

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (2): 350-360.DOI: 10.6048/j.issn.1001-4330.2025.02.011
司艳娥1(
), 如克艳木·买提司地克1, 艾克拜尔·伊拉洪1(
), 杨琪峰2
收稿日期:2024-08-10
出版日期:2025-02-20
发布日期:2025-04-17
通信作者:
艾克拜尔·伊拉洪(1963-),男,新疆人,教授,硕士生导师,研究方向为土壤化学与植物营养学,(E-mail)akbarilahun@163.com作者简介:司艳娥(1997-),女,云南昆明人,硕士研究生,研究方向为植物营养学,(E-mail)1928605494@qq.com
基金资助:
SI Yane1(
), Rukeyanmu Maitisidike1, Aikebaier Yilahong1(
), YANG Qifeng2
Received:2024-08-10
Published:2025-02-20
Online:2025-04-17
Supported by:摘要:
【目的】探究在常规施肥基础上施用生物有机肥对土样养分、酶活性及枸杞品质的影响,为改善枸杞果实品质及提升枸杞园土壤肥力和土壤酶活性提供科学依据。【方法】以宁杞7号为材料,常规施肥为对照(CK)、常规施肥+单株施生物有机肥2 kg(T1)、常规施肥+单株施生物有机肥4 kg(T2)、常规施肥+单株施生物有机肥6 kg(T3)和常规施肥+单株施生物有机肥8 kg(T4)共设5个处理,通过田间试验对比分析不同施肥量下土壤肥力和土壤酶活性及枸杞果实品质差异。【结果】与常规施肥(CK)相比施用生物有机肥后土壤肥力和土壤酶活性得到显著提高,且差异显著(P<0.05),其中T2、T3处理土壤改良效果明显;施用生物有机肥后枸杞抗坏血酸、蛋白质、总糖、黄酮含量显著高于CK处理,其中T3处理效果最佳,并较CK增加15.60%、89.33%、28.96%和41.67%;枸杞果实产量在初果期时T2处理效果最佳,与CK处理相比增产31.81%,头茬果熟期和夏果盛期时T3处理效果最佳,与CK相比增产109.47%、105.49%。【结论】生物有机肥在一定程度上可以改良土壤肥力提升土壤酶活性,且枸杞品质得到改善,其中在常规施肥基础上单株施生物有机肥6 kg效果最佳,对枸杞品质有明显的改善作用。
中图分类号:
司艳娥, 如克艳木·买提司地克, 艾克拜尔·伊拉洪, 杨琪峰. 生物有机肥对枸杞品质及土壤酶活性的影响[J]. 新疆农业科学, 2025, 62(2): 350-360.
SI Yane, Rukeyanmu Maitisidike, Aikebaier Yilahong, YANG Qifeng. Effects of bio-organic fertilizer on quality of Lycium barbarum L. and soil enzyme activity[J]. Xinjiang Agricultural Sciences, 2025, 62(2): 350-360.
