Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (2): 463-473.DOI: 10.6048/j.issn.1001-4330.2025.02.024
• Prataculture·Animal Husbandry Veterinarian·Agricultural Eeconomy • Previous Articles Next Articles
LI Chao1(), FAN Tianwen2, Tuerxunjiang Ailimubieke2, HE Jun2, LI Jianwei2, WEN Jun3, ZHANG Lin2, JIN Guili1(
), LI Ying1, LIU Wenhao1, WANG Shengju1
Received:
2024-08-13
Online:
2025-02-20
Published:
2025-04-17
Correspondence author:
JIN Guili
Supported by:
李超1(), 范天文2, 吐尔逊江·艾力木别克2, 贺军2, 李建伟2, 文俊3, 张琳2, 靳瑰丽1(
), 李莹1, 刘文昊1, 王生菊1
通讯作者:
靳瑰丽
作者简介:
李超(1999-),男,江西吉水人,硕士研究生,研究方向为草原学,(E-mail)206288339@qq.com
基金资助:
CLC Number:
LI Chao, FAN Tianwen, Tuerxunjiang Ailimubieke, HE Jun, LI Jianwei, WEN Jun, ZHANG Lin, JIN Guili, LI Ying, LIU Wenhao, WANG Shengju. Above ground biomass evolution analysis of grassland in Ili River Basin based on landsat imagery[J]. Xinjiang Agricultural Sciences, 2025, 62(2): 463-473.
李超, 范天文, 吐尔逊江·艾力木别克, 贺军, 李建伟, 文俊, 张琳, 靳瑰丽, 李莹, 刘文昊, 王生菊. 基于Landsat影像的伊犁河流域草地地上生物量演变分析[J]. 新疆农业科学, 2025, 62(2): 463-473.
变异系数取值范围 The value range of the coefficient of variation | 等级 Grade |
---|---|
<0.37 | 小 |
0.37-0.50 | 较小 |
0.50-0.68 | 中 |
0.68-0.95 | 较大 |
>0.95 | 大 |
Tab.1 AGB coefficient of variation classification
变异系数取值范围 The value range of the coefficient of variation | 等级 Grade |
---|---|
<0.37 | 小 |
0.37-0.50 | 较小 |
0.50-0.68 | 中 |
0.68-0.95 | 较大 |
>0.95 | 大 |
slope与P取值范围 slope and P value range | 变化趋势 Changing trends |
---|---|
slope>0,P<0.05 | 改善 |
P≥0.05 | 稳定 |
slope<0,P<0.05 | 退化 |
Tab.2 Grading of AGB change trends
slope与P取值范围 slope and P value range | 变化趋势 Changing trends |
---|---|
slope>0,P<0.05 | 改善 |
P≥0.05 | 稳定 |
slope<0,P<0.05 | 退化 |
模型 Model | 模型公式 Model formulas | R2 | RE (%) | RMSE (g/m2) | Accuracy (%) |
---|---|---|---|---|---|
线性函数Univariate linear | y=920.91x-143.92 | 0.69 | 69.84 | 124.16 | 43.37 |
二次函数Quadratic function | y=3 065x2-1 673.5x+290.46 | 0.90 | 7.59 | 67.74 | 69.11 |
指数函数Exponential function | y=32.9e3.835 2x | 0.70 | 11.32 | 90.89 | 58.54 |
幂函数Power function | y=521.26x1.171 5 | 0.55 | 19.96 | 148.38 | 32.33 |
对数函数Logarithmic function | 267.48 ln(x)+492.67 | 0.57 | 0.22 | 103.88 | 28.11 |
Tab.3 AGB inversion model of grassland in Ili River basin with different vegetation indexes
模型 Model | 模型公式 Model formulas | R2 | RE (%) | RMSE (g/m2) | Accuracy (%) |
---|---|---|---|---|---|
线性函数Univariate linear | y=920.91x-143.92 | 0.69 | 69.84 | 124.16 | 43.37 |
二次函数Quadratic function | y=3 065x2-1 673.5x+290.46 | 0.90 | 7.59 | 67.74 | 69.11 |
指数函数Exponential function | y=32.9e3.835 2x | 0.70 | 11.32 | 90.89 | 58.54 |
幂函数Power function | y=521.26x1.171 5 | 0.55 | 19.96 | 148.38 | 32.33 |
对数函数Logarithmic function | 267.48 ln(x)+492.67 | 0.57 | 0.22 | 103.88 | 28.11 |
