Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (5): 1271-1280.DOI: 10.6048/j.issn.1001-4330.2023.05.027
• Microbes·Animal Husbandry Veterinarian • Previous Articles Next Articles
TANG Bihui1(), ZHANG Lihua1, LI Haiying1(
), ZHANG Chong1, JIANG Tinghao1, ZHAO Xiaoyu1, JIANG Teng1, DING Yawen1, WU Yingping1, ZHAO Quanzhuang2
Received:
2022-09-05
Online:
2023-05-20
Published:
2023-05-22
Correspondence author:
LI Haiying (1968-), female, born in Laiyang, Shandong Province, professor, doctoral supervisor, research field: animal nutrition and feed science, (E-mail)Supported by:
唐碧徽1(), 张俐华1, 李海英1(
), 张冲1, 蒋廷浩1, 赵晓钰1, 蒋腾1, 丁雅文1, 吴盈萍1, 赵全庄2
通讯作者:
李海英(1968-),女,山东莱阳人,教授,博士生导师,研究方向为家禽种质资源利用与高效繁育,(E-mail)作者简介:
唐碧徽(1998-),女,安徽怀远人,硕士研究生,研究方向为家禽生产,(E-mail)1325227853@qq.com
基金资助:
CLC Number:
TANG Bihui, ZHANG Lihua, LI Haiying, ZHANG Chong, JIANG Tinghao, ZHAO Xiaoyu, JIANG Teng, DING Yawen, WU Yingping, ZHAO Quanzhuang. A comparative study on reproductive performance, serum hormone levels and gene expression between Yili goose and hortobágy goose[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1271-1280.
唐碧徽, 张俐华, 李海英, 张冲, 蒋廷浩, 赵晓钰, 蒋腾, 丁雅文, 吴盈萍, 赵全庄. 伊犁鹅和霍尔多巴吉鹅在繁殖性能、血清激素水平和基因表达量的比较[J]. 新疆农业科学, 2023, 60(5): 1271-1280.
饲粮组成 Diet composition | 含量,% Contents | 营养水平② Nutrient levels | 含量,% Contents |
---|---|---|---|
玉米 Corn | 58.00 | 代谢能,MJ/kg | 11.03 |
豆粕 Soybean meal | 20.00 | 粗蛋白质,% | 15.16 |
苜蓿草粉 Alfalfa meal | 12.50 | 粗纤维,% | 5.79 |
大豆油 Soybean Oil | 2.10 | 蛋氨酸+半胱氨酸,% | 0.57 |
石粉 Limestone | 4.40 | 蛋氨酸,% | 0.32 |
预混料 Limestone① | 3.00 | 赖氨酸,% | 0.84 |
总计 Total | 100.00 | 钙,% | 2.39 |
磷,% | 0.42 | ||
苏氨酸,% | 0.57 | ||
色氨酸,% | 0.18 |
Tab.1 Diet composition and nutrition level
饲粮组成 Diet composition | 含量,% Contents | 营养水平② Nutrient levels | 含量,% Contents |
---|---|---|---|
玉米 Corn | 58.00 | 代谢能,MJ/kg | 11.03 |
豆粕 Soybean meal | 20.00 | 粗蛋白质,% | 15.16 |
苜蓿草粉 Alfalfa meal | 12.50 | 粗纤维,% | 5.79 |
大豆油 Soybean Oil | 2.10 | 蛋氨酸+半胱氨酸,% | 0.57 |
石粉 Limestone | 4.40 | 蛋氨酸,% | 0.32 |
预混料 Limestone① | 3.00 | 赖氨酸,% | 0.84 |
总计 Total | 100.00 | 钙,% | 2.39 |
磷,% | 0.42 | ||
苏氨酸,% | 0.57 | ||
色氨酸,% | 0.18 |
基因 Gene | 引物序列(5'→3') Primer sequence (5'→3') | 片段大小 Fragment size (bp) |
---|---|---|
GAPDH | F:TGATGCTCCCATGTTCGTGATG; R:GTGATGGCATGGACAGTGGT | 168 |
BMP2 | F:GTGGGGTGGAATGACTGGAT; R:TGGAAAAGGACATTCCCCGT | 75 |