| 土层 Soil layers (cm) | 养分含量Nutrient content | |||||||
|---|---|---|---|---|---|---|---|---|
| pH值 pH value | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 碱解氮 Alkali- solceble nitrogen (mg/kg) | 速效磷 Available P (mg/kg) | 速效钾 Available K (mg/kg) | |
| 0~20 | 7.76 | 0.97 | 0.79 | 0.73 | 11.68 | 14.70 | 17.02 | 273.57 |
| 20~40 | 7.90 | 0.55 | 0.63 | 0.47 | 4.24 | 3.50 | 7.98 | 101.27 |
表1 试验地土壤养分状况
Tab.1 Soil nutrient status in test site
| 土层 Soil layers (cm) | 养分含量Nutrient content | |||||||
|---|---|---|---|---|---|---|---|---|
| pH值 pH value | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 碱解氮 Alkali- solceble nitrogen (mg/kg) | 速效磷 Available P (mg/kg) | 速效钾 Available K (mg/kg) | |
| 0~20 | 7.76 | 0.97 | 0.79 | 0.73 | 11.68 | 14.70 | 17.02 | 273.57 |
| 20~40 | 7.90 | 0.55 | 0.63 | 0.47 | 4.24 | 3.50 | 7.98 | 101.27 |
| 土层 Soil layers (cm) | 处理 Treat- ments | 养分含量Nutrient content | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| pH值 pH value | 电导率 Conductivity | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 速效磷 Available P (mg/kg) | 速效钾 Available K (mg/kg) | 碱解氮 Alkali- solceble nitrogen (mg/kg) | ||
| 0~20 cm | CK | 8.17±0.05a | 3.85±0.55ab | 12.93±0.23b | 0.43±0.02b | 1.82±0.03c | 4.77±0.13d | 38.32±0.36c | 191.90±2.73d | 22.17±0.69c |
| T1 | 7.92±0.42a | 4.29±0.86ab | 14.19±1.3b | 0.38±0.04b | 1.61±0.05d | 5.78±0.17bc | 49.65±0.58b | 235.64±1.6b | 24.73±0.50b | |
| T2 | 8.07±0.10a | 1.80±0.04b | 17.29±0.58a | 0.57±0.01a | 2.14±0.06b | 6.36±0.10ab | 50.54±0.31b | 222.13±0.53c | 26.83±0.38b | |
| T3 | 7.69±0.24a | 2.15±0.36b | 19.33±0.35a | 0.54±0.02a | 2.65±0.04a | 6.53±0.29a | 56.02±0.45a | 275.84±3.18a | 29.63±0.76a | |
| T4 | 8.16±0.05a | 5.82±0.95a | 18.65±0.55a | 0.39±0.02b | 2.16±0.05b | 5.35±0.14cd | 39.21±0.45c | 242.39±1.6b | 20.77±0.76c | |
| 20~40 cm | CK | 8.07±0.04a | 4.60±0.09a | 10.08±0.03bc | 0.37±0.02b | 1.10±0.04d | 2.52±0.06b | 35.26±0.36c | 107.00±1.58d | 17.27±0.69c |
| T1 | 7.73±0.30ab | 3.75±0.19b | 12.79±0.39ab | 0.37±0.01b | 1.32±0.03c | 2.67±0.22b | 36.92±1.33c | 144.95±1.31c | 23.8±0.87b | |
| T2 | 7.72±0.24ab | 1.74±0.11c | 14.56±0.43a | 0.54±0.03a | 1.38±0.03c | 3.18±0.03b | 44.69±1.44b | 161.35±1.31b | 21.93±0.50b | |
| T3 | 7.13±0.05b | 1.73±0.27c | 12.92±0.95a | 0.34±0.01b | 2.04±0.03a | 4.70±0.43a | 49.78±0.78a | 182.9±2.59a | 27.53±0.83a | |
| T4 | 8.39±0.12a | 3.44±0.02b | 9.84±0.91c | 0.31±0.01b | 1.63±0.04b | 2.65±0.01b | 34.25±0.21c | 138.84±2.41c | 16.33±0.83c | |
表2 不同生物有机肥下土壤养分的变化
Tab.2 Changes of bio-organic fertilizer on soil nutrients
| 土层 Soil layers (cm) | 处理 Treat- ments | 养分含量Nutrient content | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| pH值 pH value | 电导率 Conductivity | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 速效磷 Available P (mg/kg) | 速效钾 Available K (mg/kg) | 碱解氮 Alkali- solceble nitrogen (mg/kg) | ||
