Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (2): 359-367.DOI: 10.6048/j.issn.1001-4330.2023.02.013
• Horticultural Special Local Products·Plant Protection·Microbes·Soil Fertilizer· Water Saving Irrigation • Previous Articles Next Articles
XU Chang1(), ZHANG Guangdi1,2(
), ZHANG Haoyu1, JIA Yinan1, ZHANG Kunming1, WANG Jianglong1, HOU Xiaojian1
Received:
2022-07-26
Online:
2023-02-20
Published:
2023-03-31
Correspondence author:
ZHANG Guangdi(1963-),male,professor,majoring in fruit tree cultvation and preserration,(E-mail)zhangguangdi333909@sina.com
Supported by:
许昌1(), 张光弟1,2(
), 张浩宇1, 贾毅男1, 张昆明1, 王江龙1, 侯晓健1
通讯作者:
张光弟(1963-),男,宁夏银川人,教授,硕士生导师,研究方向为果树栽培与保鲜,(E-mail)zhangguangdi333909@sina.com
作者简介:
许昌(1997-),男,山西大同人,硕士研究生,研究方向为果树栽培与采后保鲜,(E-mail)mailto:3560116875@qq.com 1287450118@qq.com
基金资助:
CLC Number:
XU Chang, ZHANG Guangdi, ZHANG Haoyu, JIA Yinan, ZHANG Kunming, WANG Jianglong, HOU Xiaojian. Studies on Volatile Organic Compounds of Muscat Hamburg Berry Treated by Foliar Spraying Silicon during the Growing Period[J]. Xinjiang Agricultural Sciences, 2023, 60(2): 359-367.
许昌, 张光弟, 张浩宇, 贾毅男, 张昆明, 王江龙, 侯晓健. 叶面喷施硅素对玫瑰香果实风味物质的影响[J]. 新疆农业科学, 2023, 60(2): 359-367.
时间Time | E1(mL/min) | E2(mL/min) | R |
---|---|---|---|
00:00,000 | 150 | 2 | rec |
02:00,000 | 150 | 2 | - |
10:00,000 | 150 | 10 | - |
20:00,000 | 150 | 100 | - |
25:00,000 | 150 | 150 | Stop |
Table 1 GC-IMS conditions
时间Time | E1(mL/min) | E2(mL/min) | R |
---|---|---|---|
00:00,000 | 150 | 2 | rec |
02:00,000 | 150 | 2 | - |
10:00,000 | 150 | 10 | - |
20:00,000 | 150 | 100 | - |
25:00,000 | 150 | 150 | Stop |
Fig.2 GC-IMS spectra of volatile organic compounds in samples treated with different leaf spray doses (direct comparison picture) Note:The red vertival line at abscissa 8.0 is the reactionvion peak(reaction ion peak,RIP),each point on both sides represents a compound,the darker the point color,the larger the area,the larger the peak volume
编号 Number | 化合物名称 Compound name | CAS | 分子式 Molecular formula | 保留指数 Retention index | 保留时间 Retention (s) | 漂移时间 Drift time (ms) |
---|---|---|---|---|---|---|
醇类Alcohols | ||||||
1 | 己烯醇 | 2305-21-7 | C6H12O | 866.5 | 355.9 | 1.516 |
2 | 正己醇(单体) | 111-27-3 | C6H14O | 884.9 | 308.835 | 1.329 |
3 | 正己醇(二聚体) | 111-27-3 | C6H14O | 883.4 | 378.69 | 1.645 |
4 | 3-甲基-3-丁烯-1-醇(单体) | 763-32-6 | C5H10O | 741.9 | 222.69 | 1.245 |
5 | 3-甲基-3-丁烯-1-醇(二聚体) | 763-32-6 | C5H10O | 736.5 | 218.4 | 1.492 |
6 | 芳樟醇(单体) | 78-70-6 | C10H18O | 1 113.1 | 802.035 | 1.218 |
7 | 芳樟醇(二聚体) | 78-70-6 | C10H18O | 1 101.4 | 777.66 | 1.71 |
8 | 乙醇(单体) | 64-17-5 | C2H6O | 536.2 | 114.27 | 1.047 |
9 | 乙醇(二聚体) | 64-17-5 | C2H6O | 519.4 | 108.42 | 1.129 |
醛类Aldehydes | ||||||
10 | 乙醛 | 66-25-1 | C2H4O | 801 | 276.12 | 1.56 |
