Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (5): 1273-1285.DOI: 10.6048/j.issn.1001-4330.2025.05.026

• Prataculture·Facility Agriculture • Previous Articles     Next Articles

Simulation and Optimization of a TRNSYS-Based Air-Source Heat Pump Integrated with Buried Pipe System for Solar Greenhouse Applications

ZHANG Gaoshang1(), WU Letian2,3, GUO Shenbo2,3, YUE Qiuxing2,3, SUN Xiaoli2,3, SHI Huifeng1,2()   

  1. 1. College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052
    2. Institute of Agricultural Equipment, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences, Urumqi 830091
    3. Research Center for Agricultural Engineering Facilities and Equipment Engineering Technology, Urumqi 830091
  • Received:2024-10-07 Online:2025-05-20 Published:2025-07-09
  • Correspondence author: SHI Huifeng
  • Supported by:
    National key Research and Development Program of China"lntelligent Environment Control Technology and Equipment Development"(2023YFD2000602);Major Special Projects in Xinjiang Uygur Autonomous Region"Research on Low Energy Consumption,High Energy Storage,and Mechanized Greenhouse Engineering Te chnology around the Tarim Basin"(2022A02005-1)

基于TRNSYS软件的日光温室空气源热泵-地埋管系统仿真与优化

张高尚1(), 吴乐天2,3, 郭申伯2,3, 岳秋星2,3, 孙小丽2,3, 史慧锋1,2()   

  1. 1.新疆农业大学机电工程学院,乌鲁木齐 830052
    2.新疆维吾尔自治区农业科学院农业装备研究所,乌鲁木齐 830091
    3.新疆设施农业智能化管控技术重点实验室,乌鲁木齐 830091
  • 通讯作者: 史慧锋
  • 作者简介:张高尚(1998-),男,硕士研究生,研究方向为设施农业智能装备工程,(E-mail)zgs666vip@163.com
  • 基金资助:
    国家重点研发计划项目“智能环境控制技术与装备研制”(2023YFD2000602);新疆维吾尔自治区重大专项“环塔里木盆地低能耗、高储能、宜机化温室工程技术研究”(2022A02005-1)

Abstract:

【Objective】 Carried out the simulation and optimization of the air-source heat pump-buried pipe system in solar greenhouses to explore the optimal working parameters of the system. They also provide case references for the research and engineering applications related to greenhouse winter heating in the Gobi and desert regions of Xinjiang.【Methods】 The research object in this study is the air source heat pump heat collection combined with underground pipe thermal storage (ASHP-UP) system. The transient simulation model is built using TRNSYS software, and the Box-Behnken experimental design and response surface analysis method is used to study and optimize the system operation parameters. 【Results】 Under the optimal working condition, the heat storage capacity of the system is 501.90 kWh, the energy consumption is 77.18 kWh, and the soil is warmed up by 2.26 ℃. The average daily heat storage power of the system is 37.5 kJ/s, the average daily heat storage COP is 4.33, and the exothermic COP is 4.81. Compared with the traditional heating methods of coal, gas, and electricity, the energy consumption is reduced by 84.7%, 81.3%, and 79.1%, respectively, and the GHG emission is reduced by 8.24, 6.52, and 5.67 t, respectively. The optimal working conditions of the system in winterized production are: rated heat production capacity of the heat pump is 30.0 kW, heat storage time is 12.0 h, and circulating water flow rate is 5.55 m3/h.【Conclusion】 Measurements have verified that the system has good heat storage and release effects, meets the crop overwintering production needs, and its energy-saving and environmental performance meets the national energy-saving and emission reduction requirements.

Key words: Assembled solar greenhouse; Air source heat pump; Underground pipe; Thermal storage performance; Energy efficiency

摘要:

【目的】通过系统模拟与优化,探索最优工作参数,以提高能源利用率,为新疆戈壁和沙漠区温室冬季供暖相关研究与工程应用提供案例参考。【方法】以空气源热泵集热联合地埋管蓄热(ASHP-UP)系统为研究对象,利用TRNSYS软件构建瞬时模拟模型,结合Box-Behnken试验设计和响应面分析法,研究系统运行参数并优化。【结果】最优工况下,系统蓄热量为501.90 kWh,能耗为77.18 kWh,土壤升温2.26℃。系统日均蓄热功率为37.5kJ/s,日均蓄热COP为4.33,放热COP为4.81。相较传统燃煤、燃气和电加热等加热方式,能耗分别降低84.7%、81.3%和79.1%,温室气体排放量分别减少8.24、6.52和5.67 t。系统在越冬生产的最优工况为:热泵额定制热量30.0 kW、蓄热时间12.0 h、循环水流量5.55 m3/h。【结论】该系统蓄、放热效果较佳,满足作物越冬生产需求,其节能与环保性能符合国家节能减排要求。

关键词: 组装式日光温室, 空气源热泵, 地埋管, 蓄热性能, 节能

CLC Number: