新疆农业科学 ›› 2023, Vol. 60 ›› Issue (5): 1127-1133.DOI: 10.6048/j.issn.1001-4330.2023.05.011
• 作物遗传育种·种质资源·耕作栽培·生理生化 • 上一篇 下一篇
朱宝国1(), 匡恩俊2, 滕占林3, 孟庆英1, 王囡囡1, 冯浩原1, 邱磊1, 高雪冬1, 张春峰1(
)
收稿日期:
2022-09-29
出版日期:
2023-05-20
发布日期:
2023-05-22
通信作者:
张春峰(1965-),男,黑龙江汤原人,研究员,博士,研究方向为土壤肥料与作物营养,(E-mail)chunfeng-1@163.com作者简介:
朱宝国(1982-),男,黑龙江依兰人,副研究员,硕士,研究方向为土壤肥料与作物营养,(E-mail)zhubaoguo82@163.com
基金资助:
ZHU Baoguo1(), KUANG Enjun2, TENG Zhanglin3, MENG Qingying1, WANG Nannan1, FENG Haoyuan1, QIU Lei1, GAO Xuedong1, ZHANG Chunfeng1(
)
Received:
2022-09-29
Published:
2023-05-20
Online:
2023-05-22
Supported by:
摘要:
【目的】研究不同生物有机肥配施化肥对大豆植株性状、抗病性及产量和效益的影响。【方法】在大田条件下采用小区试验方法,设置常规施肥和不同生物有机肥配施化肥处理,研究大豆干物质、根瘤、抗病性及其产量变化。【结果】与常规施肥相比,不同生物有机肥配施化肥提高了苗期和盛花期大豆的地上部干物质、根干重和根瘤数,干物质提高幅度为5.31%~12.86%,根干重提高幅度为10.35%~20.24%,根瘤数提高幅度为12.34%~37.50%,差异均达到显著水平(P<0.05);不同生物有机肥配施化肥显著降低了苗期根腐病发病率和病情指数;显著提高大豆的株高、株荚数、株粒数及提高百粒重,提高大豆产量,2019~2020年产量提高幅度分别为7.25%~8.67%和6.50%~8.82%,与对照相比差异均达显著水平(P<0.05);与对照相比,不同生物有机肥配施化肥处理均提高了大豆的产值和效益值,效益值最高增加1 066.16元/hm2。【结论】生物有机肥配施化肥能够促进大豆植株生长,降低病害,提高产量,提高经济效益。
中图分类号:
朱宝国, 匡恩俊, 滕占林, 孟庆英, 王囡囡, 冯浩原, 邱磊, 高雪冬, 张春峰. 不同生物有机肥配施化肥对大豆植株生长、抗病及产量的影响[J]. 新疆农业科学, 2023, 60(5): 1127-1133.
ZHU Baoguo, KUANG Enjun, TENG Zhanglin, MENG Qingying, WANG Nannan, FENG Haoyuan, QIU Lei, GAO Xuedong, ZHANG Chunfeng. Effects of different bio-organic fertilizers application combined with conventional fertilization on growth, disease resistance and yield of soybean[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1127-1133.
处理 Treatment | 地上干重 Dry matter accumulation per plant(g) | 根干重 Root dry weight per plant(g) | 根瘤干重 Nodule dry weight per plant(g) | 根瘤个数 Number of root nodule per plant | 根腐病发病率 Incidence rate of root rot (%) | 病情指数 Disease index (%) |
---|---|---|---|---|---|---|
T1 | 1.07±0.03b | 0.20±0.02b | 0.02±0.01b | 12.56±0.42b | 58.87±3.50b | 33.83±2.60b |
T2 | 1.16±0.02a | 0.23±0.02a | 0.03±0.01a | 14.67±0.44a | 52.60±3.24a | 28.27±2.35a |
T3 | 1.21±0.03a | 0.24±0.02a | 0.04±0.01a | 15.92±0.45a | 51.07±3.27a | 27.83±3.53a |
T4 | 1.20±0.03a | 0.22±0.03a | 0.04±0.01a | 15.72±0.43a | 52.40±3.10a | 27.90±3.50a |
T5 | 1.19±0.02a | 0.23±0.02a | 0.03±0.01a | 14.11±0.42a | 49.30±3.65a | 27.33±2.12a |
表1 2019年大豆苗期不同处理下植株性状及抗病性变化
Tab.1 Effect of plant traits and disease resistant at seedling stage of soybean with different treatments in 2019
处理 Treatment | 地上干重 Dry matter accumulation per plant(g) | 根干重 Root dry weight per plant(g) | 根瘤干重 Nodule dry weight per plant(g) | 根瘤个数 Number of root nodule per plant | 根腐病发病率 Incidence rate of root rot (%) | 病情指数 Disease index (%) |
---|---|---|---|---|---|---|
T1 | 1.07±0.03b | 0.20±0.02b | 0.02±0.01b | 12.56±0.42b | 58.87±3.50b | 33.83±2.60b |
T2 | 1.16±0.02a | 0.23±0.02a | 0.03±0.01a | 14.67±0.44a | 52.60±3.24a | 28.27±2.35a |
T3 | 1.21±0.03a | 0.24±0.02a | 0.04±0.01a | 15.92±0.45a | 51.07±3.27a | 27.83±3.53a |
T4 | 1.20±0.03a | 0.22±0.03a | 0.04±0.01a | 15.72±0.43a | 52.40±3.10a | 27.90±3.50a |
T5 | 1.19±0.02a | 0.23±0.02a | 0.03±0.01a | 14.11±0.42a | 49.30±3.65a | 27.33±2.12a |
处理 Treatment | 地上干物质 Dry matter accumulation per plant(g) | 根干重 Root dry weight per plant(g) | 根瘤干重 Nodule dry weight per plant(g) | 根瘤个数 Number of root nodule per plant |
---|---|---|---|---|
T1 | 5.27±0.15b | 0.78±0.02b | 0.12±0.02b | 19.20±0.62cB |
T2 | 5.73±0.15a | 0.88±0.04a | 0.17±0.03a | 25.60±0.83aA |
T3 | 5.79±0.17a | 0.89±0.06a | 0.18±0.03a | 26.40±0.75aA |
T4 | 5.75±0.13a | 0.86±0.06a | 0.15±0.02a | 23.20±0.65abA |
T5 | 5.72±0.14a | 0.87±0.05a | 0.14±0.02ab | 21.60±0.54bB |
表2 2019年大豆盛花期不同处理下植株性状变化
Tab.2 Effect of plant traits at full-bloom stage of soybean with different treatments in 2019
处理 Treatment | 地上干物质 Dry matter accumulation per plant(g) | 根干重 Root dry weight per plant(g) | 根瘤干重 Nodule dry weight per plant(g) | 根瘤个数 Number of root nodule per plant |
---|---|---|---|---|
T1 | 5.27±0.15b | 0.78±0.02b | 0.12±0.02b | 19.20±0.62cB |
T2 | 5.73±0.15a | 0.88±0.04a | 0.17±0.03a | 25.60±0.83aA |
T3 | 5.79±0.17a | 0.89±0.06a | 0.18±0.03a | 26.40±0.75aA |
T4 | 5.75±0.13a | 0.86±0.06a | 0.15±0.02a | 23.20±0.65abA |
T5 | 5.72±0.14a | 0.87±0.05a | 0.14±0.02ab | 21.60±0.54bB |
处理 Treatment | 株高 Plant height (cm) | 单株荚数 Valid pod per plant | 单株粒数 Grain number per plant | 百粒重 100-grain weight (g) | 产量 Yield (kg/hm2) | 增产 Yield increase rate(%) |
---|---|---|---|---|---|---|
T1 | 98.42±2.12bB | 33.14±1.87bB | 68.43±1.58bB | 22.19±0.19a | 2 358.21±16.21bB | — |
T2 | 106.56±2.27aA | 36.57±2.01aA | 73.29±1.74aA | 23.69±0.25a | 2 538.77±20.17aA | 7.11 |
T3 | 107.25±2.65aA | 38.77±2.23aA | 75.45±1.83aA | 23.78±0.23a | 2 562.72±22.36aA | 8.67 |
T4 | 105.73±2.48aA | 36.80±1.98aA | 72.73±1.76aA | 23.59±0.26a | 2 529.18±21.14aA | 7.25 |
T5 | 106.32±2.23aA | 37.13±1.94aA | 73.41±1.85aA | 23.70±0.23a | 2 542.53±20.23aA | 7.82 |
表3 2019年不同处理下大豆产量及其构成因子变化
Tab.3 Effect of different treatments on soybean yield and its components in 2019
处理 Treatment | 株高 Plant height (cm) | 单株荚数 Valid pod per plant | 单株粒数 Grain number per plant | 百粒重 100-grain weight (g) | 产量 Yield (kg/hm2) | 增产 Yield increase rate(%) |
---|---|---|---|---|---|---|
T1 | 98.42±2.12bB | 33.14±1.87bB | 68.43±1.58bB | 22.19±0.19a | 2 358.21±16.21bB | — |