| 0~20 cm | CK | 8.17±0.05a | 3.85±0.55ab | 12.93±0.23b | 0.43±0.02b | 1.82±0.03c | 4.77±0.13d | 38.32±0.36c | 191.90±2.73d | 22.17±0.69c |
| T1 | 7.92±0.42a | 4.29±0.86ab | 14.19±1.3b | 0.38±0.04b | 1.61±0.05d | 5.78±0.17bc | 49.65±0.58b | 235.64±1.6b | 24.73±0.50b | |
| T2 | 8.07±0.10a | 1.80±0.04b | 17.29±0.58a | 0.57±0.01a | 2.14±0.06b | 6.36±0.10ab | 50.54±0.31b | 222.13±0.53c | 26.83±0.38b | |
| T3 | 7.69±0.24a | 2.15±0.36b | 19.33±0.35a | 0.54±0.02a | 2.65±0.04a | 6.53±0.29a | 56.02±0.45a | 275.84±3.18a | 29.63±0.76a | |
| T4 | 8.16±0.05a | 5.82±0.95a | 18.65±0.55a | 0.39±0.02b | 2.16±0.05b | 5.35±0.14cd | 39.21±0.45c | 242.39±1.6b | 20.77±0.76c | |
| 20~40 cm | CK | 8.07±0.04a | 4.60±0.09a | 10.08±0.03bc | 0.37±0.02b | 1.10±0.04d | 2.52±0.06b | 35.26±0.36c | 107.00±1.58d | 17.27±0.69c |
| T1 | 7.73±0.30ab | 3.75±0.19b | 12.79±0.39ab | 0.37±0.01b | 1.32±0.03c | 2.67±0.22b | 36.92±1.33c | 144.95±1.31c | 23.8±0.87b | |
| T2 | 7.72±0.24ab | 1.74±0.11c | 14.56±0.43a | 0.54±0.03a | 1.38±0.03c | 3.18±0.03b | 44.69±1.44b | 161.35±1.31b | 21.93±0.50b | |
| T3 | 7.13±0.05b | 1.73±0.27c | 12.92±0.95a | 0.34±0.01b | 2.04±0.03a | 4.70±0.43a | 49.78±0.78a | 182.9±2.59a | 27.53±0.83a | |
| T4 | 8.39±0.12a | 3.44±0.02b | 9.84±0.91c | 0.31±0.01b | 1.63±0.04b | 2.65±0.01b | 34.25±0.21c | 138.84±2.41c | 16.33±0.83c | |
图1 不同生物有机肥下土壤酶活性的变化 注:(a)脲酶;(b)过氧化氢酶;(c)蔗糖酶;(d)碱性磷酸酶。不同小写字母用于表示不同处理之间的显著差异(P<0.05),下同
Fig.1 Changes of bio-organic fertilizer on soil enzyme activity Notes:Different lowercase letters are used to indicate significant differences between different treatments(P < 0.05),the same as below
图2 生物有机肥下枸杞初果期、头茬果熟期、夏果盛期产量的变化
Fig.2 Changes of bio-organic fertilizer on the yield of Lycium barbarum at the beginning fruit stage, the first crop fruit ripening stage and the summer fruit peak stage
| 处理 Treatments | 单果重 Single fruit weight (g) | 果形指数 Fruit shape index | 蛋白质 Protein (g/100g) | 抗坏血酸 Ascorbic acid (mg/100g) | 总糖 Total sugar (g/100g) | 黄酮 Flavonids (%) |
|---|---|---|---|---|---|---|
| CK | 0.45±0.01c | 1.33±0.05cd | 2.25±0.35bc | 63.33±0.67c | 19.89±0.03c | 0.12±0.02ab |
| T1 | 0.55±0.02b | 1.48±0.04b | 2.65±0.89b | 69.33±0.53b | 24.07±0.34ab | 0.10±0.03b |
| T2 | 0.71±0.02a | 1.68±0.04a | 2.48±0.23bc | 64.23±0.66c | 23.03±0.67b | 0.15±0.03ab |
| T3 | 0.55±0.03b | 1.42±0.01bc | 4.26±0.61a | 73.21±1.03a | 25.66±0.06a | 0.17±0.00a |
| T4 | 0.49±0.03bc | 1.46±0.01b | 1.03±0.14c | 63.75±0.73c | 25.04±0.21a | 0.16±0.01ab |
表3 生物有机肥下枸杞果实品质含量的变化
Tab.3 Changes of bio-organic fertilizer on the quality and content of Lycium barbarum fruit
