新疆农业科学 ›› 2024, Vol. 61 ›› Issue (7): 1710-1716.DOI: 10.6048/j.issn.1001-4330.2024.07.018

• 园艺特产·贮藏保鲜加工 • 上一篇    下一篇

多光谱无人机不同飞行高度下苹果树高的提取

张振飞1(), 郭靖2(), 颜安1(), 侯正清1, 袁以琳1, 肖淑婷1, 孙哲1   

  1. 1.新疆农业大学资源与环境学院,乌鲁木齐 830052
    2.新疆林业科学院园林绿化研究所,乌鲁木齐 830092
  • 收稿日期:2024-01-25 出版日期:2024-07-20 发布日期:2024-09-04
  • 通信作者: 郭靖(1982-),女,山东人,副研究员,硕士,硕士生导师,研究方向为苹果良种选育与栽培,(E-mail)191315471@qq.com
    颜安(1983 -),男,四川安岳人,教授,博士,硕士生/博士生导师,研究方向为数字农业技术、农业资源与环境,(E-mail) zryanan@163.com
  • 作者简介:张振飞(1998-),男,河南安阳人,硕士研究生,研究方向为农业信息化,(E-mail)1291716283@qq.com
  • 基金资助:
    新疆维吾尔自治区重点研发计划项目“新疆杏李、杏等主要果树抗寒关键技术研究”(2023B02026)

Study on extraction of apple tree height at different flight altitudes using multispectral UAV

ZHANG Zhenfei1(), GUO Jing2(), YAN An1(), HOU Zhengqing1, YUAN Yilin1, XIAO Shuting1, SUN Zhe1   

  1. 1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
    2. Institute of Landscape Architecture, Xinjiang Academy of Forestry Sciences, Urumqi 830092, China
  • Received:2024-01-25 Published:2024-07-20 Online:2024-09-04
  • Supported by:
    Xinjiang Uygur Autonomous Region Key Research and Development Project “Research on Key Techniques for Cold Resistance in Major Fruit Trees Such as Xinjiang Apricots (Prunus armeniaca) and Plums (Prunus domestica × armeniaca) ”(2023B02026)

摘要:

【目的】利用多光谱无人机影像快速、准确、无损的获取苹果树高信息,实现无人机遥感技术对苹果树生长状况的监测,并分析无人机飞行高度对树高提取结果的影响。【方法】利用大疆精灵4多光谱无人机分别获取30、60和90 m飞行高度的苹果树无人机影像,经大疆智图(DJI Terra)软件处理生成DOM和DSM影像数据,基于生成的DOM和DSM,利用克里金插值法生成研究区DEM,将DSM和DEM作差生成苹果树CHM提取树高,与实地测量的果树高值进行回归分析和精度验证。【结果】30 m飞行高度平均树高提取精度为88.49%,R2为0.837 8,RMSE为0.4 031 m;60 m飞行高度平均树高提取精度为74.72%,R2为0.6577,RMSE为0.884 6 m;90 m飞行高度平均树高提取精度为56.20%,R2为0.527 3,RMSE为1.476 7 m。【结论】利用多光谱无人机遥感技术可以实现对苹果树高的提取,提取精度随着无人机飞行高度的增加而降低,30 m飞行高度提取结果最佳,90 m飞行高度提取结果最差。在合适的飞行高度内,多光谱无人机遥感技术可以快速、准确、无损的实现对果园果树生长状况的监测,提高果园的管理效率。

关键词: 多光谱无人机; 飞行高度; 苹果树

Abstract:

【Objective】The purpose of this study is to utilize multispectral unmanned aerial vehicle (UAV) imagery to rapidly, accurately, and non-destructively acquire height information of apple trees, aiming to achieve monitoring of apple tree growth conditions using UAV remote sensing technology and analyze the influence of UAV flight height on the extraction results of tree height. 【Methods】The DJI Phantom 4 multispectral UAV was employed to acquire UAV imagery of apple trees at flight heights of 30, 60, and 90 m, respectively. The acquired imagery was processed using DJI Terra software to generate digital orthophoto models (DOM) and digital surface models (DSM). Based on the generated DOM and DSM, a digital elevation model (DEM) of the study area was created using the Kriging interpolation method. The difference between the DSM and DEM was used to generate the canopy height model (CHM) for extracting tree height. Regression analysis and accuracy validation were conducted by comparing the extracted tree heights with field-measured values.【Results】The average accuracy of tree height extraction at a flight height of 30 m was 88.49%, with an R2 value of 0.8378 and an RMSE of 0.403,1 m. At a flight height of 60m, the average accuracy of tree height extraction was 74.72%, with an R2 value of 0.657,7 and an RMSE of 0.884,6 m. At a flight height of 90 m, the average accuracy of tree height extraction was 56.20%, with an R2 value of 0.527,3 and an RMSE of 1.476,7 m. 【Conclusion】The use of multispectral UAV remote sensing technology enables the extraction of apple tree height possible. The extraction accuracy decreases with an increase in UAV flight height. The best results are obtained at a flight height of 30 m, while the poorest results are obtained at a flight height of 90 m. Within appropriate flight heights, multispectral UAV remote sensing technology can rapidly, accurately, and non-destructively monitor the growth conditions of orchard fruit trees, thereby improving the management efficiency for orchard operators.

Key words: multispectral UAV; flight altitude; apple tree

中图分类号: 


ISSN 1001-4330 CN 65-1097/S
邮发代号:58-18
国外代号:BM3342
主管:新疆农业科学院
主办:新疆农业科学院 新疆农业大学 新疆农学会

出版单位:《新疆农业科学》编辑部
地址:乌鲁木齐市南昌路403号新疆农业科学院
邮编:830091
电话:0991-4502046
E-mail:xjnykx-h@xaas.ac.cn


版权所有 © 《新疆农业科学》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量:1339199 今日访问:3068 在线人数:44
网站
微信公众号
淘宝购买
微店购买