新疆农业科学 ›› 2023, Vol. 60 ›› Issue (5): 1150-1161.DOI: 10.6048/j.issn.1001-4330.2023.05.014
袁雷1,2(), 唐亚萍2, 张国儒2, 吉雪花1(
), 杨生保2(
)
收稿日期:
2022-09-03
出版日期:
2023-05-20
发布日期:
2023-05-22
通信作者:
吉雪花(1977 -),女,新疆石河子人,教授,研究方向为蔬菜栽培与育种,(E-mail)lilysnowjxh@163.com;作者简介:
袁雷(1998 -),男,四川平昌人,硕士研究生,研究方向为蔬菜育种,(E-mail ) 2273747884@qq.com
基金资助:
YUAN Lei1,2(), TANG Yaping2, ZHANG Guoru2, JI Xuehua1(
), YANG Shengbao2(
)
Received:
2022-09-03
Published:
2023-05-20
Online:
2023-05-22
Supported by:
摘要:
【目的】研究辣椒果实主要性状关键基因,为挖掘辣椒果实功能基因和新品种选育提供参考。【方法】以ZL-280(C.chinense)和GB-35(C.annuum)杂交获得的F2代群体为材料,构建辣椒种间遗传图谱,采用复合区间作图法(CIM)果实主要性状进行QTL分析。【结果】构建了一张包含12个连锁群,总图距为1 233.87 cM,标记间平均遗传距离为0.59 cM的辣椒高密度种间遗传图谱。共计检测到与色价关联的3个QTL位点,分别为位于第2、4和5条染色体上的cv.2.1、cv.4.1和cv.5.1,贡献率分别为8.58%,10.66%,12.44%;检测到与辣椒红素关联的2个QTL位点,分别为位于第2、5号染色体上的c.2.1和c.5.1,贡献率分别为7.14%和11.40%;检测到与辣椒素关联的3个QTL位点,分别位于第1、2和8号染色体上的cap.1.1、cap.2.1、和cap.8.1,贡献率为13.00%,、18.95%、13.29%;与果实纵径关联的QTL位点有3个,分别为位于第2、4号染色体上的fl.2.1、fl.2.2和fl.4.1,贡献率为6.18%、4.71%和4.01%;与果实横径关联的QTL位点1个,位于第6号染色体上的fd.6.1,贡献率为10.07%;检测到与胎座大小关联的QTL位点2个,分别为位于第2号和第7号染色体上的ps.2.1和ps.7.1,贡献率为4.55%和5.35%;1个与果肉厚关联的QTL位点,为位于第11号染色体上的pt.11.1,贡献率为1.64%;检测到与单果重关联的QTL位点1个,位于第7号染色体上sfw.7.1,贡献率为4.33%。【结论】构建了一张高密度辣椒种间遗传图谱,检测到16个与辣椒果实主要性状关联的QTLs位点,贡献率范围为1.64%~18.95%。
中图分类号:
袁雷, 唐亚萍, 张国儒, 吉雪花, 杨生保. 基于辣椒种间杂交F2群体的遗传连锁图谱构建及主要果实性状QTL定位[J]. 新疆农业科学, 2023, 60(5): 1150-1161.
YUAN Lei, TANG Yaping, ZHANG Guoru, JI Xuehua, YANG Shengbao. Construction of genetic linkage map and QTL localization of fruit major traits based on interspecific hybrid F2 population of pepper[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1150-1161.
