新疆农业科学 ›› 2023, Vol. 60 ›› Issue (8): 1866-1872.DOI: 10.6048/j.issn.1001-4330.2023.08.006
• 作物遗传育种·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
李怀胜1(), 艾洪玉2(
), 孟玲1, 王贺亚1, 张磊3, 艾海峰1
收稿日期:
2022-12-16
出版日期:
2023-08-20
发布日期:
2023-08-14
通信作者:
艾洪玉(1988-),女,四川南充人,高级农艺师,研究方向为作物栽培与育种,(E-mail)1475918863@qq.com作者简介:
李怀胜(1988-),男,甘肃定西人,助理研究员,研究方向为作物栽培与育种,(E-mail)1505421254@qq.com
基金资助:
LI Huaisheng1(), AI Hongyu2(
), MENG Ling1, WANG Heya1, ZHANG Lei3, AI Haifeng1
Received:
2022-12-16
Published:
2023-08-20
Online:
2023-08-14
Correspondence author:
AI Hongyu (1988-), female, Sichuan, senior agronomist, bachelor degree, research direction: crop cultivation and breeding work,(E-mail)1475918863@qq.comSupported by:
摘要:
【目的】研究新疆北疆滴灌春小麦高产、优质栽培中合理减氮养分运筹,为春小麦拔节至开花的氮肥施用量选择提供依据。【方法】以新春43号为供试材料,调研213户农户氮肥施入量390 kg/hm2的基础上,按照氮肥减量20%、30%和40%设置3个施氮水平(312、270和234 kg/hm2)及拔节至开花运筹比例(7∶3、5∶5、6∶4),研究不同施氮水平下运筹调控拔节至开花期的氮肥追施比例对滴灌春小麦的影响。【结果】N1条件下,产量以R3最高,较R1、R2增产7.4%、3.7%,各生育时期干物质积累量较R1分别增加13.9%、17.5%、26.2%、10.3%,较R2分别增加7.7%、3.6%、10.6%和2.6%;花前、花后同化物转运量差异性不显著,叶面积指数也表现为R3>R2>R1。N2条件下,产量与N1条件下表现一致,干物质积累量各时期表现为R2>R1>R3,花前、花后同化物转运量呈“先增后降”的变化趋势,均在R2达到最大,分别为2 614.35和6 284.79 kg/hm2,叶面积指数表现为R3>R2>R1。N3条件下,R2的产量显著高于R1、R3,增产幅度分别为25.4%和32.0%,各生育时期干物质积累量较R1分别增加4.8%、10.8%、8.5%和23.2%,花前、花后同化物以R3最大,为2 242.32 kg/hm2,较R1、R2分别增加了50.6%和36.8%,叶面积指数表现为R2>R1>R3。【结论】纯氮234 kg/hm2,拔节至开花期氮肥运筹比例6∶4更加适应春小麦生产。
中图分类号:
李怀胜, 艾洪玉, 孟玲, 王贺亚, 张磊, 艾海峰. 减氮下运筹养分吸收高峰期追施比例对春小麦的影响[J]. 新疆农业科学, 2023, 60(8): 1866-1872.
LI Huaisheng, AI Hongyu, MENG Ling, WANG Heya, ZHANG Lei, AI Haifeng. Effects of chasing rate during peak nutrient uptake of transport under n Reduction on spring wheat[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1866-1872.