BMP6 | F:CTTCCTCAACGACGCTGACA; R:GCTGGTGAGGCGTGAATTCC | 77 |
MIS | F:CGATGCAGCCACCAAAATCA; R:TTTTACCCCAAACGTCCCAATG | 184 |
ENO1 | F:GTCACCGCTCTGGAGAAACA; R:AGTTGATGCGAGGGTTCCTG | 195 |
EP300 | F:TGCAGCACTGAAGGATCGG; R:CCTGGTTCTTCGCTTTTCCTC | 163 |
Tab.2 Fluorescent quantitative PCR primer information
基因 Gene | 引物序列(5'→3') Primer sequence (5'→3') | 片段大小 Fragment size (bp) |
---|---|---|
GAPDH | F:TGATGCTCCCATGTTCGTGATG; R:GTGATGGCATGGACAGTGGT | 168 |
BMP2 | F:GTGGGGTGGAATGACTGGAT; R:TGGAAAAGGACATTCCCCGT | 75 |
BMP6 | F:CTTCCTCAACGACGCTGACA; R:GCTGGTGAGGCGTGAATTCC | 77 |
MIS | F:CGATGCAGCCACCAAAATCA; R:TTTTACCCCAAACGTCCCAATG | 184 |
ENO1 | F:GTCACCGCTCTGGAGAAACA; R:AGTTGATGCGAGGGTTCCTG | 195 |
EP300 | F:TGCAGCACTGAAGGATCGG; R:CCTGGTTCTTCGCTTTTCCTC | 163 |
项目 Item | 伊犁鹅 Yili geese | 霍尔多巴吉鹅 Hortobágy geese | P值 P-value |
---|---|---|---|
产蛋率Egg production rate(%) | 16.28±6.48 | 30.03±5.85** | 0.000 |
日产蛋量Daily egg production(g/d) | 95.20±23.66 | 174.37±34.28** | 0.000 |
商品蛋合格率Qualified rate of commercial eggs(%) | 97.51±4.57 | 98.15±2.46 | 0.551 |
平均日采食量Average daily feed intake(g/只·d) | 182.65±9.50 | 231.52±5.79** | 0.000 |
料蛋比Feed/egg ratio | 7.36±2.64** | 5.36±1.60 | 0.007 |
平均蛋重Mean egg weight(g/枚) | 137.36±10.27 | 158.72±6.58** | 0.000 |
蛋形指数Egg-shape index | 1.48±0.04 | 1.52±0.03** | 0.001 |
受精率Fertilization rate(%) | 75.74±6.29 | 93.38±3.99** | 0.000 |
受精蛋孵化率Fertilized egg hatching rate(%) | 75.59±5.88 | 86.23±8.15* | 0.010 |
健雏率Healthy young rate(%) | 80.74±15.55 | 81.11±7.89 | 0.953 |
Tab.3 Comparison of Production and Hatching Performance between Yili geese and Hortobágy geese
项目 Item | 伊犁鹅 Yili geese | 霍尔多巴吉鹅 Hortobágy geese | P值 P-value |
---|---|---|---|
产蛋率Egg production rate(%) | 16.28±6.48 | 30.03±5.85** | 0.000 |
日产蛋量Daily egg production(g/d) | 95.20±23.66 | 174.37±34.28** | 0.000 |
商品蛋合格率Qualified rate of commercial eggs(%) | 97.51±4.57 | 98.15±2.46 | 0.551 |
平均日采食量Average daily feed intake(g/只·d) | 182.65±9.50 | 231.52±5.79** | 0.000 |
料蛋比Feed/egg ratio | 7.36±2.64** | 5.36±1.60 | 0.007 |
平均蛋重Mean egg weight(g/枚) | 137.36±10.27 | 158.72±6.58** | 0.000 |
蛋形指数Egg-shape index | 1.48±0.04 | 1.52±0.03** | 0.001 |
受精率Fertilization rate(%) | 75.74±6.29 | 93.38±3.99** | 0.000 |
受精蛋孵化率Fertilized egg hatching rate(%) | 75.59±5.88 | 86.23±8.15* | 0.010 |
健雏率Healthy young rate(%) | 80.74±15.55 | 81.11±7.89 | 0.953 |
项目 Item | 伊犁鹅 Yili geese | 霍尔多巴吉鹅 Hortobágy geese | P值 P-value |