| 处理 Treatments | 单果重 Single fruit weight (g) | 果形指数 Fruit shape index | 蛋白质 Protein (g/100g) | 抗坏血酸 Ascorbic acid (mg/100g) | 总糖 Total sugar (g/100g) | 黄酮 Flavonids (%) |
|---|---|---|---|---|---|---|
| CK | 0.45±0.01c | 1.33±0.05cd | 2.25±0.35bc | 63.33±0.67c | 19.89±0.03c | 0.12±0.02ab |
| T1 | 0.55±0.02b | 1.48±0.04b | 2.65±0.89b | 69.33±0.53b | 24.07±0.34ab | 0.10±0.03b |
| T2 | 0.71±0.02a | 1.68±0.04a | 2.48±0.23bc | 64.23±0.66c | 23.03±0.67b | 0.15±0.03ab |
| T3 | 0.55±0.03b | 1.42±0.01bc | 4.26±0.61a | 73.21±1.03a | 25.66±0.06a | 0.17±0.00a |
| T4 | 0.49±0.03bc | 1.46±0.01b | 1.03±0.14c | 63.75±0.73c | 25.04±0.21a | 0.16±0.01ab |
图3 枸杞产量与品质及不同土层土壤酶活性的相关性 注:“*”表示在0.05水平上显著,“**”表示在0.01水平上极显著
Fig.3 Relationship between yield and quality of Lycium barbarum and soil enzyme activity in different soil layers Notes:"*" means significant at 0.05 level, "**" means extremely significant at 0.01 level
| [1] | 宋雪梅. 枸杞生物学特性及栽培技术[J]. 现代农业科技, 2011,(18): 171. |
| SONG Xuemei. Biological characteristics and cultivation techniques of Lycium barbarum[J]. Modern Agricultural Science and Technology, 2011,(18): 171. | |
| [2] | Wang B, Han L, Liu J M, et al. Lycium genus polysaccharide: an overview of its extraction, structures, pharmacological activities and biological applications[J]. Separations, 2022, 9(8): 197. |
| [3] | Wang F, Li W H, Lin Y M, et al. Soil organic carbon pool and the production of goji berry (Lycium barbarum L.) as affected by different fertilizer combinations under drip fertigation[J]. Frontiers in Environmental Science, 2022, 10: 933124. |
| [4] | 刘志鹏. 新疆精河枸杞产业发展存在问题及对策[J]. 现代经济信息, 2013, (20): 364-365. |
| Liu Zhipeng. Problems and countermeasures in the development of Chinese wolfberry industry in Jinghe, Xinjiang[J]. Modern Economic Information, 2013, (20): 364-365. | |
| [5] | Alikarieva D, Merganov A, Kamalova M, et al. Technologies of cultivation and processing of Lycium chinense Mill. and Lycium barbarum L. fruits in the conditions of Uzbekistan[J]. E3S Web of Conferences, 2023, 390: 02026. |
| [6] | 叶凯, 孙天罡, 刘富娥, 等. 精河县枸杞产业竞争能力分析及发展途径[J]. 安徽农业科学, 2012, 40(4): 2402-2404. |
| YE Kai, Sun Tiangang, Liu Fue, et al. Competitive strength and development paths of Jinghe wolfberry industry[J]. Journal of Anhui Agricultural Sciences, 2012, 40(4): 2402-2404. | |
| [7] | 张晓娜, 李捷, 葛晶, 等. 两种微生物有机肥对枸杞叶绿素荧光参数变化的影响[J]. 四川农业大学学报, 2014, 32(4): 388-392. |
| ZHANG Xiaona, LI Jie, GE Jing, et al. Effects of two microbial fertilizers on chlorophyll parameters of Lycium barbarum[J]. Journal of Sichuan Agricultural University, 2014, 32(4): 388-392. | |
| [8] | 李庆康, 张永春, 杨其飞, 等. 生物有机肥肥效机理及应用前景展望[J]. 中国生态农业学报, 2003, 11(2): 78-80. |
| LI Qingkang, ZHANG Yongchun, YANG Qifei, et al. The concept, mechanism, affecting factors and prospect of applying bio-organic fertilizer[J]. Chinese Journal of Eco-Agriculture, 2003, 11(2): 78-80. | |