11 | 壬醛 | 124-19-6 | C9H18O | 1105.5 | 786.045 | 1.48 |
12 | 丁醛(单体) | 123-72-8 | C4H8O | 579.5 | 130.845 | 1.111 |
13 | 丁醛(二聚体) | 123-72-8 | C4H8O | 574.7 | 128.895 | 1.281 |
14 | 苯甲醛(单体) | 100-52-7 | C7H6O | 953.7 | 499.785 | 1.145 |
15 | 苯甲醛(二聚体) | 100-52-7 | C7H6O | 953.3 | 498.81 | 1.463 |
16 | 3-甲基丁醛(单体) | 590-86-3 | C5H10O | 655.5 | 165.945 | 1.175 |
17 | 3-甲基丁醛(二聚体) | 590-86-3 | C5H10O | 655.9 | 166.14 | 1.401 |
酯类Esters | ||||||
18 | 正己酸乙酯(单体) | 123-66-0 | C8H16O2 | 1 011.9 | 613.08 | 1.328 |
19 | 正己酸乙酯(二聚体) | 123-66-0 | C8H16O2 | 1 011.8 | 612.885 | 1.811 |
20 | 乙酸异戊酯 | 123-92-2 | C7H14O2 | 875.1 | 366.795 | 1.747 |
21 | 乙酸丁酯 | 123-86-4 | C6H12O2 | 811.3 | 287.235 | 1.237 |
22 | 乙酸乙酯 | 141-78-6 | C4H8O2 | 650.2 | 163.215 | 1.34 |
23 | 乙酸异丁酯 | 110-19-0 | C6H12O2 | 770.4 | 246.675 | 1.612 |
24 | 丙酸乙酯(单体) | 105-37-3 | C5H10O2 | 709.6 | 198.315 | 1.148 |
25 | 丙酸乙酯(二聚体) | 105-37-3 | C5H10 | 708 | 197.145 | 1.45 |
26 | 乙酸正丙酯(单体) | 109-60-4 | C5H10O2 | 712.1 | 200.07 | 1.164 |
27 | 乙酸正丙酯(二聚体) | 109-60-4 | C5H10O2 | 710.5 | 198.9 | 1.145 |
28 | 苯甲酸甲酯(单体) | 93-58-3 | C8H8O2 | 1 090.8 | 756.015 | 1.216 |
29 | 苯甲酸甲酯(二聚体) | 93-58-3 | C8H8O2 | 1091.7 | 757.77 | 1.603 |
酮类Ketones | ||||||
30 | 6-甲基-5-庚烯-2-酮 | 110-93-0 | C8H14O | 987 | 570.18 | 1.175 |
31 | 3-戊酮 | 96-22-0 | C5H10O | 698.2 | 190.319 99 | 1.111 |
杂环类Heterocyclic | ||||||
32 | 2-戊基呋喃 | 3777-69-3 | C9H14O | 988.8 | 574.274 96 | 1.248 |
Table 2 Qualitative of sample of Muscat Hamburg berry on VOCs.
编号 Number | 化合物名称 Compound name | CAS | 分子式 Molecular formula | 保留指数 Retention index | 保留时间 Retention (s) | 漂移时间 Drift time (ms) |
---|---|---|---|---|---|---|
醇类Alcohols | ||||||
1 | 己烯醇 | 2305-21-7 | C6H12O | 866.5 | 355.9 | 1.516 |
2 | 正己醇(单体) | 111-27-3 | C6H14O | 884.9 | 308.835 | 1.329 |
3 | 正己醇(二聚体) | 111-27-3 | C6H14O | 883.4 | 378.69 | 1.645 |
4 | 3-甲基-3-丁烯-1-醇(单体) | 763-32-6 | C5H10O | 741.9 | 222.69 | 1.245 |
5 | 3-甲基-3-丁烯-1-醇(二聚体) | 763-32-6 | C5H10O | 736.5 | 218.4 | 1.492 |
6 | 芳樟醇(单体) | 78-70-6 | C10H18O | 1 113.1 | 802.035 | 1.218 |
7 | 芳樟醇(二聚体) | 78-70-6 | C10H18O | 1 101.4 | 777.66 | 1.71 |
8 | 乙醇(单体) | 64-17-5 | C2H6O | 536.2 | 114.27 | 1.047 |
9 | 乙醇(二聚体) | 64-17-5 | C2H6O | 519.4 | 108.42 | 1.129 |
醛类Aldehydes | ||||||
10 | 乙醛 | 66-25-1 | C2H4O | 801 | 276.12 | 1.56 |
11 | 壬醛 | 124-19-6 | C9H18O | 1105.5 | 786.045 | 1.48 |
12 | 丁醛(单体) | 123-72-8 | C4H8O | 579.5 | 130.845 | 1.111 |
13 | 丁醛(二聚体) | 123-72-8 | C4H8O | 574.7 | 128.895 | 1.281 |
14 | 苯甲醛(单体) | 100-52-7 | C7H6O | 953.7 | 499.785 | 1.145 |
15 | 苯甲醛(二聚体) | 100-52-7 | C7H6O | 953.3 | 498.81 | 1.463 |
16 | 3-甲基丁醛(单体) | 590-86-3 | C5H10O | 655.5 | 165.945 | 1.175 |
17 | 3-甲基丁醛(二聚体) | 590-86-3 | C5H10O | 655.9 | 166.14 | 1.401 |
酯类Esters | ||||||
18 | 正己酸乙酯(单体) | 123-66-0 | C8H16O2 | 1 011.9 | 613.08 | 1.328 |