项目 Item | 指标 Index | 基肥 Base fertilizer | 出苗-拔节 Emergence -Jointing | 拔节-孕穗 Jointing -Flowering | 孕穗-开花 Booting stage -Flowering | 开花-成熟 Flowering -Maturity | 全生育期 Whole growth period |
---|---|---|---|---|---|---|---|
水分 Water | 分配比例(%) | 0 | 25 | 30 | 20 | 25 | 100 |
灌水量(m3/hm2) | 0 | 1 050~1 125 | 1 260~1 500 | 840~1 350 | 1 050~1 125 | 4 200~4 500 | |
灌水次数 | 0 | 2 | 2 | 1 | 2 | 7 | |
氮肥N Fertilizer | R1 | 0 | 25 | 38.5 | 16.5 | 20 | 100 |
R2 | 0 | 25 | 33 | 22 | 20 | 100 | |
R3 | 0 | 25 | 27.5 | 27.5 | 20 | 100 | |
随水施肥次数 | 0 | 1 | 1 | 1 | 1 | 4 |
表1 各处理滴灌春小麦不同时期氮肥追施比例
Tab.1 Nitrogen topdressing ratio of drip irrigation spring wheat in different stages
项目 Item | 指标 Index | 基肥 Base fertilizer | 出苗-拔节 Emergence -Jointing | 拔节-孕穗 Jointing -Flowering | 孕穗-开花 Booting stage -Flowering | 开花-成熟 Flowering -Maturity | 全生育期 Whole growth period |
---|---|---|---|---|---|---|---|
水分 Water | 分配比例(%) | 0 | 25 | 30 | 20 | 25 | 100 |
灌水量(m3/hm2) | 0 | 1 050~1 125 | 1 260~1 500 | 840~1 350 | 1 050~1 125 | 4 200~4 500 | |
灌水次数 | 0 | 2 | 2 | 1 | 2 | 7 | |
氮肥N Fertilizer | R1 | 0 | 25 | 38.5 | 16.5 | 20 | 100 |
R2 | 0 | 25 | 33 | 22 | 20 | 100 | |
R3 | 0 | 25 | 27.5 | 27.5 | 20 | 100 | |
随水施肥次数 | 0 | 1 | 1 | 1 | 1 | 4 |
变异来源 Origin of variance | 平方和 Sum of squares | 自由度 df | 均方 Equal squares | F值 F-value | P值 P-value |
---|---|---|---|---|---|
氮肥减量Nitrogen reduction | 207 583.978 | 2 | 103 791.989 | 0.306 | 0.739 |
运筹比例Operational ratio | 3 206 751.874 763 | 2 | 1 603 375.937 | 4.735 | 0.021 |
施氮量×运筹比例Nitrogen reduction×Operational ratio | 8 460 058.199 | 8 | 1 057 507.275 | 9.796 | 0 |
误差Error | 1 834 250.271 | 18 | 101 902.793 | ||
总变异Total variance | 13 708 644.32 | 30 |
表2 春小麦产量的方差变化
Tab.2 Variance analysis for yield of spring wheat
变异来源 Origin of variance | 平方和 Sum of squares | 自由度 df | 均方 Equal squares | F值 F-value | P值 P-value |
---|---|---|---|---|---|
氮肥减量Nitrogen reduction | 207 583.978 | 2 | 103 791.989 | 0.306 | 0.739 |
运筹比例Operational ratio | 3 206 751.874 763 | 2 | 1 603 375.937 | 4.735 | 0.021 |
施氮量×运筹比例Nitrogen reduction×Operational ratio | 8 460 058.199 | 8 | 1 057 507.275 | 9.796 | 0 |
误差Error | 1 834 250.271 | 18 | 101 902.793 | ||
总变异Total variance | 13 708 644.32 | 30 |
氮肥减量 NR (kg/hm2) | 运筹比列 Operational Comparison | 穗数 Spike number (104/hm2) | 千粒重 1000-grain weight (g) | 穗粒数 Kernel No. (No./spike) | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|
N1 | R1 | 595.59ab | 52.57a | 25.20c | 6 803.67cde |
R2 | 579.67ab | 43.15c | 32.90a | 7 043.69bcd | |
R3 | 500.03bc | 43.57bc | 33.10a | 7 303.70bc | |
N2 | R1 | 587.08ab | 44.99bc | 30.87ab | 6 830.34cde |
R2 | 475.59c | 44.23bc | 33.23a | 7 460.37b | |
R3 | 592.26ab | 46.23bc | 28.73b | 7 477.04b | |
N3 | R1 | 591.89ab | 46.95bc | 29.20b | 6 647.00de |
