

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (5): 1084-1091.DOI: 10.6048/j.issn.1001-4330.2025.05.005
丁树根1(
), 石玉杰1, 阿布都克尤木·阿不都热孜克2, 徐麟2, 吴元龙1, 李志博1, 林海荣1, 赵曾强3, 聂新辉1(
)
收稿日期:2024-10-11
出版日期:2025-05-20
发布日期:2025-07-09
通信作者:
聂新辉(1982-),女,新疆人,教授,博士,硕士生/博士生导师,研究方向为棉花分子育种,(E-mail)xjnxh2004130@126.com作者简介:丁树根(1998-),男,安徽人,硕士研究生,研究方向为棉花作物遗传育种,(E-mail)dsg199878@gmail.com
基金资助:
DING Shugen1(
), SHI Yujie1, Abudukeyoumu Abudurezike2, XU Lin2, WU Yuanlong1, LI Zhibo1, LIN Hairong1, ZHAO Zengqiang3, NIE Xinhui1(
)
Received:2024-10-11
Published:2025-05-20
Online:2025-07-09
Supported by:摘要:
【目的】基于SSR(Simple sequence repeat,简单重复序列)标记对棉花SOC(Seed oil content,种子油分含量)进行关联分析,挖掘优异等位变异位点,解析棉花种子油分含量性状的遗传机理,为棉花高油分育种提供理论参考。【方法】利用筛选出覆盖棉花全基因组的145对SSR标记对245份棉花材料进行多态性扫描;利用R语言绘制群体表型分布和相关关系图,采用TASSEL软件的混合线性模型进行关联分析,挖掘与SOC相关的优异等位变异位点。【结果】获得34个与SOC相关的等位变异位点(P<0.05)。表型变异解释率为1.83%~8.7%,平均值为5.70%。【结论】挖掘到34个与油分含量性状相关等位变异位点,以及棉花纤维品质和产量相关的位点9个。
中图分类号:
丁树根, 石玉杰, 阿布都克尤木·阿不都热孜克, 徐麟, 吴元龙, 李志博, 林海荣, 赵曾强, 聂新辉. 棉花种子油分含量QTL的定位及遗传效应分析[J]. 新疆农业科学, 2025, 62(5): 1084-1091.
DING Shugen, SHI Yujie, Abudukeyoumu Abudurezike, XU Lin, WU Yuanlong, LI Zhibo, LIN Hairong, ZHAO Zengqiang, NIE Xinhui. Mapping and genetic effect analysis of QTL for cotton seed oil content[J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1084-1091.
| 环境 Environments | 最小值 Min(%) | 最大值 Max(%) | 均值 Mean(%) | 标准差 SD | 变异系数 CV(%) | 广义遗传力 H2(%) |
|---|---|---|---|---|---|---|
| 2018年库尔勒 Korla in 2018 | 13.41 | 21.98 | 17.70 | 3.29 | 5.38 | 96.98 |
| 2019年库尔勒 Korla in 2019 | 14.45 | 21.76 | 17.79 | 1.93 | 9.22 | |
| 2018年石河子 Shihezi 2018 | 13.96 | 21.05 | 17.43 | 1.86 | 9.37 | |
| 2019年石河子 Shihezi 2019 | 14.17 | 19.67 | 16.84 | 1.59 | 10.59 |
表1 油分性状在4个环境下的表型变异
Tab.1 Phenotypic variation of oil traits in four environments
| 环境 Environments | 最小值 Min(%) | 最大值 Max(%) | 均值 Mean(%) | 标准差 SD | 变异系数 CV(%) | 广义遗传力 H2(%) |
|---|---|---|---|---|---|---|
| 2018年库尔勒 Korla in 2018 | 13.41 | 21.98 | 17.70 | 3.29 | 5.38 | 96.98 |
| 2019年库尔勒 Korla in 2019 | 14.45 | 21.76 | 17.79 | 1.93 | 9.22 | |
| 2018年石河子 Shihezi 2018 | 13.96 | 21.05 | 17.43 | 1.86 | 9.37 | |
| 2019年石河子 Shihezi 2019 | 14.17 | 19.67 | 16.84 | 1.59 | 10.59 |
图2 基于 Structure 分析 K 值与 ln(P(D))值和 ΔK 值折线 注:A:K 值与 Mean lnP(K)值折线图;B:ΔK 值随 K 值变化
Fig.2 Lines graph of K value with ln(P(D)) value and ΔK value based on structure analysis Notes:A: Line chart of K value and Mean lnP(K); B: Line chart of ΔK changing with K values
