新疆农业科学 ›› 2024, Vol. 61 ›› Issue (12): 2890-2901.DOI: 10.6048/j.issn.1001-4330.2024.12.004
• 种质资源·分子遗传学·耕作栽培·生理生化·微生物 • 上一篇 下一篇
顾美英1,2(), 葛春辉2,3, 朱静1,2, 唐琦勇1,2, 艾尼江·尔斯满1,2, 楚敏1,2, 唐光木2,3, 易鸳鸯1,2, 徐万里2,3(
), 张志东1,2(
)
收稿日期:
2024-05-10
出版日期:
2024-12-20
发布日期:
2025-01-16
通信作者:
徐万里(1971-),男,陕西宝鸡人,研究员,硕士生/博士生导师,研究方向为土壤环境与生态健康,(E-mail)363954019@qq.com;作者简介:
顾美英(1974- ),女,江苏无锡人,研究员,研究方向为特殊环境微生物资源利用,(E-mail)gmyxj2008@163.com
基金资助:
GU Meiying1,2(), GE Chunhui2,3, ZHU Jing1,2, TANG Qiyong1,2, Ainijiang Ersiman1,2, CHU Min1,2, TANG Guangmu2,3, YI Yuanyang1,2, XU Wanli2,3(
), ZHANG Zhidong1,2(
)
Received:
2024-05-10
Published:
2024-12-20
Online:
2025-01-16
Supported by:
摘要:
【目的】 微生物菌剂的作用效果受作物及生态环境的影响较大,筛选适应新疆土壤类型及气候特点的具有促生长、抗倒伏和耐受生物或非生物胁迫等作用的功能菌株,为新疆干旱区农业微生物资源收集与挖掘提供依据。【方法】 采用浸种方式进行小麦盆栽试验,测定单菌及其组合对小麦生长和生理特性的影响。【结果】 从新疆不同生态环境土壤中分离得到9株具有促生功能的菌株,均有不同程度的耐盐碱、耐干旱等特性。在轻度盐碱土中,9株菌小麦发芽率增幅为6.67%~33.33%,株高为6.91%~54.09%,鲜重为15.74%~75.32%,叶绿素含量为27.03%~143.87%;8株菌提高了小麦植株具抗病性的苯丙氨酸解氨酶(PAL)酶活,增幅为18.06%~89.59%;5株菌提高了小麦植株具抗逆性的过氧化物酶(POD)酶活;3株菌增加了小麦植株与抗倒伏特性相关的木质素含量,分别提高了19.10%、13.77%和8.43%。结合促生、抗倒伏、抗逆性等功能,对其中3株具有不同功能的菌株Y24(类芽孢杆菌属)、SD5(芽孢杆菌属)、L6(盐单胞菌属)进行组合。组合后SD5-L对小麦生长和生理特性的总体效果最佳。发芽率和鲜重较SD5和L6单菌分别增加7.15%和0.00%、133.33%和1.23%,叶绿素、木质素含量分别增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分别增加了8.25%和44.80%、4.13%和-6.04%。【结论】 在新疆干旱区轻度盐碱胁迫下,促生菌组合后小麦未明显增加株高,但发芽率、鲜重、光合作用、抗倒伏和抗病性等功能效果显著优于单一菌株,不同菌株之间能够协同增效。芽孢杆菌属和盐单胞菌属组合可以发挥菌株更大作用,可促进小麦生长和提高植株的抗逆性。
中图分类号:
顾美英, 葛春辉, 朱静, 唐琦勇, 艾尼江·尔斯满, 楚敏, 唐光木, 易鸳鸯, 徐万里, 张志东. 促生菌及其组合对新疆干旱区小麦生长和生理特性的影响[J]. 新疆农业科学, 2024, 61(12): 2890-2901.
GU Meiying, GE Chunhui, ZHU Jing, TANG Qiyong, Ainijiang Ersiman, CHU Min, TANG Guangmu, YI Yuanyang, XU Wanli, ZHANG Zhidong. Effects of growth promoting bacteria and their combinations on the growth and physiological characteristics of wheat in arid areas of Xinjiang[J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2890-2901.