R2 | 623.00a | 45.82bc | 29.17b | 8 337.08a | |
R3 | 604.85ab | 48.97b | 25.33c | 6 313.65e |
表3 不同处理下小麦产量及其构成因素变化
Tab.3 Effects of different treatments on GY and its components of wheat
氮肥减量 NR (kg/hm2) | 运筹比列 Operational Comparison | 穗数 Spike number (104/hm2) | 千粒重 1000-grain weight (g) | 穗粒数 Kernel No. (No./spike) | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|
N1 | R1 | 595.59ab | 52.57a | 25.20c | 6 803.67cde |
R2 | 579.67ab | 43.15c | 32.90a | 7 043.69bcd | |
R3 | 500.03bc | 43.57bc | 33.10a | 7 303.70bc | |
N2 | R1 | 587.08ab | 44.99bc | 30.87ab | 6 830.34cde |
R2 | 475.59c | 44.23bc | 33.23a | 7 460.37b | |
R3 | 592.26ab | 46.23bc | 28.73b | 7 477.04b | |
N3 | R1 | 591.89ab | 46.95bc | 29.20b | 6 647.00de |
R2 | 623.00a | 45.82bc | 29.17b | 8 337.08a | |
R3 | 604.85ab | 48.97b | 25.33c | 6 313.65e |
处理 Treatment | 干物质积累量Dry matter accumulation(kg/hm2) | |||
---|---|---|---|---|
拔节期 Jointing stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Maturity stage | |
N1R1 | 5 654.13bc | 10 758.02c | 12 604.96d | 17 021.07bcd |
N1R2 | 5 975.42ab | 11 147.13c | 14 382.00c | 18 299.00abc |
N1R3 | 6 439.52a | 12 642.44b | 15 907.89b | 18 781.37ab |
N2R1 | 6 157.62a | 12 644.18b | 16 542.71b | 17 413.53bc |
N2R2 | 6 384.56a | 13 793.05ab | 18 272.80a | 18 804.57ab |
N2R3 | 5 323.86c | 9 985.61c | 14 051.49cd | 16 380.17cd |
N3R1 | 6 194.55a | 10 260.06c | 12 601.68de | 16 294.13cd |
N3R2 | 6 492.94a | 11 367.08c | 13 673.66cde | 20 069.93a |
N3R3 | 5 654.01bc | 9 825.81c | 12 459.72e | 14 785.17d |
表4 不同处理下小麦干物质积累量变化
Tab.4 Effects of different treatments on dry matter accumulation of wheat
处理 Treatment | 干物质积累量Dry matter accumulation(kg/hm2) | |||
---|---|---|---|---|
拔节期 Jointing stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Maturity stage | |
N1R1 | 5 654.13bc | 10 758.02c | 12 604.96d | 17 021.07bcd |
N1R2 | 5 975.42ab | 11 147.13c | 14 382.00c | 18 299.00abc |
N1R3 | 6 439.52a | 12 642.44b | 15 907.89b | 18 781.37ab |
N2R1 | 6 157.62a | 12 644.18b | 16 542.71b | 17 413.53bc |
N2R2 | 6 384.56a | 13 793.05ab | 18 272.80a | 18 804.57ab |
N2R3 | 5 323.86c | 9 985.61c | 14 051.49cd | 16 380.17cd |
N3R1 | 6 194.55a | 10 260.06c | 12 601.68de | 16 294.13cd |
N3R2 | 6 492.94a | 11 367.08c | 13 673.66cde | 20 069.93a |
N3R3 | 5 654.01bc | 9 825.81c | 12 459.72e | 14 785.17d |
处理 Treatment | 花前同化物Assimilate before anthesis | 花后同化物Assimilate after anthesis | |||
---|---|---|---|---|---|
转运量 Transportation (kg/hm2) | 转运率 Transshipment rate (%) | 对籽粒贡献率 Contribution rate (%) | 转运量 Transportation (kg/hm2) | 对籽粒贡献率 Contribution rate (%) | |
N1R1 | 1 635.52bcd | 15.19bc | 20.69b | 6 263.04a | 68.69ab |
N1R2 | 1 223.53d | 10.98c | 14.75b | 7 068.53a | 71.34ab |
N1R3 | 1 579.28bcd | 12.50c | 20.51b | 6 138.92a | 55.53c |