Fig.4 Spatial distribution of grassland AGB in Ili River basin from 1990 to 2022 Notes:Review Drawing Number:GS(2009)1822 Number,No modification to map boun daries,the same as below
县(市)名称 County and city name | 0~300 (g/m2) | 300~600 (g/m2) | 600~900 (g/m2) | 900~1200 (g/m2) | 合计 Total |
---|---|---|---|---|---|
昭苏县Zhaosu County | 7.75 | 6.25 | 5.17 | 0.05 | 19.22 |
伊宁县Yining County | 3.66 | 2.59 | 1.99 | 0.00 | 8.24 |
霍尔果斯市Horgos City | 2.21 | 0.95 | 0.34 | 0.00 | 3.50 |
察布查尔锡伯自治县 Chabuchaer Xibe Autonomous County | 4.79 | 2.40 | 0.40 | 0.00 | 7.59 |
巩留县Gongliu County | 2.93 | 3.00 | 1.62 | 0.03 | 7.58 |
霍城县Huocheng County | 2.37 | 2.19 | 0.72 | 0.00 | 5.29 |
尼勒克县Nilke County | 8.75 | 5.18 | 4.65 | 0.06 | 18.64 |
特克斯县Tekes County | 6.87 | 5.34 | 2.61 | 0.03 | 14.86 |
新源县Xinyuan County | 2.72 | 4.93 | 6.23 | 0.03 | 13.92 |
伊宁市Yining City | 0.66 | 0.41 | 0.10 | 0.00 | 1.17 |
合计Total | 42.71 | 33.25 | 23.84 | 0.21 | 100 |
Tab.4 Proportion of grassland AGB area in counties and cities of Ili River basin from 1990 to 2022
县(市)名称 County and city name | 0~300 (g/m2) | 300~600 (g/m2) | 600~900 (g/m2) | 900~1200 (g/m2) | 合计 Total |
---|---|---|---|---|---|
昭苏县Zhaosu County | 7.75 | 6.25 | 5.17 | 0.05 | 19.22 |
伊宁县Yining County | 3.66 | 2.59 | 1.99 | 0.00 | 8.24 |
霍尔果斯市Horgos City | 2.21 | 0.95 | 0.34 | 0.00 | 3.50 |
察布查尔锡伯自治县 Chabuchaer Xibe Autonomous County | 4.79 | 2.40 | 0.40 | 0.00 | 7.59 |
巩留县Gongliu County | 2.93 | 3.00 | 1.62 | 0.03 | 7.58 |
霍城县Huocheng County | 2.37 | 2.19 | 0.72 | 0.00 | 5.29 |
尼勒克县Nilke County | 8.75 | 5.18 | 4.65 | 0.06 | 18.64 |
特克斯县Tekes County | 6.87 | 5.34 | 2.61 | 0.03 | 14.86 |
新源县Xinyuan County | 2.72 | 4.93 | 6.23 | 0.03 | 13.92 |
伊宁市Yining City | 0.66 | 0.41 | 0.10 | 0.00 | 1.17 |
合计Total | 42.71 | 33.25 | 23.84 | 0.21 | 100 |
变异系数等级 Coefficient of variation level | 低 Low | 较低 Lower | 中 Medium | 较高 Higher | 高 High | 合计 Total |
---|---|---|---|---|---|---|
昭苏县Zhaosu County | 6.70 | 8.63 | 3.49 | 0.36 | 0.03 | 19.21 |
伊宁县Yining County | 2.61 | 3.74 | 1.30 | 0.44 | 0.15 | 8.24 |
霍尔果斯市Horgos City | 1.57 | 1.20 | 0.51 | 0.18 | 0.04 | 3.50 |
察布查尔锡伯自治县 Chabuchaer Xibe Autonomous County | 2.38 | 2.07 | 1.15 | 1.17 | 0.82 | 7.59 |
巩留县Gongliu County | 1.72 | 3.40 | 1.71 | 0.55 | 0.20 | 7.58 |
霍城县Huocheng County | 1.30 | 2.35 | 1.27 | 0.33 | 0.04 | 5.29 |
尼勒克县Nilke County | 4.20 | 8.75 | 4.47 | 1.05 | 0.16 | 18.64 |
特克斯县Tekes County | 3.86 | 6.99 | 3.10 | 0.84 | 0.06 | 14.86 |
新源县Xinyuan County | 2.02 | 7.81 | 3.41 | 0.64 | 0.05 | 13.92 |
伊宁市Yining City | 0.32 | 0.40 | 0.29 | 0.15 | 0.02 | 1.17 |
合计Total | 26.68 | 45.34 | 20.70 | 5.71 | 1.57 | 100.00 |
Tab.5 Proportion of grassland AGB coefficient of variation area in counties or cities in Ili River basin from 1990 to 2022
变异系数等级 Coefficient of variation level | 低 Low | 较低 Lower | 中 Medium | 较高 Higher | 高 High | 合计 Total |