19 | 正己酸乙酯(二聚体) | 123-66-0 | C8H16O2 | 1 011.8 | 612.885 | 1.811 |
20 | 乙酸异戊酯 | 123-92-2 | C7H14O2 | 875.1 | 366.795 | 1.747 |
21 | 乙酸丁酯 | 123-86-4 | C6H12O2 | 811.3 | 287.235 | 1.237 |
22 | 乙酸乙酯 | 141-78-6 | C4H8O2 | 650.2 | 163.215 | 1.34 |
23 | 乙酸异丁酯 | 110-19-0 | C6H12O2 | 770.4 | 246.675 | 1.612 |
24 | 丙酸乙酯(单体) | 105-37-3 | C5H10O2 | 709.6 | 198.315 | 1.148 |
25 | 丙酸乙酯(二聚体) | 105-37-3 | C5H10 | 708 | 197.145 | 1.45 |
26 | 乙酸正丙酯(单体) | 109-60-4 | C5H10O2 | 712.1 | 200.07 | 1.164 |
27 | 乙酸正丙酯(二聚体) | 109-60-4 | C5H10O2 | 710.5 | 198.9 | 1.145 |
28 | 苯甲酸甲酯(单体) | 93-58-3 | C8H8O2 | 1 090.8 | 756.015 | 1.216 |
29 | 苯甲酸甲酯(二聚体) | 93-58-3 | C8H8O2 | 1091.7 | 757.77 | 1.603 |
酮类Ketones | ||||||
30 | 6-甲基-5-庚烯-2-酮 | 110-93-0 | C8H14O | 987 | 570.18 | 1.175 |
31 | 3-戊酮 | 96-22-0 | C5H10O | 698.2 | 190.319 99 | 1.111 |
杂环类Heterocyclic | ||||||
32 | 2-戊基呋喃 | 3777-69-3 | C9H14O | 988.8 | 574.274 96 | 1.248 |
Fig.3 GalleryPlot of samples treated with different leaf spray doses(Finger-print) Note:Each row represents a selected part of the signal peak in a grape sample,Each column represents the same volatile organic compound in different signal peak in grape sample
CK | CK | CK | 200X | 200X | 200X | 400X | 400X | 400X | 600X | 600X | 600X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | CK | |||||||||||
91 | 100 | CK | ||||||||||
85 | 80 | 100 | CK | |||||||||
74 | 67 | 79 | 100 | 200X | ||||||||
73 | 68 | 72 | 82 | 100 | 200X | |||||||
83 | 78 | 80 | 79 | 88 | 100 | 200X | ||||||
85 | 79 | 79 | 82 | 81 | 85 | 100 | 400X | |||||
83 | 78 | 80 | 76 | 86 | 88 | 84 | 100 | 400X | ||||
87 | 84 | 82 | 75 | 81 | 86 | 86 | 93 | 100 | 400X | |||
95 | 89 | 84 | 77 | 76 | 86 | 86 | 85 | 88 | 100 | 600X | ||
95 | 93 | 83 | 72 | 71 | 81 | 83 | 82 | 86 | 94 | 100 | 600X | |
92 | 95 | 80 | 67 | 68 | 79 | 79 | 79 | 84 | 89 | 94 | 100 | 600X |
Table 4 Similarity of different samples
CK | CK | CK | 200X | 200X | 200X | 400X | 400X | 400X | 600X | 600X | 600X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | CK | |||||||||||
91 | 100 | CK | ||||||||||
85 | 80 | 100 | CK | |||||||||
74 | 67 | 79 | 100 | 200X | ||||||||
73 | 68 | 72 | 82 | 100 | 200X | |||||||
83 | 78 | 80 | 79 | 88 | 100 | 200X | ||||||
85 | 79 | 79 | 82 | 81 | 85 | 100 | 400X | |||||
83 | 78 | 80 | 76 | 86 | 88 | 84 | 100 | 400X | ||||
87 | 84 | 82 | 75 | 81 | 86 | 86 | 93 | 100 | 400X | |||
95 | 89 | 84 | 77 | 76 | 86 | 86 | 85 | 88 | 100 | 600X | ||
95 | 93 | 83 | 72 | 71 | 81 | 83 | 82 | 86 | 94 | 100 | 600X | |
92 | 95 | 80 | 67 | 68 | 79 | 79 | 79 | 84 | 89 | 94 | 100 | 600X |
[1] | 周晓芳, 张福庆, 刘建福, 等. 我国玫瑰香葡萄品种栽培技术现状分析[J]. 天津农业科学, 2014, 20(6):97-102. |