N2R1 | 2 173.92abc | 15.78bc | 37.77a | 3 620.48c | 31.51d |
N2R2 | 2 614.35a | 20.85ab | 29.39a | 6 284.79a | 63.48bc |
N2R3 | 996.58d | 9.84c | 13.71b | 6 094.55a | 71.48ab |
N3R1 | 1 488.32cd | 15.01bc | 18.86b | 6 468.32a | 77.48a |
N3R2 | 1 638.68bcd | 14.58bc | 18.74b | 7 036.18a | 72.88ab |
N3R3 | 2 242.32ab | 22.91a | 31.10a | 4 959.35b | 65.70abc |
表5 不同处理下小麦干物质转运变化
Tab.5 Effects of different treatments on dry matter transport in wheat
处理 Treatment | 花前同化物Assimilate before anthesis | 花后同化物Assimilate after anthesis | |||
---|---|---|---|---|---|
转运量 Transportation (kg/hm2) | 转运率 Transshipment rate (%) | 对籽粒贡献率 Contribution rate (%) | 转运量 Transportation (kg/hm2) | 对籽粒贡献率 Contribution rate (%) | |
N1R1 | 1 635.52bcd | 15.19bc | 20.69b | 6 263.04a | 68.69ab |
N1R2 | 1 223.53d | 10.98c | 14.75b | 7 068.53a | 71.34ab |
N1R3 | 1 579.28bcd | 12.50c | 20.51b | 6 138.92a | 55.53c |
N2R1 | 2 173.92abc | 15.78bc | 37.77a | 3 620.48c | 31.51d |
N2R2 | 2 614.35a | 20.85ab | 29.39a | 6 284.79a | 63.48bc |
N2R3 | 996.58d | 9.84c | 13.71b | 6 094.55a | 71.48ab |
N3R1 | 1 488.32cd | 15.01bc | 18.86b | 6 468.32a | 77.48a |
N3R2 | 1 638.68bcd | 14.58bc | 18.74b | 7 036.18a | 72.88ab |
N3R3 | 2 242.32ab | 22.91a | 31.10a | 4 959.35b | 65.70abc |
[1] | 麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究[J]. 植物营养与肥料学报, 2018, 24(4):1113-1120. |
MA Kun, DIAO Gang. Research on the contribution rate of fertilizer to grain yield in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4):1113-1120. | |
[2] | 李亮科. 生产要素利用对粮食增产和环境影响研究[D]. 北京: 中国农业大学, 2015. |
LI Liangke. Researchy on the effect of factor utilization on grain yield and environment[D]. Beijing: China Agricultural University, 2015. | |
[3] | 韩晓增, 邹文秀, 尤梦阳. 减氮、加菌、改善土壤物理性状提高大豆固氮能力[J]. 大豆科技, 2011,(1):14. |
HAN Xiaozeng, ZOU Wenxiu, YOU Mengyang. Reducing nitrogen,adding bacteria, improving soil physical properties and increasing nitrogen fixation capacity of soybean[J]. Soybean Science and Technology, 2011,(1):14. | |
[4] | 邹晓锦, 张鑫, 安景文. 氮肥减量后移对玉米产量和氮素吸收利用及农田氮素平衡的影响[J]. 中国土壤与肥料, 2011,(6): 25. |
ZOU Xiaojin, ZHANG Xin, AN Jingwen. Effects of nitrogen reduction and backward shift on maize yield, nitrogen absorption and utilization and nitrogen balance in farmland[J]. Soil and Fertilizer in China, 2011,(6):25. | |
[5] | Xiong S P, Wu Y P, Wang X C et al. Effect of lower nitrogen application on dry matter accumulation and nitrogen translocation of different wheat varieties[J]. Journal of Triticeae Crops, 2015, 35(8):1134. |
[6] | 刘长旭, 张静, 张云霞, 等. 化肥减量条件下配施有机肥对设施番茄产量和品质的影响[J]. 山东农业科学, 2021, 53(2):79-82. |
LIU Changxu, ZHANG Jing, ZHANG Yunxia, et al. Effects of combined application of organic fertilizer on Yield and quality of protected tomato under the condition of chemical fertilizer reduction[J]. Shandong Agricultural Sciences, 2021, 53 (2): 79-82. | |