---|---|---|---|
促性腺激素释放激素GnRH(ng/L) | 178.93±29.87 | 204.07±46.5** | 0.005 |
促黄体素LH(mIU/mL) | 4.41±1.12 | 5.44±1.07** | 0.000 |
促卵泡素FSH(mIU/mL) | 15.70±3.67 | 19.89±3.93** | 0.000 |
雌二醇E2(ng/L) | 55.67±15.99 | 73.28±13.32** | 0.000 |
孕酮P4(ng/mL) | 5.14±0.57 | 5.52±0.86* | 0.024 |
催乳素PRL(ng/mL) | 29.33±5.7* | 26.17±7.3 | 0.034 |
Tab.4 Differences in serum reproductive hormone levels between Yili geese and Hortobágy geese
项目 Item | 伊犁鹅 Yili geese | 霍尔多巴吉鹅 Hortobágy geese | P值 P-value |
---|---|---|---|
促性腺激素释放激素GnRH(ng/L) | 178.93±29.87 | 204.07±46.5** | 0.005 |
促黄体素LH(mIU/mL) | 4.41±1.12 | 5.44±1.07** | 0.000 |
促卵泡素FSH(mIU/mL) | 15.70±3.67 | 19.89±3.93** | 0.000 |
雌二醇E2(ng/L) | 55.67±15.99 | 73.28±13.32** | 0.000 |
孕酮P4(ng/mL) | 5.14±0.57 | 5.52±0.86* | 0.024 |
催乳素PRL(ng/mL) | 29.33±5.7* | 26.17±7.3 | 0.034 |
鹅品种 Goose Breed | 基因 Gene | 下丘脑 Hypothalamus | 垂体 Hypophysis | 卵巢 Ovaries | 输卵管 Oviduct |
---|---|---|---|---|---|
伊犁鹅 Yili geese | BMP2 | 1.37±0.43Bb | 0.60±0.28Bb | 9.71±2.66Aa | 3.36±0.76Bb |
BMP6 | 0.76±0.25Bb | 0.40±0.17Bb | 2.17±0.51Aa | 2.32±0.24Aa | |
MIS | 2.23±0.75Bb | 2.61±0.44Bb | 3.01±0.84ABb | 7.23±1.58Aa | |
ENO1 | 0.62±0.15 | 0.46±0.20 | 0.70±0.22 | 0.94±0.44 | |
EP300 | 1.07±0.46Ab | 0.90±0.46Ab | 1.00±0.15Ab | 3.31±0.73Aa | |
霍尔多巴吉鹅 Hortobágy geese | BMP2 | 1.38±0.10Bc | 1.19±0.16Bc | 8.72±0.77Aa | 3.65±0.95Bb |
BMP6 | 0.71±0.08Bc | 0.63±0.08Bc | 2.04±0.26Aa | 1.21±0.11Bb | |
MIS | 2.76±0.32Bb | 5.18±1.28Bb | 5.48±0.77Bb | 24.47±5.91Aa | |
ENO1 | 1.72±0.05Bb | 1.74±0.07Bb | 2.42±0.32Bb | 6.25±0.79Aa | |
EP300 | 1.07±0.16Bb | 1.07±0.17Bb | 2.19±0.67Bb | 9.25±1.73Aa |
Tab.5 Expression of five genes in different tissues of Yili geese and Hortobágy geese
鹅品种 Goose Breed | 基因 Gene | 下丘脑 Hypothalamus | 垂体 Hypophysis | 卵巢 Ovaries | 输卵管 Oviduct |
---|---|---|---|---|---|
伊犁鹅 Yili geese | BMP2 | 1.37±0.43Bb | 0.60±0.28Bb | 9.71±2.66Aa | 3.36±0.76Bb |
BMP6 | 0.76±0.25Bb | 0.40±0.17Bb | 2.17±0.51Aa | 2.32±0.24Aa | |
MIS | 2.23±0.75Bb | 2.61±0.44Bb | 3.01±0.84ABb | 7.23±1.58Aa | |
ENO1 | 0.62±0.15 | 0.46±0.20 | 0.70±0.22 | 0.94±0.44 | |
EP300 | 1.07±0.46Ab | 0.90±0.46Ab | 1.00±0.15Ab | 3.31±0.73Aa | |
霍尔多巴吉鹅 Hortobágy geese | BMP2 | 1.38±0.10Bc | 1.19±0.16Bc | 8.72±0.77Aa | 3.65±0.95Bb |
BMP6 | 0.71±0.08Bc | 0.63±0.08Bc | 2.04±0.26Aa | 1.21±0.11Bb | |
MIS | 2.76±0.32Bb | 5.18±1.28Bb | 5.48±0.77Bb | 24.47±5.91Aa | |
