ABa | ||
S4 | 10.46±0.14Aa | 3.06±0.17Ba | 0.29±0.02Ba |
作物 Crop | 项目 Index | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|---|
苜蓿 Alfalfa | SOC | 0.939** | 0.675** | -0.256 | 0.763** | 0.682** |
TN | 0.575* | -0.569* | 0.783** | 0.824** | ||
TP | 0.001 | 0.045 | 0.017 | |||
C/N | -0.388 | -0.696** | ||||
C/P | 0.930** | |||||
大麦 Barley | SOC | 0.977** | 0.590* | -0.405 | 0.951** | 0.898** |
TN | 0.468 | -0.573* | 0.971** | 0.961** | ||
TP | 0.153 | 0.317 | 0.212 | |||
C/N | -0.534* | -0.683** | ||||
C/P | 0.979** |
Tab.3 Correlation between soil SOC, TN, TP concentrations and soil stoichiometry in two salinized farmlands
作物 Crop | 项目 Index | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|---|
苜蓿 Alfalfa | SOC | 0.939** | 0.675** | -0.256 | 0.763** | 0.682** |
TN | 0.575* | -0.569* | 0.783** | 0.824** | ||
TP | 0.001 | 0.045 | 0.017 | |||
C/N | -0.388 | -0.696** | ||||
C/P | 0.930** | |||||
大麦 Barley | SOC | 0.977** | 0.590* | -0.405 | 0.951** | 0.898** |
TN | 0.468 | -0.573* | 0.971** | 0.961** | ||
TP | 0.153 | 0.317 | 0.212 | |||
C/N | -0.534* | -0.683** | ||||
C/P | 0.979** |
作物地 Farmland | N、P含量及 化学计量比 Soil stoichiometry | 土壤含水量 Soil water content | 土壤孔隙电导率 Soil pore electrical conductivity | 土壤温度 Soil temperature | 土壤容重 Bulk density | 土壤黏粉粒 Clay particles |
---|---|---|---|---|---|---|
苜蓿地 Alfalfa field | SOC (mg/g) | 0.329 | -0.676** | 0.123 | -0.083 | 0.600* |
TN (mg/g) | 0.446 | -0.642** | 0.184 | -0.196 | 0.589* | |
TP (mg/g) | -0.244 | -0.623** | -0.068 | -0.348 | 0.833** | |
C/N | -0.457 | 0.238 | -0.255 | 0.370 | -0.284 | |
C/P | 0.655** | -0.392 | 0.202 | 0.123 | 0.097 | |
N/P | 0.687** | -0/379 | 0.224 | -0.066 | 0.161 | |
大麦地 Barley field | SOC (mg/g) | -0.527* | -0.732** | -0.257 | -0.532* | 0.196 |
TN (mg/g) | -0.442 | -0.738** | -0.160 | -0.563* | 0.172 | |
TP (mg/g) | -0.409 | -0.296 | -0.676** | -0.513 | 0.320 | |
C/N | -0.134 | 0.550* | -0.225 | 0.286 | -0.145 | |
C/P | -0.451 | -0.754** | -0.063 | -0.428 | 0.142 | |
N/P | -0.346 | -0.736** | 0.006 | -0.459 | 0.124 |
Tab.4 Correlation between soil environmental factors and soil stoichiometry in two salinized farmlands
作物地 Farmland | N、P含量及 化学计量比 Soil stoichiometry | 土壤含水量 Soil water content | 土壤孔隙电导率 Soil pore electrical conductivity | 土壤温度 Soil temperature | 土壤容重 Bulk density | 土壤黏粉粒 Clay particles |
---|---|---|---|---|---|---|
苜蓿地 Alfalfa field | SOC (mg/g) | 0.329 | -0.676** | 0.123 | -0.083 | 0.600* |
TN (mg/g) | 0.446 | -0.642** | 0.184 | -0.196 | 0.589* | |
TP (mg/g) | -0.244 | -0.623** | -0.068 | -0.348 | 0.833** | |
C/N | -0.457 | 0.238 | -0.255 | 0.370 | -0.284 | |
C/P | 0.655** | -0.392 | 0.202 | 0.123 | 0.097 | |
N/P | 0.687** | -0/379 | 0.224 | -0.066 | 0.161 | |
大麦地 Barley field | SOC (mg/g) | -0.527* | -0.732** | -0.257 | -0.532* | 0.196 |
TN (mg/g) | -0.442 | -0.738** | -0.160 | -0.563* | 0.172 | |
TP (mg/g) | -0.409 | -0.296 | -0.676** | -0.513 | 0.320 | |
C/N | -0.134 | 0.550* | -0.225 | 0.286 | -0.145 | |
C/P | -0.451 | -0.754** | -0.063 | -0.428 | 0.142 | |
N/P | -0.346 | -0.736** | 0.006 | -0.459 | 0.124 |
[1] |
Reich P B, Tjoelker M G, Machado J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants[J]. Nature, 2006, 439(7075): 457-461.