ZHOU Xiaofang, ZHANG Fuqing, LIU Jianfu, et al. Analysis on the status quo of cultivation technology of muscat grape varieties in my country[J]. Tianjin Agricultural Sciences, 2014, 20(6):97-102. | |
[2] | 朱志强, 高丕生, 张平, 等. 不同保鲜剂结合冰温对玫瑰香葡萄贮藏品质和生理生化的影响[J]. 食品工业科技, 2013, 34(5):333-337. |
ZHU Zhiqiang, GAO Pisheng, ZHANG Ping, et al. Effects of different preservatives combined with ice temperature on the storage quality and physiology and biochemistry of Muscat grape[J]. Food Industry Science and Technology, 2013, 34(5): 333-337. | |
[3] | 蔡德龙. 国内外硅肥研究与应用进展[J]. 磷肥与复肥, 2017, 32(1):37-39. |
CAI Delong. The research and application progress of silicon fertilizer at home and abroad[J]. Phosphate Fertilizer and Compound Fertilizer, 2017, 32(1):37-39. | |
[4] | Shi Y, Zhang Y, Han W, etal. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solarium lycopersicum L[J]. Frontiers in Plant Science, 2016,(7): 196. |
[5] | 张环纬, 陈彪, 温心怡, 等. 外源硅对干旱胁迫下烟草幼苗生长、叶片光合及生理指标的影响[J]. 生物技术通报, 2019, 35(1):85-94. |
ZHANG Huanwei, CHEN Biao, WEN Xinyi, et al. Effects of exogenous silicon on growth, leaf photosynthesis and physiological indexes of tobacco seedlings under drought stress[J]. Biotechnology Bulletin, 2019, 35(1):85-94. | |
[6] | Gunesa, Alii, Bagcieg, et al. Silicon- mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil[J]. Plant soil, 2007, (290):103- 114. |
[7] |
翟江, 高原, 张晓伟, 等. 硅钙对日光温室黄瓜光合作用及产量和品质的影响[J]. 园艺学报, 2019, 46(4):701- 713.
DOI |
ZHAI Jiang, GAO Gao, ZHANG Xiaowei, et al. The effects of silicon and calcium on photosynthesis, yield and quality of cucumber in solar greenhouse[J]. Acta Horticulturae Sinica, 2019, 46(4):701- 713.
DOI |
|
[8] | 高荣广, 曹逼力. 硅对番茄果实发育及硅吸收特性的影响[J]. 山东农业科学, 2016, 48 (9):88-91. |
GAO Rongguang, CAO Bili. Effects of silicon on tomato fruit development and silicon absorption characteristics[J]. Shandong Agricultural Sciences, 2016, 48 (9):88-91. | |
[9] | 秦永梅, 韩凤英, 刘素慧, 等. 硅对沙培马铃薯生长发育、光合色素与光合特性的影响[J]. 江苏农业科学, 2018, 46(20):72-75. |
QIN Yongmei, HAN Fengying, LIU Suhui, et al. Effects of silicon on the growth and development, photosynthetic pigments and photosynthetic characteristics of potato in the sand culture[J]. Jiangsu Agricultural Sciences, 2018, 46(20):72-75. | |
[10] | 周丽君, 孙秀东, 刘世琦. 硫硅配施对水培青蒜苗生长、光合特性及品质的影响[J]. 中国蔬菜, 2018,(11):45-48. |
ZHOU Lijun, SUN Xiudong, LIU Shiqi. Effects of combined application of sulfur and silicon on the growth, photosynthetic characteristics and quality of hydroponic green garlic seedlings[J]. Chinese Vegetables, 2018,(11):45-48. | |
[11] | 石彦召, 荣娇凤, 苏利, 等. 增施硅肥对葡萄生理、品质的影响研究[J]. 吉林农业, 2010,(11):98-100. |
SHI Yanzhao, RONG Jiaofeng, SU Li, et al. The effect of increasing silicon fertilizer on grape physiology and quality[J]. Jilin Agriculture, 2010,(11): 98-100. | |
[12] |
张平艳, 高荣广, 杨凤娟, 等. 硅对连作黄瓜幼苗光合特性和抗氧化酶活性的影响[J]. 应用生态学报, 2014, 25(6):1733-1738.
