

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (1): 103-109.DOI: 10.6048/j.issn.1001-4330.2025.01.013
• 耕作栽培·生理生化·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
凌沥1(
), 翟辉1(
), 张云舒2(
), 邵华伟2, 唐光木2, 葛春辉2, 徐万里2, 杨建军1,3
收稿日期:2024-05-10
出版日期:2025-01-20
发布日期:2025-03-11
通信作者:
翟辉(1992-),女,内蒙古人,副教授,博士,研究方向为土壤金属的迁移转化,(E-mail)zhaihui@xju.edu.cn;作者简介:凌沥(1998-),男,四川大竹人,硕士研究生,研究方向为生态工程,(E-mail)2467419517@qq.com
基金资助:
LING Li1(
), ZHAI Hui1(
), ZHANG Yunshu2(
), SHAO Huawei2, TANG Guangmu2, GE Chunhui2, XU Wanli2, YANG Jianjun1,3
Received:2024-05-10
Published:2025-01-20
Online:2025-03-11
Supported by:摘要:
【目的】 研究新疆南疆气候条件下水稻主栽品种喷硒肥的吸收转移特征,分析硒肥种类与浓度交互作用对水稻籽粒硒含量的影响,为新疆南疆富硒水稻的种植生产提供理论依据。【方法】 以新疆南疆阿克苏地区主栽水稻品种新稻11号为材料,采用纳米硒、亚硒酸钠和有机硒类的硒肥,设置2.5、5、10和20 mg/L 4个喷施浓度的组合试验,研究叶面喷施硒肥对水稻植株硒吸收和转运的影响。【结果】 硒肥处理均可显著提高稻米中的硒含量。籽粒、精米、叶片和茎部中的硒含量均随硒肥浓度的增加而提高;3种硒肥对稻米的富硒效果为有机硒>亚硒酸钠>纳米硒。喷施纳米硒肥时大部分硒积累在谷壳和米糠中,精米中的硒含量提高较少,而喷施有机硒和亚硒酸钠则使籽粒或精米的硒含量均显著提高。【结论】 20 mg/L的有机硒和亚硒酸钠对水稻硒生物强化的效果最佳,使精米硒含量分别提高到0.88和0.72 mg/kg。
中图分类号:
凌沥, 翟辉, 张云舒, 邵华伟, 唐光木, 葛春辉, 徐万里, 杨建军. 外源硒对水稻硒吸收和转运的影响[J]. 新疆农业科学, 2025, 62(1): 103-109.
LING Li, ZHAI Hui, ZHANG Yunshu, SHAO Huawei, TANG Guangmu, GE Chunhui, XU Wanli, YANG Jianjun. Effects of exogenous selenium on its uptake and translocation in rice[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 103-109.
图1 不同硒肥处理下水稻各部位硒含量的变化 注:a.纳米硒;b.亚硒酸钠;c.有机硒;不同小写字母表示不同浓度处理间差异在P<0.05水平具有显著性
Fig.1 Changes of Se content in different parts of rice under different Se fertilizer treatments Notes: a.nano-Se, b.sodium selenite, c.organic Se ; different lowercase letters indicated that the difference between different concentration treatments was significant at the P < 0.05 level
图2 精米硒含量与硒肥浓度之间的相关性 注:a.纳米硒;b.亚硒酸钠;c.有机硒;**表示相关性达极显著水平(P<0.01)
Fig.2 Correlation between polished rice Se content and Se fertilizer concentration Notes: a.Nano-Se ; b.sodium selenite ; c.organic Se ; ** indicated that the correlation was extremely significant (P<0.01)
| 硒种类 Types of Se | 硒浓度 Concentration of Se(mg/L) | TF根/茎 TFRoot/Stem | TF根/叶 TFRoot/Leaf | TF茎/叶 TFStem/Leaf | TF籽粒/茎 TFGrains/Stem |
|---|---|---|---|---|---|
| CK | 0 | 3.31±0.05 | 2.68±0.02 | 0.81±0.02 | 0.89±0.00 |
| 纳米硒 Nano-Se | 2.5 | 5.38±0.31aɑ | 2.01±0.11aβ | 0.37±0.00aγ | 1.35±0.12cβ |
| 5 | 5.12±0.06abɑ | 1.29±0.01bγ | 0.25±0.00cγ | 2.20±0.01aɑ | |
| 10 | 4.84±0.02bɑ | 1.35±0.06bɑ | 0.28±0.01bβ | 2.25±0.05aɑ | |
| 20 | 2.43±0.03cɑ | 0.73±0.01cɑ | 0.30±0.00bβ | 1.79±0.01bγ | |
| 亚硒酸钠 Sodium selenite | 2.5 | 5.28±0.15aɑ | 2.92±0.05aɑ | 0.55±0.02bɑ | 1.60±0.04cɑβ |
| 5 | 3.38±0.18bβ | 2.11±0.07bɑ | 0.62±0.01aɑ | 1.42±0.00cγ | |
| 10 | 1.97±0.09cγ | 0.86±0.00cβ | 0.44±0.02cɑ | 1.88±0.12bβ | |
| 20 | 1.67±0.03cβ | 0.41±0.01dγ | 0.24±0.01dγ | 3.49±0.11aɑ | |
| 有机硒 Organic Se | 2.5 | 3.39±0.13aβ | 1.61±0.01aγ | 0.48±0.02aβ | 1.75±0.08bɑ |
| 5 | 3.22±0.09aβ | 1.49±0.03bβ | 0.46±0.00abβ | 1.89±0.03bβ | |
| 10 | 2.33±0.12bβ | 0.96±0.05cβ | 0.41±0.00cɑ | 1.86±0.00bβ | |
| 20 | 1.07±0.06cγ | 0.46±0.01dβ | 0.43±0.01bcɑ | 2.91±0.14aβ | |
| Two-way ANOVA(F value) | |||||
| 种类Types | 489.4*** | 201.8*** | 333.2*** | 20.1*** | |
| 浓度Concentration | 594.1*** | 1 575.8*** | 135.3*** | 263.2*** | |
| 种类×浓度Types×Concentration | 53.2*** | 182.8*** | 94.1*** | 110.2*** | |
表1 水稻不同部位的转运系数
Tab.1 Transport coefficient of different parts of rice
| 硒种类 Types of Se | 硒浓度 Concentration of Se(mg/L) | TF根/茎 TFRoot/Stem | TF根/叶 TFRoot/Leaf | TF茎/叶 TFStem/Leaf | TF籽粒/茎 TFGrains/Stem |
|---|---|---|---|---|---|
| CK | 0 | 3.31±0.05 | 2.68±0.02 | 0.81±0.02 | 0.89±0.00 |
| 纳米硒 Nano-Se | 2.5 | 5.38±0.31aɑ | 2.01±0.11aβ | 0.37±0.00aγ | 1.35±0.12cβ |
| 5 | 5.12±0.06abɑ | 1.29±0.01bγ | 0.25±0.00cγ | 2.20±0.01aɑ | |
| 10 | 4.84±0.02bɑ | 1.35±0.06bɑ | 0.28±0.01bβ | 2.25±0.05aɑ | |
| 20 | 2.43±0.03cɑ | 0.73±0.01cɑ | 0.30±0.00bβ | 1.79±0.01bγ | |
| 亚硒酸钠 Sodium selenite | 2.5 | 5.28±0.15aɑ | 2.92±0.05aɑ | 0.55±0.02bɑ | 1.60±0.04cɑβ |
| 5 | 3.38±0.18bβ | 2.11±0.07bɑ | 0.62±0.01aɑ | 1.42±0.00cγ | |
| 10 | 1.97±0.09cγ | 0.86±0.00cβ | 0.44±0.02cɑ | 1.88±0.12bβ | |
| 20 | 1.67±0.03cβ | 0.41±0.01dγ | 0.24±0.01dγ | 3.49±0.11aɑ | |
| 有机硒 Organic Se | 2.5 | 3.39±0.13aβ | 1.61±0.01aγ | 0.48±0.02aβ | 1.75±0.08bɑ |
| 5 | 3.22±0.09aβ | 1.49±0.03bβ | 0.46±0.00abβ | 1.89±0.03bβ | |
| 10 | 2.33±0.12bβ | 0.96±0.05cβ | 0.41±0.00cɑ | 1.86±0.00bβ | |
| 20 | 1.07±0.06cγ | 0.46±0.01dβ | 0.43±0.01bcɑ | 2.91±0.14aβ | |
| Two-way ANOVA(F value) | |||||
| 种类Types | 489.4*** | 201.8*** | 333.2*** | 20.1*** | |
| 浓度Concentration | 594.1*** | 1 575.8*** | 135.3*** | 263.2*** | |
| 种类×浓度Types×Concentration | 53.2*** | 182.8*** | 94.1*** | 110.2*** | |
| 硒肥 Se fertilizers | 根 Root | 茎 Stem | 叶 Leaf | 籽粒 Grains | 精米 Polished rice |
|---|---|---|---|---|---|
| 纳米硒Nano-Se | 0.841** | 0.884** | 0.960** | 0.983** | 1 |
| 亚硒酸钠Sodium selenite | -0.459 | 0.929** | 0.995** | 0.992** | 1 |
| 有机硒Organic Se | 0.443 | 0.997** | 0.994** | 0.999** | 1 |
表2 喷施不同硒肥时,精米与根、茎、叶、籽粒间的皮尔逊相关系数
Tab.2 Pearson’s correlation coefficients of polished rice with root, stem, leaf and grain when spraying different Se fertilizer
| 硒肥 Se fertilizers | 根 Root | 茎 Stem | 叶 Leaf | 籽粒 Grains | 精米 Polished rice |
|---|---|---|---|---|---|
| 纳米硒Nano-Se | 0.841** | 0.884** | 0.960** | 0.983** | 1 |
| 亚硒酸钠Sodium selenite | -0.459 | 0.929** | 0.995** | 0.992** | 1 |
| 有机硒Organic Se | 0.443 | 0.997** | 0.994** | 0.999** | 1 |
| [1] | Winkel L H E, Johnson C A, Lenz M, et al. Environmental selenium research: from microscopic processes to global understanding[J]. Environmental Science & Technology, 2012, 46(2): 571-579. |
| [2] |
Wu Z L, Banuelos G S, Lin Z Q, et al. Biofortification and phytoremediation of selenium in China[J]. Frontiers in Plant Science, 2015, 6: 136.