| [9] | 王俊华, 尹睿, 张华勇, 等. 长期定位施肥对农田土壤酶活性及其相关因素的影响[J]. 生态环境, 2007, 16(1): 191-196. |
| WANG Junhua, YIN Rui, ZHANG Huayong, et al. Changes in soil enzyme activities, microbial biomass, and soil nutrition status in response to fertilization regimes in a long-term field experiment[J]. Ecology and Environment, 2007, 16(1): 191-196. | |
| [10] | 王亚雄, 常少刚, 王锐, 等. 不同有机肥对宁夏枸杞生长、产量及品质的影响[J]. 中国土壤与肥料, 2019,(5): 91-95. |
| WANG Yaxiong, CHANG Shaogang, WANG Rui, et al. Effects of different mechanical fertilizers on growth, yield and quality of Lycium chinense[J]. Soil and Fertilizer Sciences in China, 2019,(5): 91-95. | |
| [11] | 马世震, 彭炳成, 董琪, 等. 生态专用肥在枸杞生产上的应用[J]. 西北农业学报, 2014, 23(8): 149-154. |
| MA Shizhen, PENG Bingcheng, DONG Qi, et al. Application of special fertilizer to the production of Lycium barbarum L[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(8): 149-154. | |
| [12] |
包慧芳, 王宁, 侯敏, 等. 生物有机肥对枸杞产量、品质及土壤性状的影响[J]. 新疆农业科学, 2020, 57(3): 545-552.
DOI |
|
BAO Huifang, WANG Ning, HOU Min, et al. Effects of bio-organic fertilizer on yield and quality of Lycium barbarum L. and physicochemical properties of soil[J]. Xinjiang Agricultural Sciences, 2020, 57(3): 545-552.
DOI |
|
| [13] |
孙家骏, 付青霞, 谷洁, 等. 生物有机肥对猕猴桃土壤酶活性和微生物群落的影响[J]. 应用生态学报, 2016, 27(3): 829-837.
DOI |
|
SUN Jiajun, FU Qingxia, GU Jie, et al. Effects of bio-organic fertilizer on soil enzyme activities and microbial community in kiwifruit orchard[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 829-837.
DOI |
|
| [14] | 荆瑞勇, 王丽艳, 郭永霞. 生物有机肥对盆栽小白菜土壤酶活性和微生物数量的影响[J]. 水土保持研究, 2015, 22(2): 79-83, 89. |
| JING Ruiyong, WANG Liyan, GUO Yongxia. Effects of bioorganic fertilizers on soil enzyme activities and amount of microorganism in pakchoi pot experiment[J]. Research of Soil and Water Conservation, 2015, 22(2): 79-83, 89. | |
| [15] | 邱吟霜, 王西娜, 李培富, 等. 不同种类有机肥及用量对当季旱地土壤肥力和玉米产量的影响[J]. 中国土壤与肥料, 2019,(6): 182-189. |
| QIU Yinshuang, WANG Xina, LI Peifu, et al. Different kinds of organic fertilizers and amounts on dryland soil fertility and corn yield in the current season[J]. Soil and Fertilizer Sciences in China, 2019,(6): 182-189. | |
| [16] |
刘恩科, 赵秉强, 李秀英, 等. 长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报, 2008, 32(1): 176-182.
DOI |
| LIU Enke, ZHAO Bingqiang, LI Xiuying, et al. Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems[J]. Journal of Plant Ecology, 2008, 32(1): 176-182. | |
| [17] |
陈欢, 李玮, 张存岭, 等. 淮北砂姜黑土酶活性对长期不同施肥模式的响应[J]. 中国农业科学, 2014, 47(3): 495-502.
DOI |
|
CHEN Huan, LI Wei, ZHANG Cunling, et al. A research on response of enzyme activities to long-term fertilization in lime concretion black soil[J]. Scientia Agricultura Sinica, 2014, 47(3): 495-502.