材料编号 Material number | 种名 Species Type | 色价 Color value | 辣椒红素 含量 Capsanthin (mg/g) | 辣椒素 Capsaicin (mg/g) | 果实纵径 Fruit length (cm) | 果实横径 Fruit diameter (cm) | 胎座大小 Placenta size (cm) | 果肉厚 Pulp thickness (mm) | 单果重 Single fruit weight (g) |
---|---|---|---|---|---|---|---|---|---|
GB-35 | 一年生栽培种 | 13.63 | 3.88 | 1.28 | 16.975 | 1.461 | 3.220 | 0.160 | 27.38 |
ZL-280 | 中国种辣椒 | 4.6 | 1.60 | 37.26 | 4.670 | 2.590 | 2.610 | 0.210 | 6.3 |
表1 辣椒亲本的果实相关性状
Tab.1 Fruit correlation data of pepper parents
材料编号 Material number | 种名 Species Type | 色价 Color value | 辣椒红素 含量 Capsanthin (mg/g) | 辣椒素 Capsaicin (mg/g) | 果实纵径 Fruit length (cm) | 果实横径 Fruit diameter (cm) | 胎座大小 Placenta size (cm) | 果肉厚 Pulp thickness (mm) | 单果重 Single fruit weight (g) |
---|---|---|---|---|---|---|---|---|---|
GB-35 | 一年生栽培种 | 13.63 | 3.88 | 1.28 | 16.975 | 1.461 | 3.220 | 0.160 | 27.38 |
ZL-280 | 中国种辣椒 | 4.6 | 1.60 | 37.26 | 4.670 | 2.590 | 2.610 | 0.210 | 6.3 |
指标 Index | 最大值 Max. | 最小值 Min. | 均值 Mean | 标准差 SD | 变异幅度 Variation range | 变异系数 CV(%) |
---|---|---|---|---|---|---|
色价Color value | 25.94 | 5.08 | 12.40 | 3.53 | 20.86 | 28.45 |
辣椒红素Capsanthin(mg/g) | 4.71 | 1.49 | 3.20 | 1.21 | 4.28 | 12.35 |
辣椒素Capsaicin(mg/g) | 18.21 | 0.47 | 5.29 | 3.05 | 17.74 | 57.66 |
果实纵径Fruit length(cm) | 24.94 | 2.35 | 11.11 | 3.27 | 22.59 | 29.39 |
果实横径Fruit diameter(cm) | 2.99 | 1.08 | 1.68 | 0.35 | 1.91 | 20.58 |
胎座大小Placenta size(cm) | 1.68 | 0.15 | 0.60 | 0.19 | 1.53 | 31.53 |
果肉厚Pulp thickness(cm) | 0.52 | 0.10 | 0.18 | 0.05 | 0.42 | 26.94 |
单果重Single fruit weight(g) | 23.95 | 2.52 | 9.36 | 3.44 | 21.43 | 36.74 |
表2 F2代群体遗传多样性
Tab.2 Analysis of genetic diversity of F2 generation population
指标 Index | 最大值 Max. | 最小值 Min. | 均值 Mean | 标准差 SD | 变异幅度 Variation range | 变异系数 CV(%) |
---|---|---|---|---|---|---|
色价Color value | 25.94 | 5.08 | 12.40 | 3.53 | 20.86 | 28.45 |
辣椒红素Capsanthin(mg/g) | 4.71 | 1.49 | 3.20 | 1.21 | 4.28 | 12.35 |
辣椒素Capsaicin(mg/g) | 18.21 | 0.47 | 5.29 | 3.05 | 17.74 | 57.66 |
果实纵径Fruit length(cm) | 24.94 | 2.35 | 11.11 | 3.27 | 22.59 | 29.39 |
果实横径Fruit diameter(cm) | 2.99 | 1.08 | 1.68 | 0.35 | 1.91 | 20.58 |
胎座大小Placenta size(cm) | 1.68 | 0.15 | 0.60 | 0.19 | 1.53 | 31.53 |
果肉厚Pulp thickness(cm) | 0.52 | 0.10 | 0.18 | 0.05 | 0.42 | 26.94 |
单果重Single fruit weight(g) | 23.95 | 2.52 | 9.36 | 3.44 | 21.43 | 36.74 |
图2 GB-35碱基含量分布 注:前100 bp为双端测序序列的第一端测序Reads的碱基分布,后100 bp为另一端测序reads的碱基分布。如第一个位置代表测序的reads在第一个碱基的A、T、G、C、N的分布情况。
Fig.2 Distribution of base content of GB-35 Note: The first 100 bp is the base distribution of the first-end sequencing reads of the double-ended sequencing sequence, and the last 100 bp is the base distribution of the sequencing reads at the other end.For example, the first position represents the distribution of sequenced reads on the A, T, G, C, and N of the first base.