DOI |
[2] |
Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.
DOI PMID |
[3] |
彭学义, 贾亚男, 蒋勇军, 等. 中梁山岩溶槽谷区不同土地类型土壤生态化学计量学特征[J]. 中国农学通报, 2019, 35(5):84-92.
DOI |
PENG Xueyi, JIA Yanan, JIANG Yongjun, et al. Soil ecological stoichiometric characteristics of different land types in Karst Valley Area of Zhongliang Mountain[J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 84-92.
DOI |
|
[4] | 周正虎, 王传宽, 张全智. 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响[J]. 生态学报, 2015, 35(20):6694-6702. |
ZHOU Zhenghu, WANG Chuankuan, ZHANG Quanzhi. The effect of land use change on soil carbon, nitrogen and phosphorus contents and their stoichiometry in temperate sapling stands in northeastern China[J]. Acta Ecologica Sinica, 2015, 35(20): 6694-6702. | |
[5] | 张杨, 梁爱华, 王平平, 等. 黄土丘陵区不同植被恢复模式土壤养分效应[J]. 西北农业学报, 2010, 19(9):114-118. |
ZHANG Yang, LIANG Aihua, WANG Pingping, et al. Soil nutrient effects of different vegetation restoration models in loess hilly area[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(9): 114-118. | |
[6] |
Torgny N, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392(6679): 914-916.
DOI |
[7] | 刘兴锋, 刘思凡, 蒋龙, 等. 湘西北石漠化区不同植被类型土壤C、N、P的化学计量特征[J]. 中南林业科技大学学报, 2019, 39(2):72-78. |
LIU Xingfeng, LIU Sifan, JIANG Long, et al. Stoichiometric characteristics of soil C, N and P in different vegetation types in the rocky desertification area of Northwestern Hunan province[J]. Journal of Central South University of Forestry and Technology, 2019, 39(2): 72-78. | |
[8] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. |
Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. | |
[9] |
Masoud A A, Koike K. Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt[J]. Journal of Arid Environments, 2006, 66(1): 151-167.
DOI URL |
[10] | 郭其强, 盘金文, 李慧娥, 等. 贵州高原山地马尾松人工林土壤碳、氮、磷生态化学计量特性[J]. 水土保持学报, 2019, 33(4):293-298. |
GUO Qiqiang, PAN Jinwen, LI Huie, et al. Eco-stoichiometry characteristics of soil carbon, nitrogen and phosphorus of Pinus massoniana plantation in plateau mountainous areas, Guizhou Province[J]. Journal of Soil and Water Conservation, 2019, 33(4): 293-298. | |
[11] | 闫玉琴, 解刚, 项宇, 等. 毛乌素沙地湖滨带沉积物碳氮磷生态化学计量学特征[J]. 水土保持学报, 2018, 32(2):223-228. |
YAN Yuqin, XIE Gang, XIANG Yu, et al. Spatial distribution and ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in lake littoral zone sediment in Mu Us sandland[J]. Journal of Soil and Water Conservation, 2018, 32(2): 223-228. | |
[12] | 宁志英, 李玉霖, 杨红玲, 等. 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响[J]. 生态学报, 2019, 39(10):3537-3546. |
NING Zhiying, LI Yulin, YANG Hongling, et al. Stoichiometry and effects of carbon, nitrogen, and phosphorus in soil of decertified grasslands on community productivity and species diversity[J]. Acta Ecologica Sinica, 2019, 39(10): 3537-3546. | |
[13] | 李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 土壤学报, 2017, 54(1):160-170. |
LI Danwei, WANG Ziquan, TIAN Haixia, et al. Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation[J]. Acta Pedologica Sinica, 2017, 54(1): 160-170. | |
[14] | 刘旭阳, 陈晓旋, 陈优阳, 等. 福州不同农田土地利用类型土壤碳氮磷生态化学计量学特征[J]. 水土保持学报, 2019, 33(6):348-355. |
LIU Xuyang, CHEN Xiaoxuan, CHEN Youyang, et al. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus under different agricultural land-use types in Fuzhou[J]. Journal of Soil and Water Conservation, 2019, 33(6): 348-355. | |
[15] | 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18):5484-5492. |
ZENG Dongping, JIANG Liling, ZENG Congsheng, et al. Reviews on the ecological stoichiometry characteristics and its applications[J]. Acta Ecologica Sinica, 2013, 33(18): 5484-5492.
