Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (7): 1790-1797.DOI: 10.6048/j.issn.1001-4330.2023.07.027
• Microbes·Animal Husbandry Veterinarian • Previous Articles Next Articles
CHEN Yihuang1(), XING Li1, DONG Zhenzhen1, MA Xiaomei1, HUANG Jianjun2, LUO Xiaoxia1(
)
Received:
2022-10-30
Online:
2023-07-20
Published:
2023-07-11
Correspondence author:
LUO Xiaoxia(1982-), female, master supervisor, research direction:Mining of microbial secondary metabolites,(E-mail)xxluo415@163.com
Supported by:
陈乙煌1(), 邢利1, 东珍珍1, 马小梅1, 黄建军2, 罗晓霞1(
)
通讯作者:
罗晓霞(1982-),女,重庆人,硕士生导师,研究方向为微生物次级代谢产物挖掘,(E-mail)xxluo415@163.com
作者简介:
陈乙煌(1998-),男,福建泉州人,研究生,研究方向为微生物次级代谢产物挖掘,(E-mail)375093055@qq.com
基金资助:
CLC Number:
CHEN Yihuang, XING Li, DONG Zhenzhen, MA Xiaomei, HUANG Jianjun, LUO Xiaoxia. Isolation and antagonistic activity screening of Actinomycetes from rhizosphere soil of Tamarix[J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1790-1797.
陈乙煌, 邢利, 东珍珍, 马小梅, 黄建军, 罗晓霞. 柽柳根际土壤放线菌的分离及拮抗活性筛选[J]. 新疆农业科学, 2023, 60(7): 1790-1797.
土样编号 Soil sample number | 样品类型 Soil sample type | 取样位置 Sampling location | 纬度 Latitude (°) | 经度 Longitude (°) | 海拔 Altitude (m) |
---|---|---|---|---|---|
HT44 | 红柳根际土 | 塔中-民丰 | 38.412 | 83.205 | 1 164.9 |
HT51 | 红柳根际土 | 萨勒吾则克乡 | 37.254 | 83.018 | 1 386.6 |
HT53 | 红柳根际土 | 民丰-且末 | 37.688 | 83.959 | 1 341.1 |
HT57 | 红柳根际土 | 塔提让乡 | 38.485 | 85.824 | 1 112.1 |
HT61 | 红柳根际土 | 瓦石峡乡 | 38.819 | 87.743 | 885.2 |
HT65 | 红柳根际土 | 若羌-库尔勒 | 39.889 | 88.399 | 814.3 |
HT67 | 红柳根际土 | 大西海子水库 | 40.562 | 87.810 | 829.6 |
HT71 | 红柳根际土 | 沙雅 | 41.137 | 82.446 | 957.8 |
HT75 | 红柳根际土 | 二牧场-14团 | 40.660 | 81.943 | 975.1 |
HT49 | 红柳根际土 | 民丰-于田 | 36.888 | 82.553 | 1 664.8 |
Tab.1 Soil sample information sheet
土样编号 Soil sample number | 样品类型 Soil sample type | 取样位置 Sampling location | 纬度 Latitude (°) | 经度 Longitude (°) | 海拔 Altitude (m) |
---|---|---|---|---|---|
HT44 | 红柳根际土 | 塔中-民丰 | 38.412 | 83.205 | 1 164.9 |
HT51 | 红柳根际土 | 萨勒吾则克乡 | 37.254 | 83.018 | 1 386.6 |
HT53 | 红柳根际土 | 民丰-且末 | 37.688 | 83.959 | 1 341.1 |
HT57 | 红柳根际土 | 塔提让乡 | 38.485 | 85.824 | 1 112.1 |
HT61 | 红柳根际土 | 瓦石峡乡 | 38.819 | 87.743 | 885.2 |
HT65 | 红柳根际土 | 若羌-库尔勒 | 39.889 | 88.399 | 814.3 |
HT67 | 红柳根际土 | 大西海子水库 | 40.562 | 87.810 | 829.6 |
HT71 | 红柳根际土 | 沙雅 | 41.137 | 82.446 | 957.8 |
HT75 | 红柳根际土 | 二牧场-14团 | 40.660 | 81.943 | 975.1 |
HT49 | 红柳根际土 | 民丰-于田 | 36.888 | 82.553 | 1 664.8 |
Fig.1 Isolation of Tamarix ramosissima rhizosphere soil strains Note:Fig.1A:Number of strains isolated from different soil samples; Fig.1B:Number of strains isolated from different media