样本名称 Sample ID | 序列数 Reads | 碱基数 Base | Q30 (%) | GC (%) |
---|---|---|---|---|
GB-35 | 16 303 373 | 3 253 979 334 | 96.43 | 39.51 |
ZL-280 | 16 067 790 | 3 206 054 408 | 96.39 | 40.11 |
F2代 | 6 969 044 | 1 392 101 632 | 96.10 | 39.08 |
总量 Total | 1 593 436 940 | 318 290 799 252 | 96.11 | 39.43 |
对照 Control | 5 483 107 | 1 094 703 458 | 95.71 | 45.30 |
表3 测序质量
Tab.3 Sequencing quality analysis
样本名称 Sample ID | 序列数 Reads | 碱基数 Base | Q30 (%) | GC (%) |
---|---|---|---|---|
GB-35 | 16 303 373 | 3 253 979 334 | 96.43 | 39.51 |
ZL-280 | 16 067 790 | 3 206 054 408 | 96.39 | 40.11 |
F2代 | 6 969 044 | 1 392 101 632 | 96.10 | 39.08 |
总量 Total | 1 593 436 940 | 318 290 799 252 | 96.11 | 39.43 |
对照 Control | 5 483 107 | 1 094 703 458 | 95.71 | 45.30 |
样本名称 Sample ID | SLAF 标签数量 SLAF Number | 总测序 Reads total sequencing reads | 平均测序 深度(X) Average Depth(X) |
---|---|---|---|
GB-35 | 400 845 | 8 644 580 | 21.57 |
ZL-280 | 611 934 | 11 403 236 | 18.63 |
F2代 | 366 973 | 4 495 732 | 12.25 |
平均 Average | 459 917 | 8 181 183 | 17.48 |
表4 SLAF标签开发统计
Tab.4 Statistical analysis of SLAF label development
样本名称 Sample ID | SLAF 标签数量 SLAF Number | 总测序 Reads total sequencing reads | 平均测序 深度(X) Average Depth(X) |
---|---|---|---|
GB-35 | 400 845 | 8 644 580 | 21.57 |
ZL-280 | 611 934 | 11 403 236 | 18.63 |
F2代 | 366 973 | 4 495 732 | 12.25 |
平均 Average | 459 917 | 8 181 183 | 17.48 |
连锁群 LG | 标记数 Number of markers | Gaps≤5 (%) | 秩相关系数 Spearman | 最大Gap Max Gap | 图谱长度 Total distance (cM) | 平均间距 Average distance (cM) | 双交换的 位点比例 Singleton percent (100%) |
---|---|---|---|---|---|---|---|
1 | 222 | 100 | 0.996 | 2.32 | 100.16 | 0.45 | 0.02 |
2 | 164 | 100 | 0.999 | 2.59 | 101.31 | 0.62 | 0.02 |
3 | 265 | 100 | 0.998 | 1.83 | 100.96 | 0.38 | 0.00 |
4 | 199 | 100 | 0.998 | 2.96 | 103.52 | 0.52 | 0.00 |
5 | 156 | 100 | 0.997 | 2.53 | 116.01 | 0.75 | 0.01 |
6 | 164 | 100 | 0.999 | 3.06 | 104.47 | 0.64 | 0.00 |
7 | 113 | 100 | 0.993 | 3.71 | 121.26 | 1.08 | 0.00 |
8 | 94 | 98.92 | 0.996 | 5.24 | 103.87 | 1.12 | 0.02 |
9 | 149 | 100 | 0.987 | 2.64 | 94.19 | 0.64 | 0.00 |
10 | 125 | 100 | 0.995 | 3.55 | 85.13 | 0.69 | 0.01 |
11 | 266 | 100 | 0.998 | 3.26 | 102.91 | 0.39 | 0.01 |
12 | 169 | 100 | 0.999 | 3.36 | 100.08 | 0.60 | 0.02 |
共计Total | 2 086 | 99.91 | 0.996 | 3.09 | 1 233.87 | 0.59 | 0.01 |
表5 遗传图谱基本信息统计
Tab.5 Basic information statistics of genetic map
连锁群 LG | 标记数 Number of markers | Gaps≤5 (%) | 秩相关系数 Spearman | 最大Gap Max Gap | 图谱长度 Total distance (cM) | 平均间距 Average distance (cM) | 双交换的 位点比例 Singleton percent (100%) |
---|---|---|---|---|---|---|---|
1 | 222 | 100 | 0.996 | 2.32 | 100.16 | 0.45 | 0.02 |
2 | 164 | 100 | 0.999 | 2.59 | 101.31 | 0.62 | 0.02 |
3 | 265 | 100 | 0.998 | 1.83 | 100.96 | 0.38 | 0.00 |
4 | 199 | 100 | 0.998 | 2.96 | 103.52 | 0.52 | 0.00 |
5 | 156 | 100 | 0.997 | 2.53 | 116.01 | 0.75 | 0.01 |
6 | 164 | 100 | 0.999 | 3.06 | 104.47 | 0.64 | 0.00 |
7 | 113 | 100 | 0.993 | 3.71 | 121.26 | 1.08 | 0.00 |
8 | 94 | 98.92 | 0.996 | 5.24 | 103.87 | 1.12 | 0.02 |