DOI PMID |
| [3] | 李以暖, 薛立文. 富硒保健食品硒含量标准的探讨[J]. 广东微量元素科学, 2000, 7(5): 18-21. |
| LI Yinuan, XUE Liwen. Discussion on content standards of rich-Se healthy food[J]. Trace Elements Science, 2000, 7(5): 18-21. | |
| [4] | Ramkissoon C, Degryse F, da Silva R C, et al. Improving the efficacy of selenium fertilizers for wheat biofortification[J]. Scientific Reports, 2019, 9(1): 19520. |
| [5] | 陈雪, 沈方科, 梁欢婷, 等. 外源施硒措施对水稻产量品质及植株硒分布的影响[J]. 南方农业学报, 2017, 48(1): 46-50. |
| CHEN Xue, SHEN Fangke, LIANG Huanting, et al. Effects of exogenous selenium application on rice yield, quality, distribution of selenium in seedling[J]. Journal of Southern Agriculture, 2017, 48(1): 46-50. | |
| [6] | Li Z, Liang D L, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review[J]. Geoderma, 2017, 295: 69-79. |
| [7] | Yuan Z Q, Long W X, Liang T, et al. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice[J]. Plant and Soil, 2023, 486(1): 87-101. |
| [8] |
Farooq M U, Tang Z C, Zeng R, et al. Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite[J]. Journal of the Science of Food and Agriculture, 2019, 99(6): 2892-2900.
DOI PMID |
| [9] |
Premarathna L, McLaughlin M J, Kirby J K, et al. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain[J]. Journal of Agricultural and Food Chemistry, 2012, 60(23): 6037-6044.
DOI PMID |
| [10] | Gali L, Vinkovi T, Ravnjak B, et al. Agronomic biofortification of significant cereal crops with selenium—a review[J]. Agronomy, 2021, 11(5): 1015. |
| [11] | Lidon F C, Oliveira K, Ribeiro M M, et al. Selenium biofortification of rice grains and implications on macronutrients quality[J]. Journal of Cereal Science, 2018, 81: 22-29. |
| [12] | 郭天宇. 叶面喷施不同硒肥对水稻含硒量、产量及品质的影响[D]. 哈尔滨: 东北农业大学, 2016. |
| GUO Tianyu. Effects of foliar application of different selenium fertilizers on selenium content, yield and quality of rice[D]. Harbin: Northeast Agricultural University, 2016. | |
| [13] | 池忠志, 杨洋, 杨福明, 等. 生产富硒稻谷的硒肥施用技术研究[J]. 西南农业学报, 2011, 24(6): 2289-2292. |
| CHI Zhongzhi, YANG Yang, YANG Fuming, et al. Se fertilizer application technique for producing selenium-rich rice[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(6): 2289-2292. | |
| [14] | 管恩相, 姜守全, 谭旭生, 等. 喷施硒肥对水稻产量及稻米含硒量的影响[J]. 中国种业, 2012,(5): 43-45. |
| GUAN Enxiang, JIANG Shouquan, TAN Xusheng, et al. Effects of spraying selenium fertilizer on rice yield and selenium content in rice[J]. China Seed Industry, 2012,(5): 43-45. | |
| [15] | 王亚萍. 外源硒施用方式对水稻富硒及稻米硒形态的影响[D]. 南宁: 广西大学, 2020. |
| WANG Yaping. Effects of exogenous selenium application methods on selenium enrichment and selenium speciation in rice[D]. Nanning: Guangxi University, 2020. | |
| [16] | Wang K, Wang Y Q, Li K, et al. Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.)[J]. Journal of Nanobiotechnology, 2020, 18(1): 103. |
| [17] | Kapoor P, Dhaka R K, Sihag P, et al. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: current understanding and future scope[J]. NanoImpact, 2022, 26: 100407. |
| [18] | 石吕, 薛亚光, 石晓旭, 等. 喷施硒肥对富硒土壤水稻产量、品质及硒分配的影响[J]. 中国土壤与肥料, 2022,(10): 174-183. |
| SHI Lyu, XUE Yaguang, SHI Xiaoxu, et al. Effects of spraying selenium fertilizer on rice yield, quality and selenium distribution in selenium-rich soil[J]. Soil and Fertilizer Sciences in China, 2022,(10): 174-183. | |
| [19] |
戴志华, 高菲, 赵敏, 等. 作物对硒的吸收利用及合理施用硒肥[J]. 生物技术进展, 2017, 7(5): 415-420.