ENO1 | 1.72±0.05Bb | 1.74±0.07Bb | 2.42±0.32Bb | 6.25±0.79Aa | |
EP300 | 1.07±0.16Bb | 1.07±0.17Bb | 2.19±0.67Bb | 9.25±1.73Aa |
Fig.1 Differential expression of five genes in the same tissues and organs Note: Unlabeled means no significant different.* means significant different (P<0.05), ** means extremely significant different (P<0.01)
[1] | 梅志勇, 吴盈萍, 李海英, 等. 伊犁鹅个体产蛋规律的研究[J]. 中国畜牧杂志, 2021, 57(11):100-103. |
MEI Zhiyong, WU Yingping, LI Haiying, et al. Study on Individual Egg Production Rules in Yili Goose[J]. Chinese Journal of Animal Husbandry, 2021, 57(11): 100-103. | |
[2] | 赵金艳, 韩瑞明, 吴东坡. 霍尔多巴吉鹅与四川白鹅杂交效果分析[J]. 畜牧与兽医, 2015, 47(4):64-66. |
ZHAo Jinyan, HAN Ruiming, WU Dongpo. Hybrid effect analysis of Holdorbagi geese and Sichuan white geese[J]. Animal Husbandry and Veterinary Medicine, 2015, 47(4): 64-66. | |
[3] | 徐晓晖. 霍尔多巴吉鹅初生羽色性别鉴定及胚胎期毛囊黑色素表达规律研究[D]. 长春: 吉林农业大学, 2022. |
XU Xiaohui. Sex identification of primary feather color and expression of melanin in hair follicles during embryonic period in Holdorbagi geese[D]. Changchun: Jilin Agricultural University, 2022. | |
[4] |
Salamon A. Fertility and hatchability in goose eggs: A review[J]. International Journal of Poultry Science, 2020, 19(2): 51-65.
DOI URL |
[5] | Salamon A. Fertility and hatchability in goose eggs:A review[J]. Int.J.Poult.Sci, 2020, 19(2):51-65. |
[6] | 王俊花, 彭箫, 吴盈萍, 等. 伊犁鹅及其与豁眼鹅杂交后代屠宰性能、肉品质和抗氧化性能的比较研究[J]. 黑龙江畜牧兽医, 2019(19):51-55,59. |
WANG Junhua, PENG Xiao, WU Yingping, et al. Comparative Study on Slaughter Performance, Meat Quality and Antioxidant Performance of Ili Goose and its Offspring with Huoyan Goose[J]. Heilongjiang Animal Husbandry and Veterinary, 2019(19):51-55,59. | |
[7] | 左瑞华, 杨帆, 夏伦斌, 等. 霍尔多巴吉鹅与皖西白鹅杂交的试验研究[J]. 畜牧与饲料科学, 2016, 37(4):12-13,17. |
ZUO Ruihua, YANG Fan, XIA Lunbin, et al. Experimental study on crossbreeding between Holdoboji goose and Wanxi white goose[J]. Animal Husbandry and Feed Science, 2016, 37(4):12-13,17. | |
[8] | 黄炎坤, 徐思源, 徐忠义, 等. 浙东白鹅与霍尔多巴吉鹅杂交效果观察[J]. 黑龙江畜牧兽医, 2021,(1):72-75. |
HUANG Yankun, XU Siyuan, XU Zhongyi, et al. Observation on the crossbreeding effect of East Zhejiang White Goose and Holdobaji Goose[J]. Heilongjiang Animal Husbandry and Veterinary, 2021,(1):72-75. | |
[9] |
Pesti G M. Nutrient requirements of poultry[J]. Animal Feed Science and Technology, 1995, 56(1):177-178.