9 | 149 | 100 | 0.987 | 2.64 | 94.19 | 0.64 | 0.00 |
10 | 125 | 100 | 0.995 | 3.55 | 85.13 | 0.69 | 0.01 |
11 | 266 | 100 | 0.998 | 3.26 | 102.91 | 0.39 | 0.01 |
12 | 169 | 100 | 0.999 | 3.36 | 100.08 | 0.60 | 0.02 |
共计Total | 2 086 | 99.91 | 0.996 | 3.09 | 1 233.87 | 0.59 | 0.01 |
指标 Index | QTL位点 QTL position | LOD阈值 LOD threshold | 连锁群 LG | 起始位点 Start (cM) | 基因组位置 Position | 结束位点 End (cM) | 基因组位置 Position | 峰值 Max LOD | 加性 效应 ADD | 显性 效应 DOM | 贡献率 PVE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
色价 Color value | cv.2.1 | 3.0 | 2 | Marker 9 652 902 (82.581) | 195 194 879 | Marker 2 589 832 (83.251) | 213 996 356 | 5.06 | 1.352 | -0.875 | 8.58 |
cv.4.1 | 3.0 | 4 | Marker 2 873 477 (46.535) | 65 631 429 | Marker 2 589 832 (46.758) | 69 589 432 | 5.09 | -1.599 | -0.209 | 10.66 | |
cv.5.1 | 3.0 | 5 | Marker 3 537 264 (31.600) | 66 285 587 | Marker 3 232 947 (32.947) | 72 301 706 | 4.10 | -1.412 | -1.355 | 12.44 | |
辣椒红素 Capsanthin | c.2.1 | 3.0 | 2 | Marker 10 061 436 (11.484) | 32 103 356 | Marker 9 844 177 (12.198) | 48 592 505 | 4.185 | -3.561 | 2.233 | 11.40 |
c.5.1 | 3.0 | 4 | Marker 3 194 756 (35.728) | 72 364 437 | Marker 3 103 989 (37.838) | 94 768 342 | 3.451 | -2.795 | -1.380 | 7.14 | |
辣椒素 Capsaicin | cap.1.1 | 3.0 | 1 | Marker 399 630 (46.456) | 50 542 715 | Marker 609 519 (46.953) | 53 887 436 | 3.180 | 7.07 | 1.98 | 13.00 |
cap.2.1 | 3.0 | 2 | Marker 9 879 715 (95.401) | 196 431 135 | Marker 9 757 022 (96.562) | 215 833 374 | 9.095 | 1.73 | -5.12 | 18.95 | |
cap.8.1 | 3.0 | 8 | Marker 1 914 310 (62.236) | 95 346 742 | Marker 2 064 050 (66.653) | 109 634 672 | 5.861 | -1..52 | -0.43 | 13.29 | |
果实纵径 Fruit length | fl.2.1 | 3.0 | 2 | Marker 9 857 612 (0.000) | 3 298 310 | Marker 10 129 245 (2.545) | 11 043 459 | 3.448 | -0.320 | -1.497 | 6.18 |
fl.2.2 | 3.0 | 2 | Marker 9 820 290 (5.537) | 16 846 366 | Marker 9 926 410 (101.305) | 163 421 125 | 5.097 | 0.214 | -1.372 | 4.71 | |
fl.4.1 | 3.0 | 4 | Marker 2 298 759 (0.000) | 2 303 297 | Marker 2 497 697 (103.517) | 214 194 288 | 4.169 | -0.474 | -1.048 | 4.01 | |
果实横径 Fruit diameter | fd.6.1 | 7.879 | 6 | Marker 5 677 357 (1.078) | 20 106 539 | Marker 5 780 574 (1.078) | 20 160 568 | 8.508 | 0.128 | -0.118 | 10.07 |
胎座大小 Placenta size | ps.2.1 | 3.0 | 2 | Marker 10 002 907 (85.496) | 216 432 137 | Marker 9 874 093 (87.148) | 265 463 374 | 4.165 | 0.055 | -0.020 | 4.55 |
ps.7.1 | 3.0 | 7 | Marker 4 635 519 (29.078) | 159 363 433 | Marker 4 833 869 (29.391) | 159 487 524 | 4.903 | -0.060 | -0.011 | 5.35 | |
果肉厚 Pulp thickness | pt.11.1 | 3.0 | 11 | Marker 8 413 604 (10.153) | 15 070 036 | Marker 8 138 146 (10.822) | 17 555 138 | 9.341 | -0.008 | -0.006 | 1.64 |
单果重 Single fruit weight | sfw.7.1 | 2.50 | 7 | Marker 4 867 431 (115.364) | 214 736 276 | Marker 4 689 183 (115.587) | 214 880 551 | 2.683 | 0.985 | -0.584 | 4.33 |
表6 辣椒果实相关性状QTL位点
Tab.6 QTL sites associated with pepper fruits