T2 | 106.56±2.27aA | 36.57±2.01aA | 73.29±1.74aA | 23.69±0.25a | 2 538.77±20.17aA | 7.11 |
T3 | 107.25±2.65aA | 38.77±2.23aA | 75.45±1.83aA | 23.78±0.23a | 2 562.72±22.36aA | 8.67 |
T4 | 105.73±2.48aA | 36.80±1.98aA | 72.73±1.76aA | 23.59±0.26a | 2 529.18±21.14aA | 7.25 |
T5 | 106.32±2.23aA | 37.13±1.94aA | 73.41±1.85aA | 23.70±0.23a | 2 542.53±20.23aA | 7.82 |
处理 Treatment | 株高 Plant height (cm) | 单株荚数 Valid pod per plant | 单株粒数 Seed number per plant | 百粒重 100-seed weight (g) | 产量 Yield (kg/hm2) | 增产 Yield increase rate(%) |
---|---|---|---|---|---|---|
T1 | 97.67±2.53bB | 32.22±1.91bB | 78.43±2.17bB | 18.19±0.06a | 2 258.47±19.88bB | — |
T2 | 101.63±1.96aA | 37.57±2.10aA | 83.29±1.98aA | 18.69±0.31a | 2 446.77±23.09aA | 8.34 |
T3 | 103.30±3.26aA | 41.77±2.25aA | 85.45±1.94aA | 18.78±0.13a | 2 457.72±28.04aA | 8.82 |
T4 | 102.33±2.95aA | 35.80±1.90aA | 82.73±1.80aA | 18.59±0.36a | 2 405.18±26.15aA | 6.50 |
T5 | 101.37±2.40aA | 38.13±1.86aA | 83.41±2.68aA | 18.70±0.43a | 2 438.98±28.17aA | 7.99 |
表4 2020年不同处理下大豆产量及其构成因子变化
Tab.4 Effect of different treatments on soybean yield and its components in 2020
处理 Treatment | 株高 Plant height (cm) | 单株荚数 Valid pod per plant | 单株粒数 Seed number per plant | 百粒重 100-seed weight (g) | 产量 Yield (kg/hm2) | 增产 Yield increase rate(%) |
---|---|---|---|---|---|---|
T1 | 97.67±2.53bB | 32.22±1.91bB | 78.43±2.17bB | 18.19±0.06a | 2 258.47±19.88bB | — |
T2 | 101.63±1.96aA | 37.57±2.10aA | 83.29±1.98aA | 18.69±0.31a | 2 446.77±23.09aA | 8.34 |
T3 | 103.30±3.26aA | 41.77±2.25aA | 85.45±1.94aA | 18.78±0.13a | 2 457.72±28.04aA | 8.82 |
T4 | 102.33±2.95aA | 35.80±1.90aA | 82.73±1.80aA | 18.59±0.36a | 2 405.18±26.15aA | 6.50 |
T5 | 101.37±2.40aA | 38.13±1.86aA | 83.41±2.68aA | 18.70±0.43a | 2 438.98±28.17aA | 7.99 |
处理 Treatments | 肥料成本 Cost of fertilizer | 大豆产值 Soybean production value | 效益值 (元/hm2) Benefit value (yuan/hm2) | ||||
---|---|---|---|---|---|---|---|
生物肥用量 Dosage of bio-fertilizer (kg/hm2) | 生物肥成本 (元/hm2)Cost of bio-fertilizer (yuan/hm2) | 化肥成本 (元/hm2) Cost of chemical fertilizer (yuan/hm2) | 肥料成本总和 (元/hm2) Total cost of fertilizer (yuan/hm2) | 产量 Yield (kg/hm2) | 产值 (元/hm2) Production value (yuan/hm2) | ||
T1 | — | — | 885 | 885 | 2 358.21 | 13 677.62 | 12 792.62 |
T2 | 30 | 120 | 885 | 1 005 | 2 538.77 | 14 724.87 | 13 719.87 |
T3 | 30 | 120 | 885 | 1 005 | 2 562.72 | 14 863.78 | 13 858.78 |
T4 | 30 | 120 | 885 | 1 005 | 2 529.18 | 14 669.24 | 13 664.24 |
T5 | 30 | 135 | 885 | 1 020 | 2 542.53 | 14 746.67 | 13 726.67 |
表5 2019年不同肥料成本及大豆产值
Tab.5 Statistical table of different fertilizers costs and soybean output value in 2019