菌株 Isolate | 种属 Genera | 温度 Tempe- rature (℃) | 10% NaCl | pH 9 | 耐旱 PEG (30%) | ACC 脱氨酶 ACC deanminase | 解磷 Phosphate solubilizing | 解钾 Potassium solubilizing | 固氮 Nitrogen fixation | 生长素 IAA |
---|---|---|---|---|---|---|---|---|---|---|
K27 | Phyllobacterium | 10 ~ 45 | ++ | ++ | ++ | + | - | - | - | ++ |
SD5 | Bacillus | ++ | ++ | ++ | - | + | + | + | ++ | |
P4 | Mesorhizobium | ++ | ++ | ++ | - | - | - | ++ | + | |
HT33 | Plantibacter | + | ++ | + | - | + | ++ | - | ++ | |
R10 | Luteimonas | ++ | ++ | + | ++ | + | - | - | ++ | |
Y24 | Paenibacillus | ++ | ++ | ++ | - | + | + | + | ++ | |
L6 | Halomonas | ++ | ++ | ++ | + | - | - | - | + | |
MM18 | Sinomicrobium | + | + | + | - | - | + | - | + | |
R11 | Isoptericola | + | + | + | + | + | + | + | + |
表1 菌株促生功能及生态适应性
Tab.1 Growth promoting functions and ecological adaptability of strains
菌株 Isolate | 种属 Genera | 温度 Tempe- rature (℃) | 10% NaCl | pH 9 | 耐旱 PEG (30%) | ACC 脱氨酶 ACC deanminase | 解磷 Phosphate solubilizing | 解钾 Potassium solubilizing | 固氮 Nitrogen fixation | 生长素 IAA |
---|---|---|---|---|---|---|---|---|---|---|
K27 | Phyllobacterium | 10 ~ 45 | ++ | ++ | ++ | + | - | - | - | ++ |
SD5 | Bacillus | ++ | ++ | ++ | - | + | + | + | ++ | |
P4 | Mesorhizobium | ++ | ++ | ++ | - | - | - | ++ | + | |
HT33 | Plantibacter | + | ++ | + | - | + | ++ | - | ++ | |
R10 | Luteimonas | ++ | ++ | + | ++ | + | - | - | ++ | |
Y24 | Paenibacillus | ++ | ++ | ++ | - | + | + | + | ++ | |
L6 | Halomonas | ++ | ++ | ++ | + | - | - | - | + | |
MM18 | Sinomicrobium | + | + | + | - | - | + | - | + | |
R11 | Isoptericola | + | + | + | + | + | + | + | + |
菌株编号 Isolate | 发芽率 Germination rate (%) | 结穗率 Number of ears (%) | 单株鲜重(g/株) Fresh weight (g/plant) | 株高 Plant height (cm) |
---|---|---|---|---|
CK | 75.00±13.23d | 15.00±5.77e | 0.47±0.11f | 18.82±2.36d |
K27 | 95.00±5.00ab | 45.00±2.89ab | 0.67±0.12c | 26.28±5.84ab |
SD5 | 95.00±5.00ab | 20.00±2.89de | 0.82±0.16a | 26.60±6.22ab |
P4 | 80.00±18.03cd | 25.00±7.64de | 0.54±0.10e | 23.82±3.16c |
HT33 | 85.00±8.66bcd | 20.00±2.89de | 0.59±0.12d | 20.12±1.66c |
R10 | 95.00±8.66ab | 30.00±5.00cd | 0.57±0.11de | 26.60±5.00ab |
Y24 | 90.00±5.00abc | 40.00±5.00bc | 0.60±0.13d | 27.46±2.15ab |
L6 | 95.00±5.00ab | 55.00±5.00a | 0.76±0.08b | 28.86±2.19a |
MM18 | 95.00±5.00ab | 30.00±7.64cd | 0.57±0.08de | 25.40±1.98ab |
R11 | 100.00±0.00a | 45.00±2.89ab | 0.65±0.11c | 29.00±3.46a |
表2 功能性微生物菌株下小麦生长的变化
Tab.2 Changes of functional microbial strains on wheat growth
菌株编号 Isolate | 发芽率 Germination rate (%) | 结穗率 Number of ears (%) | 单株鲜重(g/株) Fresh weight (g/plant) | 株高 Plant height (cm) |
---|---|---|---|---|
CK | 75.00±13.23d | 15.00±5.77e | 0.47±0.11f | 18.82±2.36d |
K27 | 95.00±5.00ab | 45.00±2.89ab | 0.67±0.12c | 26.28±5.84ab |
SD5 | 95.00±5.00ab | 20.00±2.89de | 0.82±0.16a | 26.60±6.22ab |