指标 Index | QTL位点 QTL position | LOD阈值 LOD threshold | 连锁群 LG | 起始位点 Start (cM) | 基因组位置 Position | 结束位点 End (cM) | 基因组位置 Position | 峰值 Max LOD | 加性 效应 ADD | 显性 效应 DOM | 贡献率 PVE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
色价 Color value | cv.2.1 | 3.0 | 2 | Marker 9 652 902 (82.581) | 195 194 879 | Marker 2 589 832 (83.251) | 213 996 356 | 5.06 | 1.352 | -0.875 | 8.58 |
cv.4.1 | 3.0 | 4 | Marker 2 873 477 (46.535) | 65 631 429 | Marker 2 589 832 (46.758) | 69 589 432 | 5.09 | -1.599 | -0.209 | 10.66 | |
cv.5.1 | 3.0 | 5 | Marker 3 537 264 (31.600) | 66 285 587 | Marker 3 232 947 (32.947) | 72 301 706 | 4.10 | -1.412 | -1.355 | 12.44 | |
辣椒红素 Capsanthin | c.2.1 | 3.0 | 2 | Marker 10 061 436 (11.484) | 32 103 356 | Marker 9 844 177 (12.198) | 48 592 505 | 4.185 | -3.561 | 2.233 | 11.40 |
c.5.1 | 3.0 | 4 | Marker 3 194 756 (35.728) | 72 364 437 | Marker 3 103 989 (37.838) | 94 768 342 | 3.451 | -2.795 | -1.380 | 7.14 | |
辣椒素 Capsaicin | cap.1.1 | 3.0 | 1 | Marker 399 630 (46.456) | 50 542 715 | Marker 609 519 (46.953) | 53 887 436 | 3.180 | 7.07 | 1.98 | 13.00 |
cap.2.1 | 3.0 | 2 | Marker 9 879 715 (95.401) | 196 431 135 | Marker 9 757 022 (96.562) | 215 833 374 | 9.095 | 1.73 | -5.12 | 18.95 | |
cap.8.1 | 3.0 | 8 | Marker 1 914 310 (62.236) | 95 346 742 | Marker 2 064 050 (66.653) | 109 634 672 | 5.861 | -1..52 | -0.43 | 13.29 | |
果实纵径 Fruit length | fl.2.1 | 3.0 | 2 | Marker 9 857 612 (0.000) | 3 298 310 | Marker 10 129 245 (2.545) | 11 043 459 | 3.448 | -0.320 | -1.497 | 6.18 |
fl.2.2 | 3.0 | 2 | Marker 9 820 290 (5.537) | 16 846 366 | Marker 9 926 410 (101.305) | 163 421 125 | 5.097 | 0.214 | -1.372 | 4.71 | |
fl.4.1 | 3.0 | 4 | Marker 2 298 759 (0.000) | 2 303 297 | Marker 2 497 697 (103.517) | 214 194 288 | 4.169 | -0.474 | -1.048 | 4.01 | |
果实横径 Fruit diameter | fd.6.1 | 7.879 | 6 | Marker 5 677 357 (1.078) | 20 106 539 | Marker 5 780 574 (1.078) | 20 160 568 | 8.508 | 0.128 | -0.118 | 10.07 |
胎座大小 Placenta size | ps.2.1 | 3.0 | 2 | Marker 10 002 907 (85.496) | 216 432 137 | Marker 9 874 093 (87.148) | 265 463 374 | 4.165 | 0.055 | -0.020 | 4.55 |
ps.7.1 | 3.0 | 7 | Marker 4 635 519 (29.078) | 159 363 433 | Marker 4 833 869 (29.391) | 159 487 524 | 4.903 | -0.060 | -0.011 | 5.35 | |
果肉厚 Pulp thickness | pt.11.1 | 3.0 | 11 | Marker 8 413 604 (10.153) | 15 070 036 | Marker 8 138 146 (10.822) | 17 555 138 | 9.341 | -0.008 | -0.006 | 1.64 |
单果重 Single fruit weight | sfw.7.1 | 2.50 | 7 | Marker 4 867 431 (115.364) | 214 736 276 | Marker 4 689 183 (115.587) | 214 880 551 | 2.683 | 0.985 | -0.584 | 4.33 |
[1] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47 (9): 1715-1726. |
ZOU Xuexiao, MA Yanqing, DAIi Xiongze, et al. The spread and industrial development of pepper in China[J]. Acta horticulturae Sinica, 2020, 47 (9): 1715-1726. | |
[2] | 唐胜球, 董小英, 邹晓庭. 辣椒素研究及其应用[J]. 江西饲料, 2003,(1): 13-16. |
TANG Shengqiu, DONG Xiaoying, ZOU Xiaoting. Research and application of capsaicin[J]. Jiangxi feed, 2003,(1): 13-16. | |
[3] |
邹学校, 朱凡. 辣椒的起源、进化与栽培历史[J]. 园艺学报, 2022, 49(6): 1371-1381.