图4 自然群体棉花品种 26 条染色体145个SSR标记位点间的连锁不平衡分布
Fig.4 Linkage disequilibrium distribution among 145 SSR marker loci on 26 chromosomes of natural population cotton varieties
| 性状 Trait | 位点 Locus | P_FDR | 表型变 异解释率 Phenotypic variation explanatiory rateR2(%) |
|---|---|---|---|
| HAU4483b** | 2.38E-06 | 8.70 | |
| HAU4483a** | 6.10E-06 | 8.68 | |
| MON_SHIN-1585a** | 6.29E-06 | 7.54 | |
| MON_SHIN-1481a** | 1.14E-05 | 7.32 | |
| MON_CGR5447a** | 1.96E-05 | 7.00 | |
| HAU4022b** | 8.97E-05 | 6.93 | |
| MUSS422aa** | 1.45E-04 | 6.90 | |
| SOC | HAU3071ad** | 3.18E-04 | 6.82 |
| 种子油分含量 | HAU0875** | 0.0034 | 6.69 |
| NAU3346ba** | 0.0036 | 6.65 | |
| MON_DPL0375ca** | 0.0042 | 6.61 | |
| HAU-SNP113b** | 0.0055 | 6.54 | |
| NAU3774a** | 0.0061 | 6.54 | |
| NAU3736bb* | 0.0241 | 6.38 | |
| HAU2588a* | 0.0285 | 6.37 | |
| HAU2588b* | 0.0368 | 6.36 | |
| NAU3827b* | 0.0395 | 6.30 | |
| MUSS422ab* | 0.0432 | 6.06 | |
| NAU5172b* | 0.029 | 5.18 | |
| HAU-SNP113a* | 0.0362 | 5.14 | |
| NBRI_HQ526730c* | 0.0422 | 5.00 | |
| NBRI_HQ527566* | 0.0121 | 5.00 | |
| DPL0062* | 0.0183 | 4.98 | |
| HAU4022c* | 0.0224 | 4.84 | |
| SOC | BNL2449b* | 0.0237 | 4.83 |
| 种子油分含量 | BNL2449a* | 0.029 | 4.76 |
| HAU1952bc* | 0.0368 | 4.71 | |
| NAU7182* | 0.0395 | 4.55 | |
| NAU3774b* | 0.0432 | 4.47 | |
| MON_DPL0893a* | 0.0493 | 4.46 | |
| BNL2535ba* | 0.0496 | 4.45 | |
| BNL2535bb** | 1.14E-05 | 3.06 | |
| NBRI_HQ527820a** | 1.96E-05 | 2.06 | |
| MON_DPL0502a** | 8.97E-05 | 1.83 |
表2 与种子油分含量关联的SSR位点
Tab.2 SSR locus associated with seed oil content
| 性状 Trait | 位点 Locus | P_FDR | 表型变 异解释率 Phenotypic variation explanatiory rateR2(%) |
|---|---|---|---|
| HAU4483b** | 2.38E-06 | 8.70 | |
| HAU4483a** | 6.10E-06 | 8.68 | |
| MON_SHIN-1585a** | 6.29E-06 | 7.54 | |
| MON_SHIN-1481a** | 1.14E-05 | 7.32 | |
| MON_CGR5447a** | 1.96E-05 | 7.00 | |
| HAU4022b** | 8.97E-05 | 6.93 | |
| MUSS422aa** | 1.45E-04 | 6.90 | |
| SOC | HAU3071ad** | 3.18E-04 | 6.82 |
| 种子油分含量 | HAU0875** | 0.0034 | 6.69 |
| NAU3346ba** | 0.0036 | 6.65 | |
| MON_DPL0375ca** | 0.0042 | 6.61 | |
| HAU-SNP113b** | 0.0055 | 6.54 | |
| NAU3774a** | 0.0061 | 6.54 | |
| NAU3736bb* | 0.0241 | 6.38 | |
| HAU2588a* | 0.0285 | 6.37 | |
| HAU2588b* | 0.0368 | 6.36 | |
| NAU3827b* | 0.0395 | 6.30 | |
| MUSS422ab* | 0.0432 | 6.06 | |