P4 | 80.00±18.03cd | 25.00±7.64de | 0.54±0.10e | 23.82±3.16c |
HT33 | 85.00±8.66bcd | 20.00±2.89de | 0.59±0.12d | 20.12±1.66c |
R10 | 95.00±8.66ab | 30.00±5.00cd | 0.57±0.11de | 26.60±5.00ab |
Y24 | 90.00±5.00abc | 40.00±5.00bc | 0.60±0.13d | 27.46±2.15ab |
L6 | 95.00±5.00ab | 55.00±5.00a | 0.76±0.08b | 28.86±2.19a |
MM18 | 95.00±5.00ab | 30.00±7.64cd | 0.57±0.08de | 25.40±1.98ab |
R11 | 100.00±0.00a | 45.00±2.89ab | 0.65±0.11c | 29.00±3.46a |
图2 不同功能性菌株下小麦植株苯丙氨酸解氨酶(a)和过氧化物酶(b)活性的变化
Fig.2 Changes of different functional strains on phenylalanine ammonia lyase (a) and peroxidase (b) activities in wheat
编号 Number | 菌种组合方式 Combination method of bacterial strains | 发芽率 Germination rate (%) | 结穗率 Number of ears(%) | 株高 Plant height (cm) | 干重(g/株) Dry weight (g/plant) | 木质素 Lignin (mg/g干重) |
---|---|---|---|---|---|---|
1 | CK | 90.000b | 80.000d | 28.660b | 0.216b | 108.580d |
2 | Y24-R11 | 95.000a | 85.000c | 23.530d | 0.185c | 117.885c |
3 | Y24-SD5 | 80.000d | 85.000c | 30.040a | 0.265a | 130.620b |
4 | Y24-L6 | 85.000c | 75.000d | 30.030a | 0.223b | 130.533b |
5 | Y24-K27 | 90.000b | 85.000c | 26.650c | 0.213b | 118.016c |
6 | R11-SD5 | 85.000c | 75.000d | 25.060c | 0.210b | 144.340a |
7 | R11-L6 | 75.000e | 70.000e | 21.230e | 0.182c | 147.78a |
8 | R11-K27 | 95.000a | 85.000c | 23.960d | 0.175c | 135.778ab |
9 | SD5-L6 | 95.000a | 95.000a | 28.660b | 0.234b | 140.710a |
10 | SD5-K27 | 90.000b | 65.000f | 28.810b | 0.154d | 137.845ab |
11 | L6-K27 | 95.000a | 90.000b | 23.180d | 0.186c | 114.265c |
表3 不同功能菌株组合的筛选
Tab.3 Screening of different functional strains combinations
编号 Number | 菌种组合方式 Combination method of bacterial strains | 发芽率 Germination rate (%) | 结穗率 Number of ears(%) | 株高 Plant height (cm) | 干重(g/株) Dry weight (g/plant) | 木质素 Lignin (mg/g干重) |
---|---|---|---|---|---|---|
1 | CK | 90.000b | 80.000d | 28.660b | 0.216b | 108.580d |
2 | Y24-R11 | 95.000a | 85.000c | 23.530d | 0.185c | 117.885c |
3 | Y24-SD5 | 80.000d | 85.000c | 30.040a | 0.265a | 130.620b |
4 | Y24-L6 | 85.000c | 75.000d | 30.030a | 0.223b | 130.533b |
5 | Y24-K27 | 90.000b | 85.000c | 26.650c | 0.213b | 118.016c |
6 | R11-SD5 | 85.000c | 75.000d | 25.060c | 0.210b | 144.340a |
7 | R11-L6 | 75.000e | 70.000e | 21.230e | 0.182c | 147.78a |
8 | R11-K27 | 95.000a | 85.000c | 23.960d | 0.175c | 135.778ab |
9 | SD5-L6 | 95.000a | 95.000a | 28.660b | 0.234b | 140.710a |
10 | SD5-K27 | 90.000b | 65.000f | 28.810b | 0.154d | 137.845ab |
11 | L6-K27 | 95.000a | 90.000b | 23.180d | 0.186c | 114.265c |
菌株及其组合 Strains and their combinations | 发芽率 Germination rate (%) | 株高 Plant height (cm) | 鲜重(g/株) Fresh weight (g/plant) |
---|---|---|---|
CK | 93.330 ± 5.770b | 26.820±3.538c | 0.283± 0.003f |
L6 | 100.000 ±0.000a | 27.550± 2.730bc | 0.407± 0.008d |
SD5 | 93.330± 5.770b | 28.260±2.536bc | 0.309± 0.005e |