DOI |
ZOU Xuexiao, ZHU Fan. The origin, evolution and cultivation history of chili peppers[J]. Journal of Horticulture, 2022, 49(6):1371-1381. | |
[4] | 刘可春, 石俊英. 辣椒碱应用研究概况[J]. 山东科学, 2006, 19(3): 22-26. |
LIU Kechun, SHI Junying. Overview of capsaicin application research[J]. Shandong science, 2006, 19 (3): 22-26. | |
[5] | 杨博智, 谢达平, 张竹青. 辣椒红色素的提取方法和应用[J]. 辣椒杂志, 2007,(2): 26-29. |
YANG Bozhi, XIE Daping, ZHANG Zhuqing. Extraction method and application of capsanthin[J]. Capsicum journal, 2007,(2): 26-29. | |
[6] | Arora R, Gill N S, Chauhan G, et al. An Overview about Versatile Molecule Capsaicin.International[J]. Journal of Pharmaceutical Sciences and Drug Research, 2011, 3(4): 280-286. |
[7] | 袁雷, 杨涛, 张国儒, 等. 辣椒果实中辣椒素的研究进展[J]. 中国瓜菜, 2021, 34(11):1-9. |
YUAN Lei, YANG Tao, ZHANG Guoru, et al. Research progress of capsaicin in chili pepper fruit[J]. China Melon Vegetables, 2021, 34(11):1-9. | |
[8] | 石娜, 胡春华. 现阶段我国辣椒栽培现状和育种趋势[J]. 安徽农学通报, 2017, 23(22):61-62,115. |
SHI Na, HU Chunhua. Current status and breeding trend of pepper cultivation in China[J]. Anhui Agricultural Science Bulletin, 2017, 23(22):61-62,115. | |
[9] | 王立浩, 马艳青, 张宝玺. 我国辣椒品种市场需求与育种趋势[J]. 中国蔬菜, 2019,(8):1-4. |
WANG Lihao, MA Yanqing, ZHANG Baoxi. Market demand and breeding trend of pepper varieties in China[J]. China Vegetables, 2019,(8):1-4. | |
[10] | 魏家香, 俞佳虹, 程远, 等. 辣椒遗传图谱的构建及主要农艺性状QTL定位的研究进展[J]. 分子植物育种, 2019, 17(13):4390-4397. |
WEI Jiaxiang, YU Jiahong, CHENG Yuan, et al. Research progress on the construction of genetic map of pepper and QTL localization of major agronomic traits[J]. Molecular Plant Breeding, 2019, 17(13):4390-4397. | |
[11] |
Tanksley S D. Linkage relationships and chromosomal location of enzyme-coding genes in pepper[J]. Chromosoma, 1984, 89:352-360.
DOI URL |
[12] |
Lefebvre V, Palloix A, Caranta C, et al. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies[J]. Genome, 1995, 38(1):112-121.
DOI PMID |
[13] |
Djiancaporalino C, Pijarowski L, Fazari A, et al. High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me 4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.)[J]. TAG Theoretical and Applied Genetics, 2001, 103(4):592-600.