[7] | 张娟. 种植密度和氮肥水平互作对冬小麦产量和氮素利用率的调控效应研究[D]. 泰安: 山东农业大学, 2014. |
ZHANG Juan. Effects of interaction between planting density and nitrogen fertilizer level on Yield and nitrogen use efficiency of winter wheat[D]. Tai’an: Shandong Agricultural University, 2014. | |
[8] | 李升东, 张卫峰, 王法宏, 等. 施氮量对小麦氮素利用的影响[J]. 麦类作物学报, 2016, 36(2): 223-230. |
LI Shengdong, ZHANG Weifeng, WANG Fahong, et al. Effect of nitrogen application rate on nitrogen utilization of wheat[J]. Journal of Triticeae Crops, 2016, 36(2): 223-230. | |
[9] | 朱明哲, 吴国梁, 翟素琴, 等. 三种土壤基础肥力不同施氮量对优质小麦产量及品质的影响[J]. 植物营养与肥料学报, 2004, 10(6):561-567. |
ZHU Mingzhe, WU Guoliang, ZHAI Suqin, et al. Effects of different nitrogen application rates on the yield and quality of high-quality wheat in three kinds of soil basic fertility[J]. Journal of Plant Nutrition and Fertilizer, 2004, 10(6): 561-567. | |
[10] |
祁静玉, 蒋桂英, 李彦旬. 减量施氮对滴灌春小麦群体结构和产量的影响[J]. 新疆农业科学, 2018, 55(4):609-617.
DOI |
QI Jingyu, JIANG Guiying, LI Yanxun. Effects of reduced nitrogen application on population structure and yield of spring wheat under drip irrigation[J]. Xinjiang Agricultural Sciences, 2018, 55 (4): 609-617. | |
[11] | 孙婷, 张建芳, 石元强, 等. 氮素运筹对滴灌春小麦氮素吸收、利用及产量的影响[J]. 塔里木大学学报, 2019, 31(4):29-40. |
SUN Ting, ZHANG Jianfang, SHI yuanqiang, et al. Effects of nitrogen management on nitrogen absorption, utilization and yield of spring wheat under drip irrigation[J]. Journal of Tarim University, 2019, 31(4): 29-40. | |
[12] | 吴晓丽, 李朝苏, 汤永禄, 等. 氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响[J]. 应用生态学报, 2017, 28(6): 1889-1898. |
WU Xiaoli, LI Chaosu, TANG Yonglu, et al. Effects of nitrogen use efficiency and light energy utilization rate on wheat yield[J]. Chinese Journal of Applied Ecology, 2017, 28 (6): 1889-1898. | |
[13] | 黄严帅, 范袁斌, 李炳生, 等. 氮肥运筹对弱筋小麦宁麦9号群体结构和产量的影响[J]. 中国农学通报. 2008, 24(9): 122-126. |
HUANG Yanshuai, FAN Yuanbin, LI Bingsheng, et al. Effects of nitrogen management on population structure and yield of Weak Gluten Wheat Ningmai 9[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 122-126. | |
[14] | 于文明, 于振文, 魏守江. 施氮量和基本苗对小麦干物质积累量和产量及氮肥利用率的影响[J]. 山东农业科学. 2006(4): 35-37. |
YU Wenming, YU Zhenwen, WEI Shoujiang. Effects of nitrogen application rate and basic seedlings on dry matter accumulation, yield and nitrogen use efficiency of wheat[J]. Shandong Agricultural Sciences, 2006 (4): 35-37. | |
[15] | 李瑞奇, 李雁鸣, 何建兴, 等. 施氮量对冬小麦氮素利用和产量的影响[J]. 麦类作物学报. 2011, 31(2): 270-275. |
LI Ruiqi, LI Yanming, HE Jianxing, et al. Effects of nitrogen application rate on nitrogen utilization and yield of winter wheat[J]. Journal of TriticeaeCrops, 2011, 31(2): 270-275. | |
[16] |
石元强, 张迪, 孙婷, 等. 氮肥运筹对滴灌春小麦干物质积累及产量特征的调控效应[J]. 新疆农业科学, 2019, 56(6):1022-1031.