DOI |
|
| [18] | Zhao W, Zhou Q, Tian Z Z, et al. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain[J]. Science of the Total Environment, 2020, 722: 137428. |
| [19] | 刘艳, 李波, 孙文涛, 等. 生物有机肥对盐碱地春玉米生理特性及产量的影响[J]. 作物杂志, 2017,(2): 98-103. |
| LIU Yan, LI Bo, SUN Wentao, et al. Effects of bio-organic fertilizer on physiological characters and yield of maize in saline-alkali soil[J]. Crops, 2017,(2): 98-103. | |
| [20] | 刘国梁, 李素艳, 孙向阳, 等. 有机无机肥配施对梨园土壤肥力及果实品质的影响[J]. 土壤通报, 2022, 53(1): 181-186. |
| LIU Guoliang, LI Shuyang, SUN Xiangyang, et al. Effects of organic and inorganic fertilizers on soil fertility and fruit quality in pear orchards[J]. Chinese Journal of Soil Science, 202, 53 (1): 181-186. | |
| [21] | 吕亮雨, 段国珍, 苏彩风, 等. 木霉菌微生物菌剂对枸杞生长及土壤性状的影响[J]. 沈阳农业大学学报, 2022, 53(4): 476-482. |
| LYU Liangyu, DUAN Guozhen, SU Caifeng, et al. Effects of microbial agents on growth and soil properties of Lycium barbarum L[J]. Journal of Shenyang Agricultural University, 2022, 53(4): 476-482. | |
| [22] |
王爱斌, 宋慧芳, 张流洋, 等. 生物肥和菌肥对蓝莓苗生长及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 63-70.
DOI |
| WANG Aibin, SONG Huifang, ZHANG Liuyang, et al. Effects of bio-organic and microbial fertilizers on growth and soil nutrients of Vaccinium spp. seedlings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(6): 63-70. | |
| [23] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 274-329. |
| GUAN Songyin. Soil enzymes and their research methods[M]. Beijing: China Press, 1986: 274-329. | |
| [24] | 张自萍, 黄文波. 枸杞总黄酮和多糖的超声提取及含量测定[J]. 农业科学研究, 2006, (1): 22-24. |
| ZHANG Zhiping, HUANG Wenbo. Ultrasonic extraction and determination of total flavonoids and polysaccharides of Lycium chinense[J]. Journal of Agricultural Sciences, 2006, (1): 22-24. | |
| [25] | Cong P F, Ouyang Z, Hou R X, et al. Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils[J]. Soil and Tillage Research, 2017, 168: 33-41. |
| [26] | 何嘉, 马婷慧, 白小军, 等. 不同微生物菌剂对枸杞生长发育及产量品质的影响[J]. 西南农业学报, 2021, 34(6): 1296-1301. |
| HE Jia, MA Tinghui, BAI Xiaojun, et al. Effects of different microbial agents on growth, yield and quality of Lycium barbarum L[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(6): 1296-1301. | |
| [27] | Daane K M, Johnson R S, Michailides T J, et al. Excess nitrogen raises nectarine susceptibility to disease and insects[J]. California Agriculture, 1995, 49(4): 13-18. |
| [28] | Singh V J, Sharma S D, Kumar P, et al. Conjoint application of bio-organic and inorganic nutrient sources for improving cropping behaviour, soil properties and quality attributes of apricot(Prunus armeniaca)[J]. Indian Journal of Agricultural Sciences, 2010, 80(11): 981-987. |
| [29] | Ali Ansari R, Mahmood I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea[J]. Scientia Horticulturae, 2017, 226: 1-9. |
| [30] | 保善存, 樊光辉, 李发毅. 解淀粉芽孢杆菌微生物菌剂对枸杞生长及土壤性状的影响[J]. 中国土壤与肥料, 2023,(8): 112-120. |
| BAO Shancun, FAN Guanghui, LI Fayi. Effects of Bacillus amyloliquefaciens microbial agent on the growth and soil properties of Lycium barbarum L[J]. Soil and Fertilizer Sciences in China, 2023,(8): 112-120. | |
| [31] | 闫鹏科, 常少刚, 孙权, 等. 施用生物有机肥对枸杞产量、品质及土壤肥力的影响[J]. 中国土壤与肥料, 2019,(5): 112-118. |
| YANG Pengke, CHANG Shaogang, SUN Quan, et al. Effects of bioorganic fertilizer on yield, quality and soil fertility of Lycium chinense[J]. Soil and Fertilizer Sciences in China, 2019, (5): 112-118. | |
| [32] | 秦秦, 宋科, 孙丽娟, 等. 生物有机肥与化肥减量配施对稻田土壤酶活性和土壤肥力的影响[J]. 上海农业学报, 2022, 38(1): 21-26. |
| QIN Qin, SONG Ke, SUN Lijuan, et al. Effects of bio-organic fertilizer combined with reducing chemical fertilization rate on soil enzyme activity and soil fertility in the paddy soil[J]. Acta Agriculturae Shanghai, 2022, 38(1): 21-26. | |
| [33] | 陈桂芬, 刘忠, 黄雁飞, 等. 不同施肥处理对连作蔗田土壤微生物量、土壤酶活性及相关养分的影响[J]. 南方农业学报, 2015, 46(12): 2123-2128. |
| CHEN Guifen, LIU Zhong, HUANG Yanfei, et al. Effects of different fertilizer treatments on microbial biomass, enzyme activity and related nutrients in soils of continuous cropping sugarcane field[J]. Journal of Southern Agriculture, 2015, 46(12): 2123-2128. | |
| [34] | 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对玉米生长及土壤微生物和酶活性的影响[J]. 化肥工业, 2019, 46(1): 55-61. |
| SONG Yiling, YU Jian, CHEN Shigeng, et al. Effects of reduced chemical fertilizer with application of bio- organic[J]. Chemical Fertilizer Industry, 2019, 46(1): 55-61. | |
| [35] | 姜瑞波, 张晓霞, 吴胜军. 生物有机肥及其应用前景[J]. 磷肥与复肥, 2003, 18(4): 59-59, 63. |
| JIANG Ruibo, ZHANG Xiaoxia, WU Shengjun. Bio-organic fertilizer and its application prospects[J]. Phosphate & Compound Fertilizer, 2003, 18(4): 59-59, 63. | |
| [36] | 高亮, 丁春明, 史卓强, 等. 晨雨生物有机肥对枸杞的增产效应[J]. 山西农业科学, 2010, 38(8): 45-49. |
| GAO Liang, DING Chunming, SHI Zhuoqiang, et al. Application effect of Chenyu biological organic fertilizer on wolfberry[J]. Journal of Shanxi Agricultural Sciences, 2010, 38(8): 45-49. | |
| [37] | de la Paz Jimenez M, de la Horra A, Pruzzo L, et al. Soil quality: a new index based on microbiological and biochemical parameters[J]. Biology and Fertility of Soils, 2002, 35(4): 302-306. |