处理 Treatments | 肥料成本 Cost of fertilizer | 大豆产值 Soybean production value | 效益值 (元/hm2) Benefit value (yuan/hm2) | ||||
---|---|---|---|---|---|---|---|
生物肥用量 Dosage of bio-fertilizer (kg/hm2) | 生物肥成本 (元/hm2)Cost of bio-fertilizer (yuan/hm2) | 化肥成本 (元/hm2) Cost of chemical fertilizer (yuan/hm2) | 肥料成本总和 (元/hm2) Total cost of fertilizer (yuan/hm2) | 产量 Yield (kg/hm2) | 产值 (元/hm2) Production value (yuan/hm2) | ||
T1 | — | — | 885 | 885 | 2 358.21 | 13 677.62 | 12 792.62 |
T2 | 30 | 120 | 885 | 1 005 | 2 538.77 | 14 724.87 | 13 719.87 |
T3 | 30 | 120 | 885 | 1 005 | 2 562.72 | 14 863.78 | 13 858.78 |
T4 | 30 | 120 | 885 | 1 005 | 2 529.18 | 14 669.24 | 13 664.24 |
T5 | 30 | 135 | 885 | 1 020 | 2 542.53 | 14 746.67 | 13 726.67 |
处理 Treatments | 肥料成本 Cost of fertilizer | 大豆产值 Soybean production value | 效益值 (元/hm2) Benefit value (yuan/hm2) | ||||
---|---|---|---|---|---|---|---|
生物肥用量 Dosage of bio-fertilizer (kg/hm2) | 生物肥成本 (元/hm2)Cost of bio-fertilizer (yuan/hm2) | 化肥成本 (元/hm2) Cost of chemical fertilizer (yuan/hm2) | 肥料成本总和 (元/hm2) Total cost of fertilizer (yuan/hm2) | 产量 Yield (kg/hm2) | 产值 (元/hm2) Production value (yuan/hm2) | ||
T1 | — | — | 885 | 885 | 2 258.47 | 13 099.13 | 12 214.13 |
T2 | 30 | 120 | 885 | 1 005 | 2 446.77 | 14 191.27 | 13 186.27 |
T3 | 30 | 120 | 885 | 1 005 | 2 457.72 | 14 254.78 | 13 249.78 |
T4 | 30 | 120 | 885 | 1 005 | 2 405.18 | 13 950.04 | 12 945.04 |
T5 | 30 | 135 | 885 | 1 020 | 2 438.98 | 14 146.08 | 13 126.08 |
表6 2020年不同肥料成本及大豆产值
Tab.6 Statistical table of different fertilizers costs and soybean production output in 2020
处理 Treatments | 肥料成本 Cost of fertilizer | 大豆产值 Soybean production value | 效益值 (元/hm2) Benefit value (yuan/hm2) | ||||
---|---|---|---|---|---|---|---|
生物肥用量 Dosage of bio-fertilizer (kg/hm2) | 生物肥成本 (元/hm2)Cost of bio-fertilizer (yuan/hm2) | 化肥成本 (元/hm2) Cost of chemical fertilizer (yuan/hm2) | 肥料成本总和 (元/hm2) Total cost of fertilizer (yuan/hm2) | 产量 Yield (kg/hm2) | 产值 (元/hm2) Production value (yuan/hm2) | ||
T1 | — | — | 885 | 885 | 2 258.47 | 13 099.13 | 12 214.13 |
T2 | 30 | 120 | 885 | 1 005 | 2 446.77 | 14 191.27 | 13 186.27 |
T3 | 30 | 120 | 885 | 1 005 | 2 457.72 | 14 254.78 | 13 249.78 |
T4 | 30 | 120 | 885 | 1 005 | 2 405.18 | 13 950.04 | 12 945.04 |
T5 | 30 | 135 | 885 | 1 020 | 2 438.98 | 14 146.08 | 13 126.08 |
[1] | 沈永哲. 东北黑土地保护利用问题与对策[J]. 农业科技与装备, 2021,(1):71-72. |
SHEN Yongzhe. Problems on protection and utilization of black land in northeast China and its countermeasure[J]. Agricultural Science&Technology and Equipment, 2021,(1):71-72. | |
[2] |
姜宁, 王斌, 谢永刚. 黑龙江省黑土地质量评价指标体系构建[J]. 中国农学通报, 2021, 37(33):98-104.
DOI |
JIANG Ning, WANG Bi, XIE Yonggang. Construction of black soil quality evaluation index system in Heilongjiang Province[J]. Chinese Agricultural Science Bulletin, 2021, 37(33):98-104.
DOI |
|
[3] | 徐新良, 陈建洪, 张雄一. 我国农田面源污染时空演变特征分析[J]. 中国农业大学学报, 2021, 26(12):157-165. |
XU Xinliang, CHEN Jianghong, ZHANG Xiongyi. Analysis on the spatiotemporal evolution characteristics of agricultural non-point source pollution China[J]. Journal of China Agricultural University, 2021, 26(12):157-165. | |
[4] |
Ruan W B, Ren T, Chen Q, et al. Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production[J]. Applied Soil Ecology, 2013, 66(2): 48-55.
DOI URL |
[5] | 郝小雨, 马星竹, 周宝库. 长期单施有机肥黑土大豆产量和土壤理化性质演变特征[J]. 土壤与作物, 2018, 7(2):222-228. |
HAO Xiaoyu, MA Xingzhu, ZHOU Baoku. Variation characteristics of soybean yield and soil physicochemical properties after long-term organic fertilizer application in black soil[J]. Soils and Crops, 2018, 7(2):222-228. | |
[6] | 匡恩俊, 李梓瑄, 迟凤琴, 等. 耕地方式与有机肥配施对大豆产量及土壤养分特征的影响[J]. 大豆科学, 2020, 39(1):108-115. |
KUANG Enjun, LI Zixuan, CHI Fengqin, et al. Effect of different plough and organic fertilizer on characteristics of soybean yield and soil nutrients[J]. Soybean Science, 2020, 39(1):108-115. | |
[7] | 胡可, 李华兴, 卢维盛, 等. 生物有机肥对土壤微生物活性的影响[J]. 中国生态农业学报, 2011, 18(2):303-306. |
HU Ke, LI Huaxing, LU Weisheng, et al. Effect of microbial organic fertilizer application on soil microbial activity[J]. Chinese Journal of Eco-Agriculture, 2011, 18(2):303-306. | |
[8] |
Shiomi Y, Masaya N, Tomoko O, et al. Comparison of bacterial community structure in the rhizosphere of tomato plants grown in soils suppressive and conducive towards bacterial wilt[J]. Appl Environ Microb, 1999, 65:3996-4001.
DOI PMID |
[9] | 孙炜, 樊雪梅. 生物有机肥料对大豆生育性状和产量的影响[J]. 黑龙江农业科学, 2009,(5):63-64. |
SUN Wei, FAN Xuemei. Effects of bio-organic fertilizer on growth traits and yield of soybean[J]. Heilongjiang Agricultural Sciences, 2009,(5):63-64. | |
[10] | 路宪春, 于文清, 刘文志, 等. 生物有机肥与化肥配施对大豆生物性状及产量的影响[J]. 现代化农业, 2014,(1):17-19. |
LU Xianchun, YU Wenqing, LIU Wenzhi, et al. Effects of combined application of bio-organic fertilizer and chemical fertilizer on biological characters and yield of soybean[J]. Modern Agriculture, 2014,(1):17-19. | |
[11] | 张奇, 张振华, 陈雅玲, 等. 施用生物有机肥对土壤特性、作物品质及产量影响的研究进展[J]. 江苏农业科学, 2020, 48(15):71-76. |
ZHANG Qi, ZHANG Zhenhua, CHEN Yaling, et al. Research progress on effects of bio-organic fertilizer application on soil characteristics, crop quality and yield[J]. Jiangsu Agricultural Sciences, 2020, 48(15):71-76. | |
[12] | 胡英宏, 任泽广, 杨姝钰, 等. 生物有机肥对菠萝心腐病发生和土壤细菌群落结构的影响[J/OL]. 应用与环境生物学报,1-12[2021-12-24]. |
HU Yinghong, REN Zeguang, YANG Shuyu, et al. Effects of bio-organic fertilizers on pineapple heart rot and bacterial community structure[J]. Chinese Journal of Applied and Environmental Biology, 1-12[2021-12-24] | |
[13] | 苏煜, 黄劭理. 增施生物有机肥对烤烟光合特性及根际土壤微生物的影响[J/OL]. 中国农业科技,1-8[2021-12-24]. |
SU Yi, HUANG Shaoli. Effects of bio-organic fertilizer on flue-cured tobacco photosynthetic characteristics and rhizosphere soil microorganism[J]. Journal of Agricultural Science and Technology,1-8[2021-12-24]. | |
[14] | 李远明, 姜妍, 王浩, 等. 重迎茬大豆应用生物有机肥效果研究[J]. 大豆科技, 2013,(6):3-7,10 |