Y24 | 100.000±0.000a | 27.260± 2.689bc | 0.441± 0.005b |
L6-Y24 | 90.000±5.000b | 29.300±3.728b | 0.469± 0.004a |
Y24-SD5 | 93.330± 5.770b | 27.260±2.071bc | 0.427± 0.006c |
SD5-L6 | 100.000±0.000a | 27.690±2.917bc | 0.412± 0.005d |
Y24-SD5-L6 | 100.000±0.000a | 31.760±2.596a | 0.447± 0.011b |
表4 不同功能菌株及其组合下小麦生长的变化
Tab.4 Changes of functional strains and their combinations on wheat growth
菌株及其组合 Strains and their combinations | 发芽率 Germination rate (%) | 株高 Plant height (cm) | 鲜重(g/株) Fresh weight (g/plant) |
---|---|---|---|
CK | 93.330 ± 5.770b | 26.820±3.538c | 0.283± 0.003f |
L6 | 100.000 ±0.000a | 27.550± 2.730bc | 0.407± 0.008d |
SD5 | 93.330± 5.770b | 28.260±2.536bc | 0.309± 0.005e |
Y24 | 100.000±0.000a | 27.260± 2.689bc | 0.441± 0.005b |
L6-Y24 | 90.000±5.000b | 29.300±3.728b | 0.469± 0.004a |
Y24-SD5 | 93.330± 5.770b | 27.260±2.071bc | 0.427± 0.006c |
SD5-L6 | 100.000±0.000a | 27.690±2.917bc | 0.412± 0.005d |
Y24-SD5-L6 | 100.000±0.000a | 31.760±2.596a | 0.447± 0.011b |
图4 功能性菌株下小麦植株苯丙氨酸解氨酶(a)和过氧化物酶(b)活性的变化
Fig.4 Changes of functional strains and their combinations on phenylalanine ammonia lyase (a) and peroxidase (b) activities in wheat
菌株及 其组合 Strain and its combination | 与最优 值距离 Distance from the optimal value ( | 与最劣 值距离 Distance from the worst value( | 统计量 Statistic Ci | 排名 Rank |
---|---|---|---|---|
CK | 0.306 | 0.104 | 0.254 | 8 |
L6 | 0.305 | 0.147 | 0.325 | 6 |
SD5 | 0.312 | 0.136 | 0.303 | 7 |
Y24 | 0.156 | 0.311 | 0.666 | 2 |
L6-Y24 | 0.139 | 0.270 | 0.660 | 3 |
Y24-SD5 | 0.162 | 0.270 | 0.626 | 4 |
SD5-L6 | 0.100 | 0.287 | 0.742 | 1 |
Y24-SD5-L6 | 0.197 | 0.211 | 0.517 | 5 |
表5 不同菌株及其组合对小麦生长综合评价
Tab.5 Comprehensive evaluation of different strains and their combinations on wheat growth
菌株及 其组合 Strain and its combination | 与最优 值距离 Distance from the optimal value ( | 与最劣 值距离 Distance from the worst value( | 统计量 Statistic Ci | 排名 Rank |
---|---|---|---|---|
CK | 0.306 | 0.104 | 0.254 | 8 |
L6 | 0.305 | 0.147 | 0.325 | 6 |
SD5 | 0.312 | 0.136 | 0.303 | 7 |
Y24 | 0.156 | 0.311 | 0.666 | 2 |
L6-Y24 | 0.139 | 0.270 | 0.660 | 3 |
Y24-SD5 | 0.162 | 0.270 | 0.626 | 4 |
SD5-L6 | 0.100 | 0.287 | 0.742 | 1 |
Y24-SD5-L6 | 0.197 | 0.211 | 0.517 | 5 |
[1] | 肖丽, 吴新元, 王成. 种业振兴背景下推进新疆小麦育种工作对策研究——以新疆农业科学院为例[J]. 农业科技管理, 2022, 41(5): 17-20. |
XIAO Li, WU Xinyuan, WANG Cheng. Studies on countermeasures of promoting wheat breeding in Xinjiang under the background of seed industry revitalization, taking Xinjiang academy of agricultural sciences as an example[J]. Management of Agricultural Science and Technology, 2022, 41(5): 17-20. | |
[2] |
高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
DOI |
GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of Northwest China: a case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.