DOI |
SHI Yuanqiang, ZHANG Di, SUN Ting, et al. Regulation effect of nitrogen management on dry matter accumulation and yield characteristics of spring wheat under drip irrigation[J]. Xinjiang Agricultural Sciences, 2019, 56(6): 1022-1031.
DOI |
|
[17] | 张向前, 杜世州, 曹承富, 等. 种植密度对小麦群体质量叶绿素荧光参数和产量的影响[J]. 干旱地区农业研究, 2014, 32(5):93-99. |
ZHANG Xiangqian, DU Shizhou, CAO Chengfu, et al. Effects of planting density on population quality, chlorophyll fluorescence parameters and yield of wheat[J]. Agricultural Research in Arid Areas, 2014, 32(5): 93-99. | |
[18] | 钱兆国, 吴科, 王瑞霞, 等. 节水条件下不同播期密度设计对不同品种冬小麦群体生长特性和产量的影响[J]. 中国农学通报, 2012, 28(27):124-129. |
QIAN Zhaoguo, WU Ke, WANG Ruixia, et al. Effects of density design at different sowing dates on population growth characteristics and yield of Different Winter Wheat Varieties under water-saving conditions[J]. Chinese Agricultural Science Bulletin, 2012, 28(27): 124-129. | |
[19] | 黄艺华, 蒋桂英, 王海琪, 等. 氮肥基追比对滴灌春小麦群体质量及产量的影响[J]. 西北农业学报, 2021, 30(6):807-818. |
HUANG Yihua, JIANG Guiying, WANG Haiqi, et al. Effects of base topdressing ratio of nitrogen fertilizer on population quality and yield of spring wheat under drip irrigation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(6): 807-818. | |
[20] | 高聚林, 刘克礼, 刘瑞香, 等. 不同栽培条件对春小麦叶面积指数的影响[J]. 麦类作物学报, 2003,(3):85-89. |
GAO Julin, LIU Keli, LIU Ruixiang, et al. Effects of different cultivation conditions on leaf area index of spring wheat[J]. Journal of Triticeae Crops, 2003,(3): 85-89. |
[1] | 王春生, 李剑峰, 张跃强, 樊哲儒, 王重, 高新, 时佳, 张宏芝, 王立红, 夏建强, 王芳平, 赵奇. 新疆主栽春小麦品种花药培养力基因型差异分析[J]. 新疆农业科学, 2024, 61(9): 2081-2086. |
[2] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[3] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[4] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[5] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[6] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[7] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[8] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[9] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[10] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[11] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[12] | 袁以琳, 颜安, 左筱筱, 侯正清, 张振飞, 肖淑婷, 孙哲, 马梦倩, 赵宇航. 氮肥减量配施生物有机肥对春小麦增产及土壤培肥的影响[J]. 新疆农业科学, 2024, 61(8): 1872-1882. |
[13] | 刘旭欢, 于姗, 刘跃, 石书兵. 不同粒级春小麦种子活力差异比较[J]. 新疆农业科学, 2024, 61(8): 1883-1887. |
[14] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[15] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||