DOI URL |
[14] | 张宝玺, 王立浩, 黄三文, 等. 利用辣椒DH群体构建分子遗传图谱及CMS恢复基因的QTL分析[C]// .全国蔬菜遗传育种学术讨论会论文集, 2002:203-208. |
ZHANG Baoxi, WANG Lihao, HUANG Sanwen, et al. QTL analysis of molecular genetic map and CMS recovery gene using pepper DH population[C]//. Proceedings of the National Symposium on Vegetable Genetics and Breeding, 2002:203-208. | |
[15] |
Ogundiwin E A, Berke T F, Massoudi M, et al. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.)[J]. Genome, 2005, 48(4): 698-711.
PMID |
[16] | 马义花. 辣椒遗传图谱的构建与辣椒素含量的QTL分析[D]. 武汉: 华中农业大学, 2016. |
MA Yihua. Construction of genetic map of chili pepper and QTL analysis of capsaicin content[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[17] |
Han K, Jeong H, Yang H, et al. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicumannuum)[J]. DNA Research, 2016, 23(2):81-91.
DOI URL |
[18] | Li Ning, Yin Yanxu, Wang Fei, et al. Construction of a high-density genetic map and identification of QTLs for cucumber mosaic virus resistance in pepper (Capsicum annuum L.) using specific length amplified fragment sequencing (SLAF-seq)[J]. Breeding Science, 2018, 68(2):245-278. |
[19] |
Han K, Lee H Y, Ro N, et al. QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum.[J]. Plant biotechnology journal, 2018, 16(9):1546-1558.
DOI URL |
[20] |
Li Y F, Zhang S C, Yang X M, et al. Generation of a High-Density Genetic Map of Pepper (Capsicum annuum L.) by SLAF-seq and QTL Analysis of Phytophthora capsici Resistance[J]. Horticulturae, 2021, 7(5):234-245.
DOI URL |
[21] | Sun X W, Liu D Y, Zhang X F, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS ONE, 2013, 8(3): e58700. |
[22] | 李锡香, 张宝玺. 辣椒种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. |
LI Xixiang, ZHANG Baoxi. Description specification and data standard of pepper germplasm resources[M]. Beijing: China Agricultural Publishing House, 2006. | |
[23] | Barchi L, Lanteri S, Portis E, et al. A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation[J]. PLoS ONE, 2012, 7(8): e43740. |
[24] | 刘冰江. 离体雌核发育诱导洋葱单倍体与分子标记开发[D]. 泰安: 山东农业大学, 2016. |
LIU Bingjiang. Etude de vivo female nucleus development induces onion haploid and molecular marker development[D]. Tan'an: Shandong Agricultural University, 2016. | |
[25] |
Jia J Z, Zhao S C, Kong X Y, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation[J]. Nature, 2013, 496 (7443): 91-95.
DOI |
[26] | Kang B C, Nahm S H, Huh J H, et al. An interspecific (Capsicum annuum× C.chinese) F2 linkage map in pepper using RFLP and AFLP markers[J]. Theor.Appl.Genet., 2001, 102(4): 531-539. |
[27] | Lee J M, Nahm S H, Kim Y M, et al. Characterization and molecular genetic mapping of microsatellite loci in pepper[J]. Theor.Appl.Genet., 2004, 108(4): 619-627. |
[28] |
Lee J, Park S J, Hong S C, et al. QTL mapping for capsaicin and dihydrocapsaicin content in a population of Capsicum annuum‘NB1’×Capsicum chinense'Bhut Jolokia[J]. Plant Breed., 2016, 135(3): 376-383.