DOI |
|
[3] |
李菲菲, 周霞, 周玉玺. 西北地区农业干旱脆弱性评估及时空分布特征[J]. 干旱区研究, 2023, 40(4): 663-669.
DOI |
LI Feifei, ZHOU Xia, ZHOU Yuxi. Vulnerability assessment and spatiotemporal distribution of agricultural drought in Northwest China[J]. Arid Zone Research, 2023, 40(4): 663-669.
DOI |
|
[4] |
王相平, 杨劲松, 张胜江, 等. 改良剂施用对干旱盐碱区棉花生长及土壤性质的影响[J]. 生态环境学报, 2020, 29(4): 757-762.
DOI |
WANG Xiangping, YANG Jinsong, ZHANG Shengjiang, et al. Effects of different amendments application on cotton growth and soil properties in arid areas[J]. Ecology and Environmental Sciences, 2020, 29(4): 757-762. | |
[5] | 李红丽. 新疆农业气象灾害对棉花生长的影响及防范措施[J]. 智慧农业导刊, 2022, 2(10): 22-24. |
LI Hongli. The impact of agricultural meteorological disasters in Xinjiang on cotton growth and preventive measures[J]. Journal of Smart Agriculture, 2022, 2(10): 22-24. | |
[6] |
汤明尧, 沈重阳, 陈署晃, 等. 新疆小麦、玉米的产量和氮磷钾肥利用效率[J]. 中国农业科学, 2022, 55(14): 2762-2774.
DOI |
TANG Mingyao, SHEN Chongyang, CHEN Shuhuang, et al. Yield of wheat and maize and utilization efficiency of nitrogen, phosphorus and potassium in Xinjiang[J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
DOI |
|
[7] |
左筱筱, 颜安, 宁松瑞, 等. 盐碱麦田生物有机肥促生增产培肥效果[J]. 新疆农业科学, 2023, 60(10): 2532-2540.
DOI |
ZUO Xiaoxiao, YAN An, NING Songrui, et al. Study on the effect of Bio-Organic fertilizer on promoting growth and increasing yield in saline alkali wheat field[J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2532-2540.
DOI |
|
[8] | Soares E V, Petropoulos S A, Soares H M V M. Editorial: Bio-based solutions for sustainable development of agriculture[J]. Frontiers in Plant Science, 2022, 13: 1056140. |
[9] | 贺文婧, 陆旭桐, 蒋毅宁, 等. 植物根际促生菌研究文献计量分析[J]. 土壤通报, 2023, 54(4): 978-988. |
HE Wenjing, LU Xutong, JIANG Yining, et al. Research of plant growth promoting rhizobacteria(PGPR)based on knowledge graph analysis and its development trend[J]. Chinese Journal of Soil Science, 2023, 54(4): 978-988. | |
[10] | Cao M Y, Narayanan M, Shi X J, et al. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation[J]. Environmental Research, 2023, 217: 114924. |
[11] | 苑霖, 王新珍, 孙宏勇, 等. 一株克锡勒氏菌对小麦苗期的促生耐盐效应研究[J]. 中国生态农业学报(中英文), 2021, 29(11): 1913-1920. |
YUAN Lin, WANG Xinzhen, SUN Hongyong, et al. Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913-1920. | |
[12] | Galindo F S, Pagliari P H, Buzetti S, et al. Interactive effect of silicon application and Azospirillum brasilense inoculation on wheat nutrient uptake and accumulation combined with N application rates[J]. Journal of Plant Nutrition, 2023, 46(16): 3954-3968. |
[13] | Ikan C, Ben-Laouane R, Ouhaddou R, et al. Co-inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria can mitigate the effects of drought in wheat plants (Triticum durum)[J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2023, 157(4): 907-919. |
[14] | Mashabela M D, Tugizimana F, Steenkamp P A, et al. Metabolomic evaluation of PGPR defence priming in wheat (Triticum aestivum L.) cultivars infected with Puccinia striiformis f.sp. tritici (stripe rust)[J]. Frontiers in Plant Science, 2023, 14: 1103413. |
[15] | 刘缨, 王梦雨, 陈国参, 等. DDT降解菌株Chryseobacterium sp.PYR2对小麦的促生作用及其机理[J]. 微生物学通报, 2019, 46(6): 1346-1355. |