| NAU5172b* | 0.029 | 5.18 | |
| HAU-SNP113a* | 0.0362 | 5.14 | |
| NBRI_HQ526730c* | 0.0422 | 5.00 | |
| NBRI_HQ527566* | 0.0121 | 5.00 | |
| DPL0062* | 0.0183 | 4.98 | |
| HAU4022c* | 0.0224 | 4.84 | |
| SOC | BNL2449b* | 0.0237 | 4.83 |
| 种子油分含量 | BNL2449a* | 0.029 | 4.76 |
| HAU1952bc* | 0.0368 | 4.71 | |
| NAU7182* | 0.0395 | 4.55 | |
| NAU3774b* | 0.0432 | 4.47 | |
| MON_DPL0893a* | 0.0493 | 4.46 | |
| BNL2535ba* | 0.0496 | 4.45 | |
| BNL2535bb** | 1.14E-05 | 3.06 | |
| NBRI_HQ527820a** | 1.96E-05 | 2.06 | |
| MON_DPL0502a** | 8.97E-05 | 1.83 |
| 位点 Locus | 染色体 Chr | 物理位置 Location (bp) | 已报道研究 性状及文献 Reported traits and references |
|---|---|---|---|
| HAU3071 | Chr14 | 307 | FE[ |
| NAU3346 | Chr15 | 305 | FL[ |
| NAU3736 | Chr01 | 203 | FE[ |
| NAU3827 | Chr18 | 136 | LY[ |
| NAU3774 | Chr26 | 293 | FU[ MV[ |
| DPL0062 | Chr21 | 137 | LW[ FU[ |
| MUSS422 | Chr01 | 207 | FU[ SFC[ |
| BNL2449 | Chr13 | 183 | BW[ MV[ LP[ |
| NBRI_HQ526730 | Chr01 | 228 | SI[ |
表3 试验研究与已报道位点的比较结果
Tab.3 Comparative results of this study with reported sites
| 位点 Locus | 染色体 Chr | 物理位置 Location (bp) | 已报道研究 性状及文献 Reported traits and references |
|---|---|---|---|
| HAU3071 | Chr14 | 307 | FE[ |
| NAU3346 | Chr15 | 305 | FL[ |
| NAU3736 | Chr01 | 203 | FE[ |
| NAU3827 | Chr18 | 136 | LY[ |
| NAU3774 | Chr26 | 293 | FU[ MV[ |
| DPL0062 | Chr21 | 137 | LW[ FU[ |
| MUSS422 | Chr01 | 207 | FU[ SFC[ |
| BNL2449 | Chr13 | 183 | BW[ MV[ LP[ |
| NBRI_HQ526730 | Chr01 | 228 | SI[ |
| [1] | 许红霞, 杨伟华, 王延琴, 等. 我国油用棉子质量状况分析[J]. 中国棉花, 2009, 36(7): 2-3. |
| XU Hongxia, YANG Weihua, WANG Yanqin, et al. Analysis on the quality of oil cottonseed in China[J]. China Cotton, 2009, 36(7): 2-3. | |
| [2] |
Liu Q, Singh S, Green A. Genetic modification of cotton seed oil using inverted-repeat gene-silencing techniques[J]. Biochemical Society Transactions, 2000, 28(6): 927-929.
PMID |
| [3] | Meneghetti S M P, Meneghetti M R, Serra T M, et al. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and Castor oils[J]. Energy & Fuels, 2007, 21(6): 3746-3747. |
| [4] | 贾秀凌. 陆地棉SSR标记遗传图谱构建与纤维品质性状QTL定位[D]. 重庆: 西南大学, 2014. |
| JIA Xiuling. Construction of upland cotton SSR marker genetic map and QTL mapping of fiber quality traits[D]. Chongqing: Southwest University, 2014. | |
| [5] |
Huang X H, Han B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65: 531-551.