Fig.2 Identification of strains in the rhizosphere soil of Tamarix ramosissima Note:A: Agarose gel electrophoresis of total DNA from samples.M: DNA marker trans 2K; 1 to 23: genomic DNAs of samples 1 to 23,respectively.B: Agarose gel electrophoresis of PCR from samples.M: DNA marker trans 2K; 1 to 22:PCR of samples 1 to 22,respectively.(M: maker P: positive control N: negative control)
序号 | 菌株编号 | 相似菌株 | 相似性(%) | 抑菌圈直径类型(mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.a | P.a | E.c | K.p | E.a | S.t | C.a | A.t | V.d | F.o | ||||
1 | TRM 76131 | Cellulosimicrobium marinum RS-7-4 | 98.99 | — | — | + | — | + | + | ++ | — | +++ | + |
2 | TRM 76130 | Rhizobium tarimense PL-41 | 99.71 | ++ | — | + | — | — | + | +++ | +++ | ++ | |
3 | TRM 76129 | Salmonella enterica subsp.entericaL T2 | 99.23 | — | — | — | + | + | + | ++ | ++ | ++ | — |
4 | TRM 76146 | Rhizobium tarimense PL-41 | 99.05 | — | — | + | — | + | + | — | + | + | — |
5 | TRM 76147 | Microbacterium petrolearium LAM0410 | 98.56 | — | + | — | — | — | — | + | +++ | +++ | + |
6 | TRM 76156 | Rhizobium tarimense PL-41 | 98.84 | — | — | — | — | — | — | +++ | +++ | +++ | + |
7 | TRM 76174 | Neorhizobium alkalisol CCBAU 01393i | 98.84 | — | — | — | + | + | — | +++ | +++ | +++ | + |
8 | TRM 76175 | Rhizobium rosettiformans W3 | 99.06 | — | — | — | + | + | — | ++ | ++ | — | — |
9 | TRM 76101 | Pseudochrobactrum asaccharolyticum DSM 25619 | 99.18 | — | + | ++ | ++ | ++ | +++ | — | — | — | |
10 | TRM 76159 | Phyllobacterium myrsinacearum DSM 5892 | 99.41 | — | — | + | + | — | + | ++ | — | +++ | +++ |
11 | TRM 76062 | Bacillus rugosus SPB7 | 99.86 | — | — | — | + | + | + | — | — | — | — |
12 | TRM 76132 | Rhizobium tarimense PL-41 | 99.56 | — | + | — | — | — | — | + | +++ | ++ | ++ |
13 | TRM 76072 | Streptomyces tunisiensis CN-207 | 98.98 | ++ | +++ | — | — | — | — | — | — | — | — |
14 | TRM 76100 | Achromobacter marplatensis B2 | 99.71 | — | + | — | + | + | — | — | +++ | — | ++ |
15 | TRM 76153 | Bacillus cabrialesii TE3 | 99.79 | — | — | — | — | — | — | ++ | +++ | + | ++ |
Tab.2 Some strains with strong activity against different pathogens
序号 | 菌株编号 | 相似菌株 | 相似性(%) | 抑菌圈直径类型(mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.a | P.a | E.c | K.p | E.a | S.t | C.a | A.t | V.d | F.o | ||||
1 | TRM 76131 | Cellulosimicrobium marinum RS-7-4 | 98.99 | — | — | + | — | + | + | ++ | — | +++ | + |
2 | TRM 76130 | Rhizobium tarimense PL-41 | 99.71 | ++ | — | + | — | — | + | +++ | +++ | ++ | |
3 | TRM 76129 | Salmonella enterica subsp.entericaL T2 | 99.23 | — | — | — | + | + | + | ++ | ++ | ++ | — |
4 | TRM 76146 | Rhizobium tarimense PL-41 | 99.05 | — | — | + | — | + | + | — | + | + | — |