LIU Ying, WANG Mengyu, CHEN Guocan, et al. Plant growth-promoting effect and its mechanism of the DDT-degrading strain PYR2[J]. Microbiology China, 2019, 46(6): 1346-1355. | |
[16] | Shabayev V P, Ostroumov V E. Spring wheat yield under application of growth-promoting rhizobacterium in soil contaminated with nickel[J]. Russian Agricultural Sciences, 2023, 49(2): 158-163. |
[17] | Jofre M F, Mammana S B, Appiolaza M L, et al. Melatonin production by rhizobacteria native strains: Towards sustainable plant growth promotion strategies[J]. Physiologia Plantarum, 2023, 175(1): e13852. |
[18] | 潘宇, 张昊, 李湘, 等. 耐盐促生菌与其复合菌剂对盐胁迫狼尾草生长及生理生化的影响[J]. 贵州农业科学, 2023, 51(7): 39-49. |
PAN Yu, ZHANG Hao, LI Xiang, et al. Effect of salt-tolerant and growth-promoting bacteria and composite microbial agent on growth and Physicoch-emical of Pennisetum alopecuroides under salt stress[J]. Guizhou Agricultural Sciences, 2023, 51(7): 39-49. | |
[19] | 王改萍, 祝长青, 王茹. 一株耐盐甲基杆菌Methylobacterium sp.W-1的分离及促生潜能研究[J]. 微生物学通报, 2021, 48(11): 4134-4144. |
WANG Gaiping, ZHU Changqing, WANG Ru. Isolation and growth-promoting potential of a salt tolerant strain of Methylobacterium sp. W-1[J]. Microbiology China, 2021, 48(11): 4134-4144. | |
[20] | Yuan Y, Shi Y L, Liu Z Z, et al. Promotional properties of ACC deaminase-producing bacterial strain DY1-3 and its enhancement of maize resistance to salt and drought stresses[J]. Microorganisms, 2023, 11(11): 2654. |
[21] | Zhang H, Yang Q L, Zhao J J, et al. Metabolites from Bacillus subtilis J-15 affect seedling growth of Arabidopsis thaliana and cotton plants[J]. Plants, 2022, 11(23): 3205. |
[22] |
张志东, 顾美英, 唐琦勇, 等. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3): 186-192.
DOI |
ZHANG Zhidong, GU Meiying, TANG Qiyong, et al. Screening of salt-tolerant and growth-promoting bacteria in the rhizosphere of Kalidium foliatum and the functional identification in pot experiments[J]. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192.
DOI |
|
[23] |
陈腊, 米国华, 李可可, 等. 多功能植物根际促生菌对东北黑土区玉米的促生效果[J]. 应用生态学报, 2020, 31(8): 2759-2766.
DOI |
CHEN La, MI Guohua, LI Keke, et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2759-2766.
DOI |
|
[24] |
代金霞, 田平雅, 沈聪, 等. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报, 2021, 30(5): 968-975.
DOI |
DAI Jinxia, TIAN Pingya, SHEN Cong, et al. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects[J]. Ecology and Environmental Sciences, 2021, 30(5): 968-975. | |
[25] | 黄键, 王德新, 杨松, 等. 氮磷叶面喷施对云南松苗木叶绿素含量及其异速生长关系的影响[J]. 西南林业大学学报(自然科学), 2023, 43(3): 33-41. |
HUANG Jian, WANG Dexin, YANG Song, et al. Effect on chlorophyll content and allometric growth relationship of Pinus yunnanensis seedlings by foliar spraying of nitrogen and phosphorus[J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(3): 33-41. | |
[26] | Wang L M, Xi N, Lang D Y, et al. Potential biocontrol and plant growth promotion of an endophytic bacteria isolated from Glycyrrhiza uralensis seeds[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 55. |
[27] | Najafi Zilaie M, Mosleh Arani A, Etesami H, et al. Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status[J]. Applied Soil Ecology, 2022, 179: 104578. |
[28] |
李艳燕, 赵彩桐, 齐阳阳, 等. 大豆主茎木质素积累规律分析[J]. 华北农学报, 2022, 37(3): 77-85.