DOI |
|
DAI Zhihua, GAO Fei, ZHAO Min, et al. The absorption and utilization of selenium in crops and rational application of selenium fertilizer[J]. Current Biotechnology, 2017, 7(5): 415-420.
DOI |
|
| [20] | 沈方科, 王亚萍, 赵雪梅, 等. 叶面喷施硒对水稻籽粒中硒含量及形态的影响[J]. 中国土壤与肥料, 2022,(6): 144-150. |
| SHEN Fangke, WANG Yaping, ZHAO Xuemei, et al. Effects of foliar application of selenium on selenium content and speciation in rice grain[J]. Soil and Fertilizer Sciences in China, 2022,(6): 144-150. | |
| [21] | 高梦瑶. 中国地质学会公布第二批天然富硒土地认定结果[J]. 地质论评, 2022, 68(6): 2409-2411. |
| GAO Mengyao. The second batch of natural seleniumriched land identified by Geological Society of China[J]. Geological Review, 2022, 68(6): 2409-2411. | |
| [22] | 高梦瑶, 张丽华. 中国地质学会认定首批天然富硒土地[J]. 地质论评, 2021, 67(5): 1296, 1356. |
| GAO Mengyao, ZHANG Lihua. The first batch of natural selenium-riched land identified by Geological Society of China[J]. Geological Review, 2021, 67(5): 1296, 1356. | |
| [23] | 张栋, 翟勇, 张妮, 等. 新疆水稻主产区土壤硒含量与水稻籽粒硒含量的相关性[J]. 中国土壤与肥料, 2017,(1): 139-143. |
| ZHANG Dong, ZHAI Yong, ZHANG Ni, et al. Correlation between soil selenium content and rice grain selenium content in Xinjiang rice production areas[J]. Soil and Fertilizer Sciences in China, 2017,(1): 139-143. | |
| [24] | 魏丹, 杨谦, 迟凤琴, 等. 叶面喷施硒肥对水稻含硒量及产量的影响[J]. 土壤肥料, 2005,(1): 39-41. |
| WEI Dan, YANG Qian, CHI Fengqin, et al. Effect of foliage dressing Se fertilizer on the rice in the field[J]. Soils and Fertilizers, 2005,(1): 39-41. | |
| [25] | 王琪. 水稻和小麦对有机硒的吸收、转运及形态转化机制[D]. 北京: 中国农业大学, 2017. |
| WANG Qi. Mechanisms of absorption, translocation and speciation transformation of organic selenium in rice and wheat[D]. Beijing: China Agricultural University, 2017. | |
| [26] |
Wang C R, Cheng T T, Liu H T, et al. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils[J]. Journal of Environmental Sciences, 2021, 103: 336-346.