DOI URL |
[10] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
DOI PMID |
[11] | 梁晓宏. 提高蛋鹅产蛋率的饲养与管理方法[J]. 现代畜牧科技, 2021,(11): 49-50. |
LIANG Xiaohong. Feeding and management methods to improve egg production rate of laying geese[J]. Modern Animal Husbandry Science and Technology, 2021,(11): 49-50. | |
[12] | 杨宁. 现代养鸡生产[M]. 北京: 北京农业大学出版社, 1994. |
YANG Ning. Modern chicken production[M]. Beijing: Beijing Agricultural University Press, 1994. | |
[13] | Mbajiorgu C.A. Effect of hatching egg size on hatch ability and chick hatch-weight of indigenous Venda chickens[J]. Indian Journal of Animal Research, 2011, 45(4): 300-304. |
[14] | 苏蕊. 不同品种鹅的种蛋特性与孵化效果分析[D]. 洛阳: 河南科技大学, 2012. |
SU Rui. Analysis of egg characteristics and hatching effect of different varieties of geese[D]. Luoyang: Henan University of Science and Technology, 2012. | |
[15] | 谢燕妮, 谢树桃, 陈孟姣, 等. 不同品种蛋鸡的生产性能、蛋品质和营养成分的比较分析[J]. 广西农学报, 2021, 36(5): 29-32. |
XIE Yanni, XIE Shutao, CHEN Mengjiao, et al. Comparative analysis of performance, egg quality and nutritional composition of different breeds of laying hens[J]. Guangxi Journal of Agronomy, 2021, 36(5): 29-32. | |
[16] | 葛盛芳, 赵茹茜, 陈杰, 等. 绍兴鸭、康贝尔鸭产蛋性能的比较研究[J]. 中国畜牧杂志, 2000,(5): 22-23. |
GE Shengfang, ZHAO Ruxi, CHEN Jie, et al. Comparative study on egg production performance of Shaoxing duck and Kangbai duck[J]. Chinese Journal of Animal Husbandry, 2000,(5): 22-23. | |
[17] | 孙永峰, 柳俭强, 武惠岩, 等. 不同品种鹅种蛋孵化效率分析[J]. 黑龙江畜牧兽医, 2017,(18): 51-53. |
SUN Yongfeng, LIU Jianqiang, WU Huiyan, et al. Analysis of hatching efficiency of eggs of different varieties of geese[J]. Heilongjiang Animal Husbandry and Veterinarian, 2017,(18): 51-53. | |
[18] | 段修军, 龚道清, 魏洪廷, 等. 不同鹅品种繁殖性能的比较[J]. 中国畜牧杂志, 2006,(17): 17-19. |
DUAN Xiujun, GONG Daoqing, WEI Hongting, et al. Comparison of reproductive performance of different goose breeds[J]. Chinese Journal of Animal Husbandry, 2006,(17): 17-19. | |
[19] | 梁薇, 陈忠. 家禽卵巢主要生殖激素受体的研究进展[J]. 中国家禽, 2016, 38(15): 48-56. |
LIANG Wei, CHEN Zhong. Research Progress of Major Reproductive Hormone Receptors in Ovaries of Poultry[J]. Chinese Poultry, 2016, 38(15): 48-56. | |
[20] |
Doubois E A, Zandbergen M A, Peute J, et al. Evolutionary development of three gonadotropin-releasing hormone(GnRH) systems in vertebrates[J]. Brain Res Bull, 2002, 57(3): 413-418.
DOI URL |
[21] | 谢鹏, 施则伟, 付胜勇, 等. 不同配对方式下雌鸽繁殖期生殖相关激素水平的变化规律[J]. 中国家禽, 2015, 37(10): 21-25. |
XIE Peng, SHI Zewei, FU Shengyong, et al. Changes of reproductive hormone levels in female pigeons during the breeding period under different pairing methods[J]. Chinese Poultry, 2015, 37(10): 21-25. | |
[22] | 张克山, 胡彦竞科, 韩笑哲, 等. 鹅不同繁殖时期GnRH和GnIH基因表达和激素浓度变化分析[J]. 畜牧兽医学报, 2016, 47(8): 1720-1726. |
ZHANG Keshan, HU Yanjingke, HAN Xiaozhe, et al. Analysis of GnRH and GnIH gene expression and hormone concentration changes in geese at different reproductive periods[J]. Journal of Animal Husbandry and Veterinary Medicine, 2016, 47(8): 1720-1726. | |
[23] | 解美娜, 张才乔, 米玉玲, 等. 卵泡刺激素和雌激素对培养的鸡胚卵巢生殖细胞增殖的影响[J]. 动物学研究, 2004,(1): 53-56. |
JIE Meina, ZHANG Caiqiao, MI Yuling, et al. Effect of follicle stimulating hormone and estrogen on proliferation of cultured chicken embryo ovarian germ cells[J]. Zoological Research, 2004,(1): 53-56. | |
[24] |
Sun L, Chen Z, Du Y, et al. Wanxi White goose and Yangzhou goose exhibited differences in the level of egg production, serum biochemical, hormones and related gene expression under the same natural photoperiod regulation[J]. Journal of Applied Animal Research, 2022, 50(1): 342-349.