DOI URL |
[29] | Ben-Chaim A, Borovsky Y, De Jong W, et al. Linkage of the Alocus for the presence of anthocyanin and fs10.1,a major fruit-shape QTL in pepper[J]. Theoretical and Applied Genetics, 2003, 104:889-894. |
[30] | Barchi L, Lefebvre V, Sage-Palloix A, et al. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping.[J]. Theoretische und angewandte Genetik, 2009, 118(6):1022-1033. |
[31] | 段蒙蒙. 辣椒种内遗传图谱的构建及植物学性状和抗疫病的QTL定位[D]. 北京: 中国农业科学院, 2014. |
DUAN Mengmeng. Construction of intraspecific genetic map of pepper and QTL localization of botanical traits and diseaseresistance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. | |
[32] | 张芳芳. 辣椒果实主要色素动态变化及辣椒红素的QTL定位[D]. 北京: 中国农业科学院, 2010. |
ZHANG Fangfang. Dynamic changes of main pigments in pepper fruit and QTL localization of capsaicin[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. | |
[33] | 魏家香. 辣椒种间杂种创制、种间遗传图谱的构建和主要农艺性状OTL定位[D]. 杭州: 浙江师范大学, 2018. |
WEI Jiaxiang. Interspecific hybrid creation, construction of interspecific genetic map and OTL localization of main agronomic traits of pepper[D]. Hangzhou: Zhejiang Normal University, 2018. | |
[34] | 闫超. 利用全基因组高密度SNP标记定位QTL的研究[D]. 泰安: 山东农业大学, 2012. |
YAN Chao. Research on genome-wide high-density SNP labeling to locate QTL[D]. Tan'an: Shandong Agricultural University, 2012. |
[1] | 张国儒, 唐亚萍, 石林媛, 袁雷, 张勇, 杨生保. 辣椒种间杂交遗传特性[J]. 新疆农业科学, 2024, 61(3): 632-641. |
[2] | 王震鲁, 白涛, 李东亚, 戴硕, 陈珍. 基于改进YOLOv5的绿辣椒目标检测方法[J]. 新疆农业科学, 2024, 61(12): 3032-3041. |
[3] | 蒋荣伟, 杨生保, 袁雷, 肖红星. 辣椒果实中辣椒色素的研究进展[J]. 新疆农业科学, 2024, 61(11): 2648-2657. |
[4] | 马思洁, 朱天生, 何璐, 杨叔青. 辣椒小G蛋白CaROP的生物信息学分析[J]. 新疆农业科学, 2024, 61(1): 165-175. |
[5] | 陈艳, 黄璐瑶, 邓昌蓉, 张彦君, 侯全刚, 邵登魁. 冷害对多茸毛型线辣椒幼苗生理水平的影响[J]. 新疆农业科学, 2023, 60(6): 1492-1498. |
[6] | 刘衍晨, 刘志刚, 白新慧, 乔鹏, 徐诚, 白慧敏, 张娟. 蛭石复混基质对辣椒育苗的影响[J]. 新疆农业科学, 2023, 60(5): 1190-1199. |
[7] | 裴红霞, 李生梅, 武旭霞, 耿世伟, 赖黎丽, 高晶霞, 董心久. 辣椒核雄性不育系pby-1形态学及生理生化特性分析[J]. 新疆农业科学, 2023, 60(3): 624-632. |
[8] | 马君, 杨延龙, 师维军, 汪鹏龙, 郑巨云, 郭仁松, 胡文冉, 杨洋. 棉花陆海渐渗杂交群体纤维品质性状的QTL定位[J]. 新疆农业科学, 2023, 60(1): 11-16. |
[9] | 肖中林, 闫会转, 高杰, 王思逸, 张旭旭, 艾力西热·尼加提. 不同浓度NaCl和NaHCO3胁迫对制干辣椒光合特性日变化的影响[J]. 新疆农业科学, 2023, 60(1): 140-149. |
[10] | 彭宇, 闫会转, 肖中林, 贾凯, 燕存尧, 王妍欣. 不同施肥处理对盆栽辣椒土壤酶活性及土壤微生物含量的影响[J]. 新疆农业科学, 2022, 59(9): 2200-2208. |
[11] | 袁雷, 吉雪花, 张国儒, 石林媛, 郭河瑶, 唐亚萍, 杨涛, 杨生保. 52份辣椒主要果实性状的遗传多样性及聚类分析[J]. 新疆农业科学, 2022, 59(8): 1935-1944. |
[12] | 张卢慧, 赵志强, 郭庆元. 辣椒细菌性果实条斑病病原鉴定[J]. 新疆农业科学, 2022, 59(7): 1726-1733. |
[13] | 马燕, 许铭强, 李喜弟, 孟新涛, 邹淑萍, 张婷, 张谦. 响应面法优化辣椒籽油碱异构化制备共轭亚油酸工艺及其氧化稳定性[J]. 新疆农业科学, 2022, 59(4): 908-915. |
[14] | 谢雪果, 袁雷, 王世宁, 沈凌峰, 夏亚辉, 吉雪花. 不同施氮水平对色素辣椒光合效率的影响[J]. 新疆农业科学, 2022, 59(10): 2502-2513. |
[15] | 张连俊, 李金兰, 张帅, 张广杰, 杨柳, 徐韬, 马德英, 刘玉升. 2种昆虫虫粪对辣椒生长及果实品质的影响[J]. 新疆农业科学, 2021, 58(8): 1511-1518. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||