DOI PMID |
| [6] |
Yano K, Yamamoto E, Aya K, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice[J]. Nature Genetics, 2016, 48(8): 927-934.
DOI PMID |
| [7] | Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel[J]. PLoS Genetics, 2014, 10(9): e1004573. |
| [8] |
Han Y P, Zhao X, Liu D Y, et al. Domestication footprints anchor genomic regions of agronomic importance in soybeans[J]. New Phytologist, 2016, 209(2): 871-884.
DOI PMID |
| [9] | 刘凯, 邓志英, 张莹, 等. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(4): 483-495. |
| LIU Kai, DENG Zhiying, ZHANG Ying, et al. Linkage analysis and genome-wide association study of QTLs controlling stem-breaking-strength-related traits in wheat[J]. Acta Agronomica Sinica, 2017, 43(4): 483-495. | |
| [10] | Yuan Y C, Wang X L, Wang L Y, et al. Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L[J]. Frontiers in Plant Science, 2018, 9: 1359. |
| [11] | Zhao W X, Kong X H, Yang Y, et al. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs[J]. Molecular Breeding, 2019, 39(7): 105. |
| [12] | Liu D X, Liu F, Shan X R, et al. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.)[J]. Molecular Genetics and Genomics, 2015, 290(5): 1683-1700. |
| [13] |
Li X M, Yuan D J, Wang H T, et al. Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP[J]. Genome, 2012, 55(6): 459-470.
DOI PMID |
| [14] |
Nie X H, Huang C, You C Y, et al. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China[J]. BMC Genomics, 2016, 17: 352.
DOI PMID |
| [15] |
田博宇, 黄义文, 周大云, 等. 不同形态棉籽中油分含量快速无损近红外检测方法的建立[J]. 棉花学报, 2023, 35(4): 325-333.
DOI |
| TIAN Boyu, HUANG Yiwen, ZHOU Dayun, et al. Development of a rapid non-destructive method for the detection of cottonseed oil content by near-infrared spectroscopy[J]. Cotton Science, 2023, 35(4): 325-333. | |
| [16] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Molecular Ecology, 2005, 14(8): 2611-2620.
DOI PMID |
| [17] |
Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: dominant markers and null alleles[J]. Molecular Ecology Notes, 2007, 7(4): 574-578.
DOI PMID |
| [18] |
Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
DOI PMID |
| [19] |
雷杰杰, 邵盘霞, 郭春平, 等. 新疆陆地棉经济性状优异等位基因位点的遗传解析[J]. 棉花学报, 2020, 32(3): 185-198.
DOI |
| LEI Jiejie, SHAO Panxia, GUO Chunping, et al. Genetic dissection of allelic loci associated with economic traits of upland cottons in Xinjiang[J]. Cotton Science, 2020, 32(3): 185-198. | |
| [20] |
Yu Y, Yuan D J, Liang S G, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense[J]. BMC Genomics, 2011, 12: 15.
DOI PMID |
| [21] | Guo W Z, Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics, 2007, 176(1): 527-541. |
| [22] | Yu J W, Zhang K, Li S Y, et al. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population[J]. Theoretical and Applied Genetics, 2013, 126(1): 275-287. |
| [23] | Wang H T, Huang C, Guo H L, et al. QTL mapping for fiber and yield traits in upland cotton under multiple environments[J]. PLoS One, 2015, 10(6): e0130742. |
| [24] | 王寒涛. 陆地棉遗传图谱的构建及其重要农艺性状的QTL定位[D]. 武汉: 华中农业大学, 2015. |
| WANG Hantao. Construction of upland cotton genetic map and QTL positioning of important agronomic traits[D]. Wuhan: Huazhong Agricultural University, 2015. | |
| [25] |
Du X M, Huang G, He S P, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J]. Nature Genetics, 2018, 50(6): 796-802.