DOI URL |
[25] |
Etches R J, Cunningham F J. The interrelationship between progesterone and luteinizing hormone during the ovulation cycle of the hen (Gallus domesticus)[J]. Journal of Endocrinology, 1976, 71(1): 51-58.
PMID |
[26] |
Yang Y Z, Yao Y, Cao Z F, et al. Histological characteristics of follicles and reproductive hormone secretion during ovarian follicle development in laying geese[J]. Poultry Science, 2019, 98(11): 6063-6070.
DOI PMID |
[27] | 李晓坤, 王宝维, 张名爱, 等. 胆碱对产蛋期种鹅繁殖性能、血液生殖激素及蛋品质的影响[J]. 中国畜牧杂志, 2022, 58(5): 163-168. |
LI Xiaokun, WANG Baowei, ZHANG Mingai, et al. Effect of choline on reproductive performance, blood reproductive hormones and egg quality of breeding geese during laying period[J]. Chinese Journal of Animal Husbandry, 2022, 58(5): 163-168. | |
[28] |
Edens F W. Gender, age and reproductive status effects on serum prolactin concentrations in different varieties and species of poultry[J]. International Journal of Poultry Science, 2011, 10(11): 832-838.
DOI URL |
[29] | 赵帅. ERK蛋白质磷酸化介导颗粒细胞程序性死亡调节鹅就巢行为[D]. 扬州: 扬州大学, 2022. |
ZHAO Shuai. ERK protein phosphorylation mediates programmed cell death in granulosa cells to regulate goose nest behavior[D]. Yangzhou: Yangzhou University, 2022. | |
[30] | 陈习中, 张明明, 袁少友. 皖西白鹅雌鹅生殖激素水平研究[J]. 皖西学院学报, 2005, 21(5): 28-30. |
CHEN Xizhong, ZHANG Mingming, YUAN Shaoyou. Study on reproductive hormone levels in female geese of Wanxi White Goose[J]. Journal of Wanxi University, 2005, 21(5): 28-30. | |
[31] | 费晓娟, 金美林, 卢曾奎, 等. 基因的生理功能和信号通路研究进展[J]. 中国畜牧杂志, 2021, 57(3): 1-7. |
FEI Xiaojuan, JIN Melin, LU Zengkui, et al. 骨形态发生蛋白-2(BMP2)基因的生理功能和信号通路研究进展[J]. Chinese Journal of Animal Husbandry, 2021, 57(3): 1-7. | |
[32] |
Kumar S, Rajput P K, Bahire S V, et al. Differential expression of BMP/SMAD signaling and ovarian-associated genes in the granulosa cells of FecB introgressed GMM sheep[J]. Systems Biology in Reproductive Medicine, 2020, 66(3): 185-201.
DOI PMID |
[33] |
Ying Y, Zhao G Q. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse[J]. Developmental Biology, 2001, 232(2): 484-492.
DOI PMID |
[34] |
Erickson G F, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle[J]. Reproductive Biology and Endocrinology, 2003, 1(1): 1-20.
DOI URL |
[35] |
Fatehi A N, Van Den Hurk R, Colenbrander B, et al. Expression of bone morphogenetic protein2 (BMP2), BMP4 and BMP receptors in the bovine ovary but absence of effects of BMP2 and BMP4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development[J]. Theriogenology, 2005, 63(3): 872-889.
DOI PMID |
[36] |
Guangqin Z, Yihong C, Jiangang W, et al. Bone morphogenetic proteins (BMP) 2, 4, 6 and 7 affect ovarian follicular development through regulation of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) expression in goat granulosa cells[J]. Journal of Cell Biology and Genetics, 2013, 3(1): 14-21.
DOI URL |
[37] |
Yan X, Liu H, Hu J, et al. Transcriptomic analyses of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with egg production in ducks[J]. BMC genomics, 2022, 23(1): 1-14.
DOI |
[38] |
Huang X, Zhou W, Cao H, et al. Ovarian Transcriptomic Analysis of Ninghai Indigenous Chickens at Different Egg-Laying Periods[J]. Genes, 2022, 13(4): 595.
DOI URL |
[39] |
Knight P G, Glister C. Local roles of TGF-β superfamily members in the control of ovarian follicle development[J]. Animal Reproduction Science, 2003, 78(3-4): 165-183.