DOI |
LI Yanyan, ZHAO Caitong, QI Yangyang, et al. Analysis on the accumulation of lignin in the stem of soybean[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3): 77-85. | |
[29] | Nishra J, Meenu S, Kumar J C, et al. Harnessing the efficacy of multifunctional rhizobacterial consortia for promoting the growth of Anethum graveolens L.[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1126621. |
[30] | Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E, et al. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions[J]. Physiologia Plantarum, 2022, 174(6): e13800. |
[31] | 王丹, 赵亚光, 张凤华. 耐盐促生菌筛选、鉴定及对盐胁迫小麦的效应[J]. 麦类作物学报, 2020, 40(1): 110-117. |
WANG Dan, ZHAO Yaguang, ZHANG Fenghua. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress[J]. Journal of Triticeae Crops, 2020, 40(1): 110-117. | |
[32] | Yue H T, Sun S W, Wang R Q, et al. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton[J]. BMC Plant Biology, 2023, 23(1): 656. |
[33] | 孙雪, 董永华, 王娜, 等. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(7): 1356-1364. |
SUN Xue, DONG Yonghua, WANG Na, et al. Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1356-1364.
DOI PMID |
|
[34] | Flores-Félix J D, Velázquez E, Martínez-Molina E, et al. Connecting the lab and the field: genome analysis of Phyllobacterium and Rhizobium strains and field performance on two vegetable crops[J]. Agronomy, 2021, 11(6): 1124. |
[35] | Qin S, Zhang Y J, Yuan B, et al. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress[J]. Plant and Soil, 2014, 374(1): 753-766. |
[36] | 贾峥嵘, 郝佳丽, 郝艳芳, 等. 4种促生菌剂对甘薯生长及土壤肥力的影响[J]. 干旱区资源与环境, 2022, 36(9): 166-172. |
JIA Zhengrong, HAO Jiali, HAO Yanfang, et al. Effects of four growth-promoting bacteria on the growth of sweet potato and soil fertility[J]. Journal of Arid Land Resources and Environment, 2022, 36(9): 166-172. | |
[37] | Yuan L F, Jiang H, Jiang X L, et al. Comparative genomic and functional analyses of Paenibacillus peoriae ZBSF16 with biocontrol potential against grapevine diseases, provide insights into its genes related to plant growth-promoting and biocontrol mechanisms[J]. Frontiers in Microbiology, 2022, 13: 975344. |
[38] | Riyanti, Zumkeller C M, Spohn M, et al. Draft genome sequence of Sinomicrobium sp. strain PAP.21, isolated from a coast sample of Papua, Indonesia[J]. Microbiology Resource Announcements, 2023, 12(4): e0126822. |
[39] | Wang Z G, Piao Y J, Zhang F G, et al. Promoting effects on watermelon and fermentation optimization of Plantibacter sp. WZW03[J]. Journal of Plant Growth Regulation, 2020, 39(3): 970-980. |
[40] | Domínguez-Castillo C, Alatorre-Cruz J M, Castaeda-Antonio D, et al. Potential seed germination-enhancing plant growth-promoting rhizobacteria for restoration of Pinus chiapensis ecosystems[J]. Journal of Forestry Research, 2021, 32(5): 2143-2153. |
[41] | 秦杰, 高振峰, 岳爱琴, 等. 一株晋大53号大豆中慢生根瘤菌的分离鉴定及抗逆分析[J]. 大豆科学, 2020, 39(6): 898-905. |
QIN Jie, GAO Zhenfeng, YUE Aiqin, et al. Isolation, identification and stress resistance analysis of A Mesorhizobium isolated from soybean variety jinda 53[J]. Soybean Science, 2020, 39(6): 898-905. | |
[42] |
高雁, 张永强, 张志东, 等. 功能性微生物菌剂对小麦生长和根际土壤生态的影响[J]. 新疆农业科学, 2021, 58(1): 115-124.
DOI |
GAO Yan, ZHANG Yongqiang, ZHANG Zhidong, et al. Effects of functional microbial agents on wheat growth and rhizosphere soil micro-ecology[J]. Xinjiang Agricultural Sciences, 2021, 58(1): 115-124.
DOI |
|
[43] | Samain E, van Tuinen D, Jeandet P, et al. Biological control of Septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS[J]. Biological Control, 2017, 114: 87-96. |
[44] |
Mousavi S S, Karami A, Saharkhiz M J, et al. Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Glycyrrhiza glabra L.)[J]. BMC Plant Biology, 2022, 22(1): 322-322.