---|---|---|---|---|---|---|
昭苏县Zhaosu County | 6.70 | 8.63 | 3.49 | 0.36 | 0.03 | 19.21 |
伊宁县Yining County | 2.61 | 3.74 | 1.30 | 0.44 | 0.15 | 8.24 |
霍尔果斯市Horgos City | 1.57 | 1.20 | 0.51 | 0.18 | 0.04 | 3.50 |
察布查尔锡伯自治县 Chabuchaer Xibe Autonomous County | 2.38 | 2.07 | 1.15 | 1.17 | 0.82 | 7.59 |
巩留县Gongliu County | 1.72 | 3.40 | 1.71 | 0.55 | 0.20 | 7.58 |
霍城县Huocheng County | 1.30 | 2.35 | 1.27 | 0.33 | 0.04 | 5.29 |
尼勒克县Nilke County | 4.20 | 8.75 | 4.47 | 1.05 | 0.16 | 18.64 |
特克斯县Tekes County | 3.86 | 6.99 | 3.10 | 0.84 | 0.06 | 14.86 |
新源县Xinyuan County | 2.02 | 7.81 | 3.41 | 0.64 | 0.05 | 13.92 |
伊宁市Yining City | 0.32 | 0.40 | 0.29 | 0.15 | 0.02 | 1.17 |
合计Total | 26.68 | 45.34 | 20.70 | 5.71 | 1.57 | 100.00 |
变化趋势 Changing trends | 退化 Degenerate | 稳定 Stable | 改善 Improve | 合计 Total |
---|---|---|---|---|
昭苏县Zhaosu County | 2.23 | 6.56 | 10.45 | 19.24 |
伊宁县Yining County | 0.72 | 2.81 | 4.71 | 8.23 |
霍尔果斯市Horgos City | 0.67 | 1.45 | 1.38 | 3.50 |
察布查尔锡伯自治县Chabuchaer Xibe Autonomous County | 0.81 | 2.66 | 4.13 | 7.60 |
巩留县Gongliu County | 1.95 | 0.64 | 4.98 | 7.57 |
霍城县Huocheng County | 0.74 | 1.90 | 2.65 | 5.29 |
尼勒克县Nilke County | 2.45 | 5.47 | 10.71 | 18.63 |
特克斯县Tekes County | 2.04 | 3.89 | 8.91 | 14.85 |
新源县Xinyuan County | 0.84 | 1.81 | 11.27 | 13.92 |
伊宁市Yining City | 0.21 | 0.47 | 0.49 | 1.17 |
合计Total | 12.66 | 27.66 | 59.68 | 100.00 |
Tab.6 Proportion of grassland AGB change trend area in counties and cities of Ili River basin from 1990 to 2022(%)
变化趋势 Changing trends | 退化 Degenerate | 稳定 Stable | 改善 Improve | 合计 Total |
---|---|---|---|---|
昭苏县Zhaosu County | 2.23 | 6.56 | 10.45 | 19.24 |
伊宁县Yining County | 0.72 | 2.81 | 4.71 | 8.23 |
霍尔果斯市Horgos City | 0.67 | 1.45 | 1.38 | 3.50 |
察布查尔锡伯自治县Chabuchaer Xibe Autonomous County | 0.81 | 2.66 | 4.13 | 7.60 |
巩留县Gongliu County | 1.95 | 0.64 | 4.98 | 7.57 |
霍城县Huocheng County | 0.74 | 1.90 | 2.65 | 5.29 |
尼勒克县Nilke County | 2.45 | 5.47 | 10.71 | 18.63 |
特克斯县Tekes County | 2.04 | 3.89 | 8.91 | 14.85 |
新源县Xinyuan County | 0.84 | 1.81 | 11.27 | 13.92 |
伊宁市Yining City | 0.21 | 0.47 | 0.49 | 1.17 |
合计Total | 12.66 | 27.66 | 59.68 | 100.00 |
[1] | White R P, Murray S, Rohweder M, et al. Pilot analysis of global ecosystems: grassland ecosystems[M]. Washington, D.C.: World Resources Institute, 2000. |
[2] | Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomass in Tibetan grasslands[J]. Journal of Arid Environments, 2009, 73(1): 91-95. |
[3] | 杨荣荣, 兰垚, 张卓. 中国近30年草地地上生物量的研究进展[J]. 亚热带水土保持, 2019, 31(2): 38-41, 48. |
YANG Rongrong, LAN Yao, ZHANG Zhuo. Study progress on the ground biomass of grassland with 30 years in China[J]. Subtropical Soil and Water Conservation, 2019, 31(2): 38-41, 48. | |
[4] |
于惠, 吴玉锋, 金毅, 等. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017, 32(3): 524-530.
DOI |
YU Hui, WU Yufeng, JIN Yi, et al. An approach for monitoring the aboveground biomass of grassland in arid areas based on MODIS SWIR bands[J]. Remote Sensing Technology and Application, 2017, 32(3): 524-530. | |
[5] | 张静宇, 史击天, 张群. 遥感技术在北京市农业统计中的应用现状[J]. 宁夏农林科技, 2012, 53(4): 110-112. |
ZHANG Jingyu, SHI Jitian, ZHANG Qun. Application of remote sensing technology in agriculture-statistics in Beijing[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2012, 53(4): 110-112. | |
[6] | Meng B P, Ge J, Liang T G, et al. Evaluation of remote sensing inversion error for the above-ground biomass of alpine meadow grassland based on multi-source satellite data[J]. Remote Sensing, 2017, 9(4): 372. |
[7] | 赵越, 徐大伟, 范凯凯, 等. Landsat8和机器学习估算蒙古高原草地地上生物量[J]. 农业工程学报, 2022, 38(24): 138-144. |
ZHAO Yue, XU Dawei, FAN Kaikai, et al. Estimating above-ground biomass in grassland using Landsat 8 and machine learning in Mongolian plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 138-144. | |
[8] |
李莹, 张勇娟, 靳瑰丽, 等. 基于Landsat数据的乌鲁木齐市草地地上生物量时空演变及趋势分析[J]. 草地学报, 2023, 31(7): 1950-1963.
DOI |
LI Ying, ZHANG Yongjuan, JIN Guili, et al. Temporal and spatial evolution and trend analysis on the grassland above ground biomass in Urumqi based on landsat data[J]. Acta Agrestia Sinica, 2023, 31(7): 1950-1963.
DOI |
|
[9] |
张雅, 尹小君, 王伟强, 等. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
DOI |
ZHANG Ya, YIN Xiaojun, WANG Weiqiang, et al. Estimation of grassland aboveground biomass using landsat 8 OLI satellite image in the northern hillside of Tianshan Mountain[J]. Remote Sensing Technology and Application, 2017, 32(6): 1012-1021. | |
[10] |
赖炽敏, 赖日文, 薛娴, 等. 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算[J]. 中国沙漠, 2019, 39(5): 127-134.
DOI |
LAI Chimin, LAI Riwen, XUE Xian, et al. Estimation of aboveground biomass of different degraded alpine grassland based on vegetation coverage and height[J]. Journal of Desert Research, 2019, 39(5): 127-134.
DOI |
|
[11] | 杨淑霞, 冯琦胜, 孟宝平, 等. 三江源地区高寒草地地上生物量时空动态变化[J]. 草业科学, 2018, 35(5): 956-968. |
YANG Shuxia, FENG Qisheng, MENG Baoping, et al. Temporal and spatial dynamics of alpine grassland biomass in the Three-River Headwater Region[J]. Pratacultural Science, 2018, 35(5): 956-968. | |
[12] | 陆荫, 杨淑霞, 李晓红. 甘南州高寒天然草地生长状况遥感监测[J]. 草业科学, 2021, 38(1): 32-43. |
LU Yin, YANG Shuxia, LI Xiaohong. Monitoring of grassland herbage accumulation by using remote sensing in Gannan Prefecture[J]. Pratacultural Science, 2021, 38(1): 32-43. | |
[13] |
王秀梅, 董建军. 基于广义线性模型估算内蒙古荒漠草原及典型草原地上生物量变化[J]. 草地学报, 2020, 28(6): 1711-1718.
DOI |
WANG Xiumei, DONG Jianjun. Estimation of the aboveground biomass of desert steppe and typical steppe in Inner Mongolia using generalized linear model[J]. Acta Agrestia Sinica, 2020, 28(6): 1711-1718.