DOI URL |
[40] | 李玉春. 骨形态发生蛋白6(BMP-6)在猪卵泡中的表达及功能研究[D]. 哈尔滨: 东北农业大学, 2012. |
LI Yuchun. Expression and Function of Bone Morphogenetic Protein 6 (BMP-6) in Pig Follicles[D]. Harbin:Northeast Agricultural University, 2012. | |
[41] | 计红, 王江璐, 张伟宏, 等. 表达α-烯醇化酶重组腺病毒的构建及其在籽鹅卵泡颗粒细胞中的过表达[J]. 中国预防兽医学报, 2013, 35(1): 31-35. |
JI Hong, WANG Jianglu, ZHANG Weihong, et al. Construction of recombinant adenovirus expressing α-enolase and its overexpression in granulosa cells of seed goose follicles[J]. Chinese Journal of Preventive Veterinary Medicine, 2013, 35(1): 31-35. | |
[42] |
郑梦月, 姜冬梅, 康波, 等. 四川白鹅ENO1基因特征及其在HPG轴组织中发育性表达的研究[J]. 华北农学报, 2014, 29(1): 93-97.
DOI |
ZHENG Mengyue, JIANG Dongmei, KANG Bo, et al. Characteristics of ENO1 gene and its developmental expression in HPG axis tissues of Sichuan white geese[J]. Acta Agriculturae Boreali-Sinica, 2014, 29 (1): 93-97. | |
[43] | 季华. 籽鹅产蛋性状候选基因多态性分析[D]. 大庆: 黑龙江八一农垦大学, 2011. |
JI Hua. Candidate gene polymorphism analysis of egg production traits in seed geese[D]. Daqing: Bayi Nongken University, 2011. | |
[44] | 何晶, 耿仁德, 计红, 等. 海兰褐蛋鸡卵巢与输卵管FSHR及LHR基因定量的研究[J]. 黑龙江八一农垦大学学报, 2015, 27(2): 27-31,45. |
HE Jing, GENG Rende, JI Hong, et al. Quantitative study of FSHR and LHR genes in ovary and fallopian tube of Hailan brown laying hens[J]. Journal of Bayi Nongken University, Heilongjiang, 2015, 27(2): 27-31,45. | |
[45] | 杨新鸣, 张玉, 姚嘉永, 等. 抗苗勒管激素(AMH)对女性生理病理影响的研究进展[J]. 临床医药文献电子杂志, 2018, 5(49): 196-198. |
YANG Xinming, ZHANG Yu, YAO Jiayong, et al. Research Progress on the Effect of Anti-Mullerian Hormone (AMH) on Female Physiopathology[J]. Journal of Clinical Medicine Literature, 2018, 5(49): 196-198. | |
[46] |
Estienne A, Pierre A, Di Clemente N, et al. Anti-Müllerian hormone regulation by the bone morphogenetic proteins in the sheep ovary: deciphering a direct regulatory pathway[J]. Endocrinology, 2015, 156(1): 301-313.
DOI PMID |
[47] | 陈蓉, 应诗家, 陈哲, 等. AMH及其相关基因在鸭不同等级卵泡中的表达[J]. 江苏农业学报, 2018, 34(1): 87-92. |
CHEN Rong, YING Shijia, CHEN Zhe, et al. Expression of AMH and its related genes in different grades of duck follicles[J]. Jiangsu Journal of Agriculture, 2018, 34(1): 87-92. | |
[48] | 刘芮佳, 张博. 抗缪勒氏激素(AMH)对鸡等级卵泡选择调控的研究进展[J]. 中国家禽, 2022, 44(2): 100-105. |
LIU Ruijia, ZHANG Bo. Progress in the Regulation of Anti-Müllerian Hormone (AMH) on the Selection of Chicken Grade Follicles[J]. Chinese Poultry, 2022, 44(2): 100-105. | |
[49] |
Shen M, Sun H, Qu L, et al. Genetic architecture and candidate genes identified for follicle number in chicken[J]. Scientific Reports, 2017, 7(1): 1-10.