PMID |
ZHANG Pingyan, GAO Rongguang, YANG Fengjuan, et al. Effects of silicon on photosynthetic characteristics and antioxidant enzyme activities of continuous cropping cucumber seedlings[J]. Chinese Journal of Applied Ecology, 2014, 25(6):1733-1738.
PMID |
|
[13] | 张梅. 施硅对石灰性土壤上鲜食葡萄生长、产量及果实品质性状的影响[D]. 石河子: 石河子大学, 2018. |
ZHANG Mei. The effect of silicon application on the growth, yield and fruit quality of table grapes on calcareous soil[D]. Shihezi: Shihezi University, 2018. | |
[14] | 冯学梅, 梁玉文, 李阿波, 等. 宁夏贺兰山东麓酿酒葡萄产量控制对果实品质及葡萄酒质量的影响[J]. 宁夏农林科技, 2020, 61(10): 6-9. |
FENG Xuemei, LIANG Yuwen, LI Abo, et al. The effect of wine grape yield control on the fruit quality and wine quality at the eastern foot of Helan Mountain in Ningxia[J]. Ningxia Agriculture and Forestry Science and Technology, 2020, 61(10): 6-9. | |
[15] | 刘小云, 江昱轩, 智情, 等. 脐橙常规品质测定及复检的主要影响因素研究[J]. 赣南师范大学学报, 2020, 41(6): 100-103. |
LIU Xiaoyun, JIANG Yuxuan, ZHI Qing, et al. Research on Main Influencing Factors of Routine Quality Determination and Re-inspection of Navel Orange[J]. Journal of Gannan Normal University, 2020, 41(6): 100-103. | |
[16] | 史星雲, 王向红, 金娜, 等. 褪黑素对设施延后栽培‘红地球’葡萄果实品质的影响[J]. 中国果树, 2020,(2): 40-44. |
SHI Xingyun, WANG Xianghong, JIN Na, et al. The effect of melatonin on the fruit quality of ‘Red Globe’ grapes cultivated in the facility[J]. China Fruit Tree, 2020,(2): 40-44. | |
[17] | 李磊, 纪立东, 王锐, 等. 硅肥施用方式在贺兰山东麓酿酒葡萄上的应用比较[J]. 江苏农业科学, 2018, 46(2):77-80. |
LI Lei, JI Lidong, WANG Rui, et al. Application comparison of silicon fertilizer application methods on wine grapes at the eastern foot of Helan Mountain[J]. Jiangsu Agricultural Sciences, 2018, 46(2):77-80. | |
[18] | 董娟华, 徐德坤, 刘宝传, 等施用硅肥对葡萄产量及品质的影响[J]. 中国园艺文摘, 2016,(6):35-36. |
DONG Juanhua, XU Dekun, LIU Baochuan, et al. The effect of applying silicon fertilizer on the yield and quality of grapes[J]. Chinese Horticultural Abstracts 2016,(6):35-36. | |
[19] | Kalliopi A. Roubelakis Angelakis. Grapevine Molecular Physiology & Biotechnology |
[20] |
Sun W X, Hu K, Zhang J X, et al. Aroma modulation of Cabernet Gernischt dry red wine by optimal enzyme treatment strategy in winemaking[J]. Food Chemistry, 2018, 245(15): 1248-1256.
DOI URL |
[1] | ZHENG Suhui, HE Qing, ZHANG Jian, GUAN Junfeng, QIN Nannan, YANG Yijingming, LIU Xueyan, WU Bin. Effects of Exogenous Methyl Jasmonate on Quality and Disease of Grapefruit [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 190-198. |
[2] | MENG Xin-tao, ZHANG Ting, XU Ming-qiang, ZOU Shu-ping, MA Yan, ZHANG Qian. Detection of Authenticity of Mutton withGas Chromatography-Ion Mobility Spectrometry(GC-IMS) [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1939-1947. |
[3] | DONG Jin-lei, LI Yue-rong, WANG Xiao-qin, ZHANG Bo. Coupling Mechanism between -Resveratrol Accumulation Induced by FeCl3 Solution and Halliwell-Asada Pathway in Grapevine [J]. Xinjiang Agricultural Sciences, 2017, 54(9): 1713-1720. |
Viewed | ||||||
Full text 57
|
|
|||||
Abstract |
|
|||||