DOI URL |
|
[16] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. |
BAO Shidan. Analytical Methods of Soil Agrochemistry[M]. Beijing: Chinese Agriculture Press, 2005. | |
[17] |
Näsholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392(6679): 914-916.
DOI |
[18] |
Carrera A L, Mazzarino M J, Bertiller M B, et al. Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina[J]. Journal of Arid Environments, 2009, 73(2): 192-201.
DOI URL |
[19] |
Macedo M O, Resende A S, Garcia P, et al. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees[J]. Forest Ecology and Management, 2006, 255(5-6): 1516-1524.
DOI URL |
[20] | 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674-4682. |
ZHU Qiulian, XING Xiaoyi, ZHANG Hong, et al. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674-4682.
DOI URL |
|
[21] | 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34(1):64-71. |
LIU Xingzhao, ZHOU Guoyi, ZHANG Deqiang, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. | |
[22] | 魏孝荣, 邵明安. 黄土高原沟壑区小流域坡地土壤养分分布特征[J]. 生态学报, 2007, 27(2):603-612. |
WEI Xiaorong, SHAO Mingan. The distribution of soil nutrients on sloping land in the gully region watershed of the Loess Plateau[J]. Acta Ecologica Sinica, 2007, 27(2): 603-612. | |
[23] |
Rutigliano F A, D’Ascoli R, De Santob A V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover[J]. Soil Biology and Biochemistry, 2004, 36(11): 1719-1729.
DOI URL |
[24] | 漆良华, 张旭东, 周金星, 等. 湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征[J]. 林业科学, 2009, 45(8):14-20. |
QI Lianghua, ZHANG Xudong, ZHOU Jinxing, et al. Soil microbe quantities, microbial carbon and nitrogen and fractal characteristics under different vegetation restoration patterns in watershed, Northwest Hunan[J]. Scientia Silvae Sinicae, 2009, 45(8): 14-20. | |
[25] |
Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423-436.
DOI URL |
[26] | 秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68-76,82. |
QIN Juan, KONG Haiyan, LIU Hua. Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests[J]. Journal of Northwest A & F University (Nat.Sci.Ed.), 2016, 44(2): 68-76,82. | |
[27] | 任书杰, 曹明奎, 陶波, 等. 陆地生态系统氮状态对碳循环的限制作用研究进展[J]. 地理科学进展, 2006, 25(4):58-67. |
REN Shujie, CAO Mingkui, TAO Bo, et al. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: A review[J]. Progress in Geography, 2006, 25(4): 58-67. | |
[28] |
TIAN Hanqin, CHEN Guangsheng, ZHANG Chi, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/2/3): 139-151.
DOI URL |
[29] | 李栎, 王光军, 周国新, 等. 会同桢楠人工幼林土壤C:N:P生态化学计量的时空特征[J]. 中南林业科技大学学报, 2016, 36(2):96-100,109. |
LI Li, WANG Guangjun, ZHOU Guoxin, et al. Temporal and spatial characteristics of soil C: N: P ecological stoichiometry under Phoebe zhennan plantation of Huitong[J]. Journal of Central South University of Forestry & Technology, 2016, 6(2): 96-100,109. | |
[30] |
Chhabra R. Crop response to phosphorus and potassium fertilization of a sodic soil[J]. Agronomy Journal, 1985, 77(5): 699-702.
DOI URL |
[31] |
ZHANG Peng, WEI Ting, LI Yuling, et al. Effects of straw incorporation on the stratification of the soil organic C, total N and C: N ratio in a semiarid region of China[J]. Soil and Tillage Research, 2015, 153: 28-35.
DOI URL |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 191
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||