DOI |
[50] | 陈宇. 基于猪全基因组SNP筛选繁殖性状相关候选基因[D]. 广州: 华南农业大学, 2018. |
CHEN Yu. Screening of candidate genes associated with reproductive traits based on porcine genome-wide SNPs[D]. Guangzhou: South China Agricultural University, 2018. |
[1] | WANG Kaidi, GAO Chenxu, PEI Wenfeng, YANG Shuxian, ZHANG Wenqing, SONG Jikun, MA Jianjiang, WANG Li, YU Jiwen, CHEN Quanjia. Identification of TRM gene family and fiber quality related excellent haplotype analysis in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 521-536. |
[2] | ZHANG Wei, YANG Guohui, YU Hui. Effects of 2,4-epibrassinolide on growth and related genes expression of watermelon seedlings under drought Stress [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 615-622. |
[3] | SHAO Panxia, ZHAO Zhun, SHAO Wukui, HAO Xiaoyan, GAO Shengqi, LI Jianping, HU Wenran, HUANG Quansheng. Expression analysis of ZmCDPK22 gene in maize under drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1372-1378. |
[4] | SHANG Jing, PANG Hongbo, WANG Lanlan, LI Xuemei, WANG Yanqiu, LI Yueying. Study on the relationship between auxin and sorghum heterosis [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 841-846. |
[5] | SUN Fenglei, REN Jiaojiao, LEI Bin, GAO Wenwei, QU Yanying. QTL mapping and genomic selection of maize leaf width [J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2341-2351. |
[6] | ZHI Haoyu, WANG Zhihui, WANG Xingzai, DING Xinhua, JIA Zunzun, GUO Wenchao, JIANG Weihua. Insecticide Resistance Monitoring and Target Molecular Detection of Diamide Insecticides in Field Populations of Ostriniafurnacalis [J]. Xinjiang Agricultural Sciences, 2021, 58(4): 690-699. |
[7] | LI Jianping, Zumuremu Tuerxun, CHANG Xiaochun, HAO Xiaoyan, CHEN Guo, GAO Shengqi, SUN Liangbin, HUANG Quansheng. Expression Characteristics and Bioinformatics Analysis of ZmCDPK38Gene in Maize [J]. Xinjiang Agricultural Sciences, 2021, 58(1): 49-55. |
[8] | GONG Lintao, SU Xiujuan, YIN Songsong, SUN Minghui, YAN Bowen, Adilai Abdur aimu. Cloning, Expression Analysis and Prokaryotic Expression of Lavender DXS Gene [J]. Xinjiang Agricultural Sciences, 2020, 57(7): 1233-1242. |
[9] | YANG Shuai, REN Mingjian, LI Zhenhua, LI Luhua, XU Ruhong. Expression of Grain Development Related Genes in Wheat ZY96-3 during Grain Filling Stage [J]. Xinjiang Agricultural Sciences, 2020, 57(7): 1187-1194. |
[10] | WANG Degang, MA Guanghuang, HE Pengpeng, XIONG Renci, CAO Yu, ZHANG Ping, HAN Xu, YANG Minglu. Gene Sequences and Expression Analysis of Fatty Acid Δ9 Desaturase of Euzophera pyriella during Different Stages [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 877-887. |
[11] | AN Wen-kai;YAN Xiao-hong;BAO Qiu-juan;ZHANG Fu-chun. Silencing Effect of Jasmonic Acid Carboxyl Methyl Transferase(JMT)Gene on Physiological Indexes of Cotton Seedlings [J]. , 2017, 54(2): 213-222. |
[12] | ZHANG Ting, PAN Yan, MENG Xin-tao, ZHENG Su-hui, XU Bin. Cloning and Expression Analysis of a CRT/DRE-binding Factor Gene CmCBF1 from Hami Melon Fruit [J]. Xinjiang Agricultural Sciences, 2017, 54(10): 1765-1774. |
[13] | . C4H1 Gene Cloning and Expression Analysis between Sea-Island Cotton (Gossypium Barbadense L.) Fiber and Upland Cotton (Gossypium Hirsutum L.) Fiber [J]. , 2015, 52(10): 1773-1781. |
[14] | Tulailijiang Hamutai;Anwaier Reheman;MA Xiao-yan;Yiming Sulaiman;Jueken Aniwashi. Quantitative Study on Expression of MSTN/Smad Signaling Path Way Gene in Different Tissues of Altai Lambs [J]. , 2014, 51(9): 1728-1736. |
[15] | SU Li-bo;Ailizati Aili;LIU Liu;PENG Dan;YANG Yi;ZHANG Fu-chun. Cloning and Expression Analysis of Salt-stress Responsive Hc2a1 Gene from Halostachys caspica [J]. , 2014, 51(9): 1686-1691. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||