5 | TRM 76147 | Microbacterium petrolearium LAM0410 | 98.56 | — | + | — | — | — | — | + | +++ | +++ | + |
6 | TRM 76156 | Rhizobium tarimense PL-41 | 98.84 | — | — | — | — | — | — | +++ | +++ | +++ | + |
7 | TRM 76174 | Neorhizobium alkalisol CCBAU 01393i | 98.84 | — | — | — | + | + | — | +++ | +++ | +++ | + |
8 | TRM 76175 | Rhizobium rosettiformans W3 | 99.06 | — | — | — | + | + | — | ++ | ++ | — | — |
9 | TRM 76101 | Pseudochrobactrum asaccharolyticum DSM 25619 | 99.18 | — | + | ++ | ++ | ++ | +++ | — | — | — | |
10 | TRM 76159 | Phyllobacterium myrsinacearum DSM 5892 | 99.41 | — | — | + | + | — | + | ++ | — | +++ | +++ |
11 | TRM 76062 | Bacillus rugosus SPB7 | 99.86 | — | — | — | + | + | + | — | — | — | — |
12 | TRM 76132 | Rhizobium tarimense PL-41 | 99.56 | — | + | — | — | — | — | + | +++ | ++ | ++ |
13 | TRM 76072 | Streptomyces tunisiensis CN-207 | 98.98 | ++ | +++ | — | — | — | — | — | — | — | — |
14 | TRM 76100 | Achromobacter marplatensis B2 | 99.71 | — | + | — | + | + | — | — | +++ | — | ++ |
15 | TRM 76153 | Bacillus cabrialesii TE3 | 99.79 | — | — | — | — | — | — | ++ | +++ | + | ++ |
[1] | The 10 × '20 Initiative: Pursuing a Global Commitment to Develop 10 New Antibacterial Drugs by 2020[J]. Clinical Infectious Diseases, 2010, 50(8). |
[2] | 刘志恒. 放线菌-微生物药物的重要资源[J]. 微生物学通报, 2005, 32(6):143-145. |
LIU Zhiheng. Actinomycetes, an important resource of microbiological drugs[J]. Microbiology Bulletin, 2005, 32(6):143-145. | |
[3] | 阿尔新. 新疆特殊生境沙生植物柽柳根际土壤放线菌多样性及其活性物质的基础研究[D]. 乌鲁木齐: 新疆医科大学, 2013. |
Alxin. Basic study on diversity and active substances of actinomycetes in rhizosphere soil of Tamarix, a desert plant in special habitats-in Xinjiang[D]. Urumqi: Xinjiang Medical University, 2013. | |
[4] | 雷艳娟, 夏占峰, 曾红, 等. 新疆13种荒漠植物根内生放线菌多样性及其抗菌活性筛选[J]. 塔里木大学学报, 2020, 32(3):1-13. |
LEI Yanjuan, XIA Zhanfeng, ZENG Hong, et al. Biodiversity and antimicrobial activity of endophytic actinomycetes from roots of 13 desert plants in Xinjiang[J]. Journal of Tarim University, 2020, 32(3):1-13. | |
[5] | 高雪, 辜运富, 尼玛扎西, 等. 西藏青稞根际土壤可培养放线菌的遗传多样性及其促生功能分析[J]. 四川农业大学学报, 2019, 37(6):777-784. |
GAO Xue, GU Yunfu, Nimazhaxi, et al. Genetic diversity and growth promoting function of culturableactinomyces in rhizosphere Soil of highl and barley in Tibet[J]. Journal of Sichuan Agricultural University, 2019, 37(6):777-784. | |
[6] | 宋阳, 王秋菊, 杨旭, 等. 新疆盐碱土壤耐盐碱放线菌筛选初步鉴定[J]. 生物化工, 2020, 6(3):80-84. |
SONG Yang, WANG Qiuju, YANG Xu, et al. Preliminary identification of saline-alkali tolerant actinomycetes in saline-alkali soils in Xinjiang[J]. Biochemistry, 2020, 6(3):80-84.