| [38] | Martens D A, Johanson J B, Frankenberger W T JR. Production and persistence of soil enzymes with repeated addition of organic residues[J]. Soil Science, 1992, 153(1): 53-61. |
| [39] | 张宁, 姜红, 冯美, 等. 枸杞园土壤营养与果实品质相关性研究[J]. 北方园艺, 2006: 34-36. |
| ZHANG Ning, JIANG Hong, FENG Mei, et al. Correlation between soil nutrition and fruit quality in medlar orchard[J]. Northern Horticulture, 2006: 34-36. | |
| [40] | 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406-410. |
| SUN Ruilian, ZHAO Bingqiang, ZHU Lusheng, et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(4): 406-410. | |
| [41] | 魏猛, 娄燕宏, 栾森年, 等. 施肥对文冠果养分吸收及土壤酶活性的影响[J]. 北方园艺, 2010,(10): 32-35. |
| WEI Meng, LOU Yanhong, LUAN Sennian, et al. Effects of fertilization on soil enzyme activities and nutrients absorption in Xanthoceras sorbifolia bunge[J]. Northern Horticulture, 2010,(10): 32-35. |
| [1] | 叶朵朵, 孟新涛, 古丽米热·祖努纳, 阿比代姆·阿卜杜热伊木, 库尔班娜依·吐尔逊麦麦提, 张婷, 马燕, 潘俨. 非浓缩还原(NFC)枸杞汁加工过程中品质变化特性[J]. 新疆农业科学, 2025, 62(2): 361-372. |
| [2] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
| [3] | 袁以琳, 颜安, 左筱筱, 侯正清, 张振飞, 肖淑婷, 孙哲, 马梦倩, 赵宇航. 氮肥减量配施生物有机肥对春小麦增产及土壤培肥的影响[J]. 新疆农业科学, 2024, 61(8): 1872-1882. |
| [4] | 李自芹, 李文绮, 谷天雨, 张正红, 李宇辉, 马小宁, 刘成江. 原位差压预冷结合过氧化氢熏蒸处理对快递包装下鲜食枸杞品质的影响[J]. 新疆农业科学, 2024, 61(6): 1416-1422. |
| [5] | 聂芳, 琚艳君, 陈卓雅, 刘敏, 刘河疆, 刘志虎, 开建荣, 苟春林, 赵多勇. 枸杞营养品质时空变化规律及特征分析[J]. 新疆农业科学, 2024, 61(3): 642-651. |
| [6] | 李圣杰, 郑素慧, 韩蓉, 孙天罡, 潘俨. 气调包装对精河枸杞鲜果采后品质的影响[J]. 新疆农业科学, 2024, 61(12): 2987-2996. |
| [7] | 朱宝国, 匡恩俊, 滕占林, 孟庆英, 王囡囡, 冯浩原, 邱磊, 高雪冬, 张春峰. 不同生物有机肥配施化肥对大豆植株生长、抗病及产量的影响[J]. 新疆农业科学, 2023, 60(5): 1127-1133. |
| [8] | 吕亮雨, 樊光辉, 付全, 苏彩风, 李发毅. 生物有机肥对枸杞生长及土壤性状的影响[J]. 新疆农业科学, 2023, 60(11): 2779-2789. |
| [9] | 左筱筱, 颜安, 宁松瑞, 杨利, 孙萌, 卢前成. 盐碱麦田生物有机肥促生增产培肥效果[J]. 新疆农业科学, 2023, 60(10): 2532-2540. |
| [10] | 彭宇, 闫会转, 肖中林, 贾凯, 燕存尧, 王妍欣. 不同施肥处理对盆栽辣椒土壤酶活性及土壤微生物含量的影响[J]. 新疆农业科学, 2022, 59(9): 2200-2208. |
| [11] | 张瑞, 苟春林, 王智, 乔坤云, 袁玉伟, 聂晶, 琚艳君, 赵多勇. 基于多种矿物元素的精河枸杞与中宁枸杞产地鉴别[J]. 新疆农业科学, 2022, 59(3): 674-682. |
| [12] | 刘海洋, 王伟, 张仁福, 姚举. 棉花与几种作物根际土壤酶活性及细菌多样性分析[J]. 新疆农业科学, 2020, 57(8): 1514-1526. |
| [13] | 包慧芳, 王宁, 侯敏, 陈竞, 王小武, 侯新强, 杨蓉, 崔卫东, 杨文琦, 龙宣杞, 詹发强. 生物有机肥对枸杞产量、品质及土壤性状的影响[J]. 新疆农业科学, 2020, 57(3): 545-522. |
| [14] | 唐宇, 包慧芳, 詹发强, 侯敏, 王宁, 杨蓉, 林子敬, 龙宣杞. 化肥减施条件下配施生物有机肥对番茄生长及品质的影响[J]. 新疆农业科学, 2019, 56(5): 841-854. |
| [15] | 张计峰, 完颜悦, 谢香文. 生物有机肥对红枣产量结构及效益的影响[J]. 新疆农业科学, 2019, 56(11): 2090-2095. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||