DOI PMID |
| [27] | 周鑫斌, 施卫明, 杨林章. 叶面喷硒对水稻籽粒硒富集及分布的影响[J]. 土壤学报, 2007, 44(1): 73-78. |
| ZHOU Xinbin, SHI Weiming, YANG Linzhang. Effect of foliar application of selenite on selenium accumulation and distribution in rice[J]. Acta Pedologica Sinica, 2007, 44(1): 73-78. | |
| [28] | 管文文. 水稻吸收累积硒元素的特点及稻米富硒技术途径的初步研究[D]. 扬州: 扬州大学, 2011. |
| GUAN Wenwen. A preliminary study on the characteristics of selenium absorption and accumulation in rice and the technical ways of selenium enrichment in rice[D]. Yangzhou: Yangzhou University, 2011. | |
| [29] | 晏娟, 张忠平, 朱同贵. 不同硒肥对水稻产量及硒累积效应的影响[J]. 安徽农业科学, 2021, 49(19): 142-143, 156. |
| YAN Juan, ZHANG Zhongping, ZHU Tonggui. The effect of different selenium fertilizers on yield and selenium accumulation of rice[J]. Journal of Anhui Agricultural Sciences, 2021, 49(19): 142-143, 156. |
| [1] | 杜孝敬, 侯天钰, 李冬, 吕玉平, 袁杰, 张燕红, 赵志强, 布哈丽且木·阿不力孜, 王奉斌. 水稻种子萌发期耐旱性鉴定及优异品种筛选[J]. 新疆农业科学, 2025, 62(1): 95-102. |
| [2] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
| [3] | 叶扬, 侯振安, 闵伟, 郭慧娟. 添加脲酶/硝化抑制剂对棉花养分吸收和产量的影响[J]. 新疆农业科学, 2024, 61(4): 814-822. |
| [4] | 康民泰, 杜孝敬, 张燕红, 陈玉环, 文孝荣, 唐福森, 赵志强, 袁杰, 王奉斌. 新疆盐渍区水稻品种生育表现与耐盐性筛选[J]. 新疆农业科学, 2024, 61(3): 591-598. |
| [5] | 邓永辉, 郑强卿, 兖攀, 王文军, 陈奇凌, 王晶晶, 张锦强, 王振东. 干旱区骏枣根系分布和土壤养分关系分析[J]. 新疆农业科学, 2024, 61(1): 156-164. |
| [6] | 成志慧, 李红梅, 赵红梅, 涂永峰, 宋海英, 盛建东. 15N同位素标记氮肥减施棉田养分利用效率分析[J]. 新疆农业科学, 2024, 61(1): 34-41. |
| [7] | 李怀胜, 艾洪玉, 孟玲, 王贺亚, 张磊, 艾海峰. 减氮下运筹养分吸收高峰期追施比例对春小麦的影响[J]. 新疆农业科学, 2023, 60(8): 1866-1872. |
| [8] | 赖宁, 耿庆龙, 李永福, 李娜, 信会男, 步生兵, 陈署晃. 有机无机配施对超晚播冬小麦产量、氮磷养分吸收利用及土壤肥力的影响[J]. 新疆农业科学, 2023, 60(6): 1335-1343. |
| [9] | 张燕红, 侯天钰, 巴音花, 赵彩月, 吕玉平, 布哈丽且木·阿不力孜, 赵志强, 李冬, 杜孝敬, 袁杰, 王奉斌. 水稻重组自交系群体芽期和苗期耐盐性鉴定与评价[J]. 新疆农业科学, 2023, 60(5): 1041-1049. |
| [10] | 布哈丽且木·阿不力孜, 张燕红, 袁杰, 赵志强, 文孝荣, 杜孝敬, 王奉斌, 吕玉平, 阿曼古丽·艾孜子. 新疆优质丰产香型水稻品种筛选与评价[J]. 新疆农业科学, 2023, 60(11): 2694-2703. |
| [11] | 陈丽, 马静, 朱志明, 刘炜, 孙建昌. 基于水稻RIL群体的加工品质性状QTL分析[J]. 新疆农业科学, 2023, 60(10): 2419-2425. |
| [12] | 蒲胜海, 王则玉, 丁峰, 王彩风, 刘小利, 马晓鹏, 王涛, 彭银双, 李韵同. 膜下滴灌水稻生理生化特性对灌浆期控水的响应[J]. 新疆农业科学, 2022, 59(9): 2091-2103. |
| [13] | 杜孝敬, 张燕红, 吕玉平, 袁杰, 李冬, 赵志强, 布哈丽且木·阿不力孜, 王奉斌. 不同香稻品种种子萌发和苗期对NaCl胁迫的响应[J]. 新疆农业科学, 2022, 59(4): 827-838. |
| [14] | 孟阿静, 齐莹莹, 付彦博, 王治国, 王新勇, 冯耀祖. 增温水滴灌对棉花生物量、养分吸收及产量的影响[J]. 新疆农业科学, 2022, 59(3): 558-566. |
| [15] | 马庆华, 王兴红, 蔡京艳, 汤志敏, 杨德付, 郑广顺. 氮磷供应水平对野蔷薇生长和养分吸收的影响[J]. 新疆农业科学, 2022, 59(3): 609-616. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||