DOI URL |
|
[7] | 张瑶, 夏占峰, 曹鑫波, 等. 阿克苏高盐咸水滩放线菌分离新策略及系统发育多样性[J]. 微生物学报, 2013, 53(8):798-808. |
ZHANG Yao, XIA Zhanfeng, CAO Xinbo. New strategy and phylogenetic diversity of actinomycetes isolated from Aksu salt water shoal[J]. Acta Microbiologica Sinica, 2013, 53(8):798-808. | |
[8] | 杨涵, 黄凯峰, 徐溯, 等. 影响金黄色葡萄球菌杀白细胞素ED转录表达的培养条件[J]. 微生物与感染, 2019, 14(1):23-29. |
YANG Han, HUANG Kaifeng, XU Su, et al. Staphylococcus aureus leucocidin ED transcriptional expression of culture conditions[J]. Microbe and Infection, 2019, 14(1):23-29. | |
[9] |
石浩, 王仁才, 王芳芳, 等. 猕猴桃软腐病主要病原菌的分离,鉴定及其生长特性研究[J]. 核农学报, 2020, 34(11):2425-2434.
DOI |
SHI Hao, WANG Rencai, WANG Fangfang, et al. Isolation, identification and growth characteristics of the main pathogen of kiwifruit soft rot[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11):2425-2434.
DOI |
|
[10] | 邵慧慧, 张西梅, 刘紫祺, 等. 引起西洋参锈腐病的Ilyonectria属4种病原菌的生物学特性及其对不同杀菌剂的敏感性[J]. 植物病理学报, 2020, 34(11):2425-2434. |
SHAO Huihui, ZHANG Ximei, LIU Ziqi, et al. Biological characteristics of four pathogens of the genus Ilyonectria causing rust rot of American ginseng and their susceptibility to different fungicides[J]. Plant Pathology Bulletin, 2020, 34(11):2425-2434. | |
[11] | 马爱爱, 张新芳, 赵林, 等. 冻土链霉菌分离菌株多样性及其生理活性的研究[J]. 冰川冻土, 2012, 34(6):1508-1516. |
MA Aiai, ZHANG Xinfang, ZHAO Lin, et al. Diversity and physiological activity of Streptomyces permafrost isolates[J]. Glacial Permafrost, 2012, 34(6):1508-1516. | |
[12] | Li J D, Peng X, Wei Y Z, et al. Three New Diketopiperazines from the Previously Uncultivable Marine Bacterium Gallaecimonasmangrovi HK-28 Cultivated by iChip[J]. Chemistry & Biodiversity, 2020, 17(7). |
[13] | 詹庆, 曹雅丽. 土壤中放线菌的分离与应用[J]. 现代园艺, 2017,(3):24-25. |
ZHAN Qing, CAO Yali. Isolation and Application of Actinomycetes in Soil[J]. Modern Horticulture, 2017,(3):24-25. | |
[14] | 周娟, 龙云川, 刘峙嵘, 等. 贵州黄果树土壤放线菌的分离与纯化研究初报[J]. 贵州科学, 2016, 34(5):5-8. |
ZHOU Juan, LONG Yunchuan, LIU Zhirong, et al. Preliminary report on the isolation and purification of soil actinomycetes from fruit trees in Guizhou[J]. Guizhou Science, 2016, 34(5): 5-8. | |
[15] | 王聪, 王坤, 姜明国, 等. 广西北部湾放线菌的分离筛选及活性产物的鉴定[J]. 天然产物研究与开发, 2019, 31(7):1170-1176. |
WANG Cong, WANG Kun, JIANG Mingguo, et al. Isolation and screening of actinomycetes from Beibu Gulf of Guangxi and identification of their active products[J]. Natural Products Research and Development, 2019, 31(7):1170-1176. | |
[16] | 王小国. 生物学软件在核酸序列比对与系统发育分析中的应用[J]. 现代农业科技, 2015,(12):347-348. |
WANG Xiaoguo. Application of biological software in nucleic acid sequence alignment and phylogenetic analysis[J]. Modern Agricultural Science and Technology, 2015, (12):347-348. | |
[17] | Jongsik C, Aharon O, Antonio V, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1). |
[18] | 方正, 詹伟, 吴庆珊, 等. 金钗石斛根际土壤放线菌的分离及抑菌活性筛选[J]. 贵州师范大学学报(自然科学版), 2018, 36(6):47-53. |
FANG Zheng, ZHAN Wei, WU Qingshan, et al. Isolation and antimicrobial activity screening of actinomycetes in rhizosphere soil of Dendrobium nobile[J]. Journal of Guizhou Normal University (Natural Science Ed.), 2018, 36(6):47-53. | |
[19] |
夏占峰, 关统伟, 阮继生, 等. 艾丁湖沉积物放线菌多样性[J]. 微生物学报, 2011, 51(8):1023-1031.