LI Yuanming, JIANG Yan, WANG Hao, et al. Application of bio-organic fertilizer in continuous and alternate cropping soybeans[J]. Soybean Science and Technology, 2013,(6):3-7,10. | |
[15] | 中国土壤学会. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版, 2000. |
The Chinese Society of Soil. Soil agricultural chemical anaylysis methods[M]. Beijing: China’s Agricultural Science and Technology Press, 2000. | |
[16] | 辛惠普, 马汇泉, 刘静茹, 等. 大豆根腐病发生与防治的初步研究[J]. 大豆科学, 1987,(3):189-196. |
XIN Huipu, MA Huiquan, LIU Jingru, et al. A preliminary study on epidemiology and control of disease[J]. Soybean Science, 1987,(3):189-196. | |
[17] | 杨晓贺, 张瑜, 丁俊杰, 等. 黑龙江省东部地区大豆根腐病调查研究初报[J]. 大豆科学, 2015, 34(6):1093-1096. |
YANG Xiaohe, ZHANG Yu, DING Junjie, et al. Preliminary investigation report on Soybean root rot in the eastern of Heilongjiang Province[J]. Soybean Science, 2015, 34(6):1093-1096. | |
[18] | 张静, 杨江舟, 胡伟, 等. 生物有机肥对大豆红冠腐病及土壤酶活性的影响[J]. 农业环境科学学报, 2012, 31(3):548-554. |
ZHANG Jing, YANG Jiangzhou, HU Wei, et al. Effect of biological organic fertilizer on soybean red crown rot and soil enzyme activities[J]. Journal of Agro-Environment Science, 2012, 31(3):548-554. | |
[19] | 台莲梅, 郭永霞, 张亚玲, 等. 木霉生防菌对大豆幼苗的促生作用及对根腐病的防治效果[J]. 安徽农业科学, 2013, 41(11):4820-4821. |
TAI Lianmei, GUO Yongxia, ZHANG Yaling, et al. The promoting Effects and Control of root rot on soybean by trichoderma biocontrol strains[J]. Journal of Anhui Agricultural Sciences, 2013, 41(11):4820-4821. | |
[20] | 朱宝国, 于忠和, 王囡囡, 等. 有机肥和化肥不同比例配施对大豆产量和品质的影响[J]. 大豆科学, 2010, 29(1):97-100. |
ZHU Baoguo, YU Zhonghe, WANG Nannan, et al. Effect of different proportion combined application of organic and chemical fertilizer on soybean yield and quality[J]. Soybean Science, 2010, 29(1):97-100. | |
[21] | 田艳洪, 赵晓锋, 刘玉娥, 等. 不同有机肥用量对大豆植株生长及产量的影响[J]. 大豆科学, 2018, 37(4):578-584. |
TIAN Yanhong, ZHAO Xiaofeng, LIU Yue, et al. Effects of different dosages of organic fertilizer on the growth and yield of soybean[J]. Soybean Science, 2018, 37(4):578-584. | |
[22] | 李鸣雷, 谷洁, 高华, 等. 不同有机肥对大豆植株性状、品质和产量的影响[J]. 西北农林科技大学学报(自然科学版), 2007,(9):67-72. |
LI Minglei, GU Jie, GAO Hua, et al. Effects of different organic fertilizer on plant character quality and yield of soybean[J]. Journal of Northwest A & F University, 2007,(9):67-72. |
[1] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[2] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[3] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[4] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[5] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[6] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[7] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[8] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[9] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[10] | 袁以琳, 颜安, 左筱筱, 侯正清, 张振飞, 肖淑婷, 孙哲, 马梦倩, 赵宇航. 氮肥减量配施生物有机肥对春小麦增产及土壤培肥的影响[J]. 新疆农业科学, 2024, 61(8): 1872-1882. |
[11] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[12] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
[13] | 李锁丞, 柳延涛, 董红业, 孙振博, 李紫薇, 张春媛, 王开勇, 李强, 杨明凤. 不同施钾量对滴灌花生光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1926-1936. |
[14] | 张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053. |
[15] | 杨梅, 赵红梅, 迪丽热巴·夏米西丁, 杨卫君, 张金汕, 惠超. 氮肥减量配施生物质炭对春小麦群体结构、光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1582-1589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||