DOI PMID |
| [26] | Guo W Z, Ma G J, Zhu Y C, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton[J]. Journal of Integrative Plant Biology, 2006, 48(3): 320-326. |
| [27] | Sun F D, Zhang J H, Wang S F, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton[J]. Molecular Breeding, 2012, 30(1): 569-582. |
| [28] | Yu J W, Yu S X, Gore M, et al. Identification of quantitative trait loci across interspecific F2, F2: 3 and testcross populations for agronomic and fiber traits in tetraploid cotton[J]. Euphytica, 2013, 191(3): 375-389. |
| [1] | 罗影, 努尔孜亚·亚力买买提, 贾文捷, 朱琦, 石文婷, 李雨桐, 贾培松. 新疆野生平菇的遗传多样性分析[J]. 新疆农业科学, 2025, 62(5): 1266-1272. |
| [2] | 王帆, 李玉姗, 王威, 邓超宏, 赵连佳, 马越, 肖菁, 庄红梅, 许红军. 基于表型性状鉴定及SSR分子标记分析芜菁种质资源遗传多样性[J]. 新疆农业科学, 2024, 61(11): 2601-2613. |
| [3] | 李超, 杨英, 郑贺云, 杨建丽, 陈伟, 杨咪, 孙玉萍. 基于SSR荧光标记分析新疆甜瓜种质资源遗传多样性与群体结构[J]. 新疆农业科学, 2024, 61(11): 2614-2625. |
| [4] | 张雁飞, 苏比娜·肖克来提, 杨磊, 郝庆, 靳娟, 樊丁宇. 26个鲜食枣品种SSR指纹图谱构建与遗传多样性分析[J]. 新疆农业科学, 2023, 60(7): 1671-1678. |
| [5] | 文佳, 黄陈珏, 嵇子涵, 李黎贝, 冯震, 喻树迅. 陆地棉动态株高与SSR标记的关联分析[J]. 新疆农业科学, 2023, 60(12): 2892-2901. |
| [6] | 罗影, 努尔孜亚·亚力买买提, 贾文捷, 刘洁莹, 贾培松. 新疆野生大环柄菇的分子鉴定与遗传多样性分析[J]. 新疆农业科学, 2023, 60(10): 2501-2508. |
| [7] | 马君, 杨延龙, 师维军, 汪鹏龙, 郑巨云, 郭仁松, 胡文冉, 杨洋. 棉花陆海渐渗杂交群体纤维品质性状的QTL定位[J]. 新疆农业科学, 2023, 60(1): 11-16. |
| [8] | 梁雎, 刘国宏, 王保民, 何桥, 阿布来克·尼亚孜, 郭红梅, 李兴婷, 任红松. 不同来源葡萄种质资源果实叶酸含量及ISSR比较分析[J]. 新疆农业科学, 2023, 60(1): 116-126. |
| [9] | 周勃, 任海龙, 张龑, 高强, 徐麟, 邹集文. 金花菜与苜蓿属主要物种基因组SSR分布特征的比较分析[J]. 新疆农业科学, 2022, 59(9): 2217-2223. |
| [10] | 吴巧玉, 何天久. 紫色甘薯资源的形态学和ISSR荧光标记分析[J]. 新疆农业科学, 2022, 59(7): 1625-1631. |
| [11] | 巴爱丽, 杨靖, 贾菲芸, 樊苗苗, 张冉, 李友勇. 玉米杂种优势类群划分高多态SSR引物筛选[J]. 新疆农业科学, 2022, 59(6): 1373-1383. |
| [12] | 陆小双, 张梦洁, 韩万里, 龙遗磊, 刘鹏飞, 陈全家, 曲延英, 邓晓娟. 海岛棉抗枯萎病性状与 SSR标记的关联分析[J]. 新疆农业科学, 2022, 59(10): 2365-2373. |
| [13] | 马光皇, 康淑媛, 李莉, 肖海兵, 熊仁次, 杨明禄. 枣瘿蚊微卫星标记筛选及微卫星多态性分析[J]. 新疆农业科学, 2020, 57(5): 888-894. |
| [14] | 李寐华, 杨永, 马新力, 张学军, 张红, 张永兵, 伊鸿平. 基于SSR分子标记对西瓜杂交种早佳8424纯度的高通量鉴定[J]. 新疆农业科学, 2020, 57(3): 464-469. |
| [15] | 王勇, 孙锋, 苏来曼·艾则孜, 李玉玲, 伍国红, 骆强伟, 郭平峰. 19个自育葡萄品种(系)指纹图谱构建[J]. 新疆农业科学, 2020, 57(12): 2238-2249. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||