PMID |
XIA Zhanfeng, GUAN Tongwei, RUAN Jisheng, et al. Diversity of actinomycetes in the sediments of Lake Aiding[J]. Acta Microbiologica Sinica, 2011, 51(8):1023-1031.
PMID |
|
[20] |
潘文娟, 林家富, 王小桃, 等. 西藏湖泊放线菌的分离鉴定及抗菌活性测定[J]. 生物技术通报, 2020, 36(7):97-103.
DOI |
PAN Wenjie, LIN Jiafu, WANG Xiaotao, et al. Isolation, identification and determination of antimicrobial activity of actinomycetes from lakes in Xizang[J]. Biotechnology Bulletin, 2020, 36(7):97-103.
DOI |
|
[21] | 王婧, 翟伟卜, 高环, 等. 链格孢引起的病害严重危害农作物生产并危及农产品安全[J]. 植物保护, 2017, 43(4):9-15. |
WANG Jing, ZHAI Weibo, GAO Huan, et al. Diseases caused by Alternariaalternata seriously endanger crop production and the safety of agricultural products[J] Plant Protection, 2020, 36(7):97-103. |
[1] | LI Yixin, CHEN Yong, LIU Xiaolu, Ainijiang Ersiman, XU Lijuan, LIU Qianqian, BAO Xiaowei, SONG Suqin. Isolation, identification and activity of halophilic bacteria from Dabancheng Salt Lake, Xinjiang [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1766-1772. |
[2] | Mulatijiang Xiadimaimaiti, Aikebaier Yilahong, Amanula Yimingniyazi. Effects of Slope Aspect and Altitude on Characteristics and Diversity of Grassland Plant Communities in Wusun Mountain [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2724-2733. |
[3] | GE Yao, WANG Zhenxi. Soil Factors Effects on Herbaceous Species Diversity in Picea schrenkiana Forest of Different Forest type [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 134-144. |
[4] | ZOU Zhuo-ying, PAN Cun-de, LI Gui-hua, YU Ge-bi, ZHANG Fan, LIU Bo, GUO Ke. The Community Diversity in Pyrogenic Succession of Kanas Taiga and Its Measure Indices [J]. Xinjiang Agricultural Sciences, 2019, 56(5): 785-796. |
[5] | LI Yang;LI Jian-qiang;SONG Su-qin;WANG Jing;CHU Min. The Screening and Identification of Antagonistic Actinomycetes Strains from the High Radiation Soil [J]. , 2017, 54(1): 132-139. |
[6] | WANG Xiao-dong;LI Xu;DONG Yi-qiang;MA Hui-min;LI Ning. Effects of Simulated Nitrogen Deposition on Community Characteristics in Saline Desert Ecosystem of Northern Xinjiang [J]. , 2016, 53(5): 967-973. |
[7] | Kasidaer Nuerdanbieke;SUN Zong-jiu;AN Sha-zhou;WEI Peng. Influences of Short-term Grazing Exclusion on Vegetation Characteristics and Diversity of Zhaosu Meadow Steppe [J]. , 2016, 53(4): 737-743. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||