DOI PMID |
[45] | Khan M Y, Nadeem S M, Sohaib M, et al. Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions[J]. Frontiers in Microbiology, 2022, 13: 958522. |
[46] | Saadaoui N, Silini A, Cherif-Silini H, et al. Semi-arid-habitat-adapted plant-growth-promoting rhizobacteria allows efficient wheat growth promotion[J]. Agronomy, 2022, 12(9): 2221. |
[47] | 刘艳霞, 陶正朋, 李想, 等. 抗青枯病型根际促生菌(PGPR)菌群构建及其生物防控机制[J]. 微生物学报, 2023, 63(3): 1099-1114. |
LIU Yanxia, TAO Zhengpeng, LI Xiang, et al. Construction of bacterial wilt-resistant and plant growth promoting rhizobacteria (PGPR) and the mechanism of biocontrol[J]. Acta Microbiologica Sinica, 2023, 63(3): 1099-1114. | |
[48] | Timofeeva A M, Galyamova M R, Sedykh S E. Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities[J]. Plants, 2023, 12(24): 4074. |
[1] | 李进, 沈煜洋, 邓菲菲, 陈江华, 孙婧婧, 李广阔, 高海峰. 新疆小麦有害生物发生现状及防控对策分析[J]. 新疆农业科学, 2024, 61(S1): 122-126. |
[2] | 方辉, 丁银灯, 范贵强, 高永红, 黄天荣. 新疆南疆小麦产业发展的现状及品质特性分析[J]. 新疆农业科学, 2024, 61(S1): 75-80. |
[3] | 王春生, 李剑峰, 张跃强, 樊哲儒, 王重, 高新, 时佳, 张宏芝, 王立红, 夏建强, 王芳平, 赵奇. 新疆主栽春小麦品种花药培养力基因型差异分析[J]. 新疆农业科学, 2024, 61(9): 2081-2086. |
[4] | 沈煜洋, 洪高洁, 范贵强, 陈利, 雷钧杰, 李广阔, 高海峰. 杀虫剂减施和添加助剂对红枣-小麦间作麦田蚜虫防效的影响[J]. 新疆农业科学, 2024, 61(9): 2257-2268. |
[5] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[6] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[7] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[8] | 袁以琳, 颜安, 左筱筱, 侯正清, 张振飞, 肖淑婷, 孙哲, 马梦倩, 赵宇航. 氮肥减量配施生物有机肥对春小麦增产及土壤培肥的影响[J]. 新疆农业科学, 2024, 61(8): 1872-1882. |
[9] | 刘旭欢, 于姗, 刘跃, 石书兵. 不同粒级春小麦种子活力差异比较[J]. 新疆农业科学, 2024, 61(8): 1883-1887. |
[10] | 杨梅, 赵红梅, 迪丽热巴·夏米西丁, 杨卫君, 张金汕, 惠超. 氮肥减量配施生物质炭对春小麦群体结构、光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1582-1589. |
[11] | 杜云, 张婧婧, 雷嘉诚, 李博, 李永福. 冬小麦需水量的预测模型对比分析[J]. 新疆农业科学, 2024, 61(7): 1590-1596. |
[12] | 强立栋, 冯宽, 朱长安, 赵云, 李召锋, 李卫华. 花后高温胁迫对小麦籽粒萌发及相关酶活性影响[J]. 新疆农业科学, 2024, 61(6): 1345-1351. |
[13] | 王一钊, 杨其志, 刘玉秀, 阿拉依·努尔卡马力, Vladimir Shvidchenko, 张正茂. PEG胁迫下评价哈萨克斯坦不同春小麦种质苗期的抗旱性[J]. 新疆农业科学, 2024, 61(6): 1352-1360. |
[14] | 张宏芝, 王立红, 时佳, 孔德鹏, 王重, 高新, 李剑峰, 王春生, 夏建强, 樊哲儒, 张跃强. 土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1041-1047. |
[15] | 王润琪, 贾永红, 王玉娇, 刘跃, 李丹丹, 董艳雪, 古力尼尕尔·吐尔洪, 张路路, 张金汕, 石书兵. 不同滴灌量对匀播冬小麦生长发育和产量的影响[J]. 新疆农业科学, 2024, 61(5): 1048-1056. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||