DOI |
|
[14] | Ge J, Hou M J, Liang T G, et al. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years[J]. Science of the Total Environment, 2022, 826: 154226. |
[15] | Yu H, Wu Y F, Niu L T, et al. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau[J]. Ecological Indicators, 2021, 125: 107450. |
[16] | 张建云, 张成凤, 鲍振鑫, 等. 黄淮海流域植被覆盖变化对径流的影响[J]. 水科学进展, 2021, 32(6): 813-823. |
ZHANG Jianyun, ZHANG Chengfeng, BAO Zhenxin, et al. Analysis of the effects of vegetation changes on runoff in the Huang-Huai-Hai River basin under global change[J]. Advances in Water Science, 2021, 32(6): 813-823. | |
[17] |
宋瑞玲, 王昊, 张迪, 等. 基于MODIS-EVI评估三江源高寒草地的保护成效[J]. 生物多样性, 2018, 26(2): 149-157.
DOI |
SONG Ruiling, WANG Hao, ZHANG Di, et al. Conservation outcomes assessment of Sanjiangyuan alpine grassland with MODIS-EVI approach[J]. Biodiversity Science, 2018, 26(2): 149-157.
DOI |
|
[18] | 陈琪, 赵健, 杨九艳, 等. 荒漠草场地上生物量的遥感监测——以内蒙古阿拉善盟为例[J]. 中国草地学报, 2020, 42(2): 105-116. |
CHEN Qi, ZHAO Jian, YANG Jiuyan, et al. Remote sensing monitoring of biomass on desert grassland: a case study of Alxa league in Inner Mongolia[J]. Chinese Journal of Grassland, 2020, 42(2): 105-116. | |
[19] |
张玉琢, 杨志贵, 于红妍, 等. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34.
DOI |
ZHANG Yuzhuo, YANG Zhigui, YU Hongyan, et al. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data—a case study in the sangke grassland in Xiahe County, Gansu Province[J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34.
DOI |
|
[20] | 王宏伟, 张小雷, 乔木, 等. 基于GIS的伊犁河流域生态环境质量评价与动态分析[J]. 干旱区地理, 2008, 31(2): 215-221. |
WANG Hongwei, ZHANG Xiaolei, QIAO Mu, et al. Assessment and dynamic analysis of the eco-environmental quality in the Ili River Basin based on GIS[J]. Arid Land Geography, 2008, 31(2): 215-221. | |
[21] | 赵丽, 杨青, 韩雪云. 1961-2009年伊犁地区降水指数的时空分布及变化特征分析[J]. 干旱区资源与环境, 2014, 28(10): 82-89. |
ZHAO Li, YANG Qing, HAN Xueyun. Analysis of temporal and spatial distribution and variation characteristics of precipitation index in Ili during 1961-2009[J]. Journal of Arid Land Resources and Environment, 2014, 28(10): 82-89. | |
[22] | 杨阳, 张红旗. 近20年来伊犁新垦区土地利用/覆被变化分析[J]. 资源科学, 2009, 31(12): 2029-2034. |
YANG Yang, ZHANG Hongqi. Analysis of land use and land cover change in the Yili newly reclaimed area in recent 20 years[J]. Resources Science, 2009, 31(12): 2029-2034. | |
[23] | 王颖慧, 丁建丽, 李晓航, 等. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报, 2022, 42(8): 3106-3118. |
WANG Yinghui, DING Jianli, LI Xiaohang, et al. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model[J]. Acta Ecologica Sinica, 2022, 42(8): 3106-3118. | |
[24] | 李传华, 赵军, 师银芳, 等. 基于变异系数的植被NPP人为影响定量研究——以石羊河流域为例[J]. 生态学报, 2016, 36(13): 4034-4044. |
LI Chuanhua, ZHAO Jun, SHI Yinfang, et al. The impact of human activities on net primary productivity based on the coefficient of variation: a case study of the Shiyang River Basin[J]. Acta Ecologica Sinica, 2016, 36(13): 4034-4044. | |
[25] | 李卓, 孙然好, 张继超, 等. 京津冀城市群地区植被覆盖动态变化时空分析[J]. 生态学报, 2017, 37(22): 7418-7426. |
LI Zhuo, SUN Ranhao, ZHANG Jichao, et al. Temporal-spatial analysis of vegetation coverage dynamics in Beijing-Tianjin-Hebei metropolitan regions[J]. Acta Ecologica Sinica, 2017, 37(22): 7418-7426. | |
[26] |
崔博超, 郑江华, 吐尔逊·哈斯木, 等. 塔里木河流域草地净初级生产力时空分异特征研究[J]. 草业学报, 2020, 29(6): 1-13.
DOI |
CUI Bochao, ZHENG Jianghua, Tuerxun Hasimu, et al. Spatio-temporal characteristics of grassland net primary productivity (NPP) in the Tarim River basin[J]. Acta Prataculturae Sinica, 2020, 29(6): 1-13.
DOI |
|
[27] |
Zeng N, Ren X L, He H L, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102: 479-487.
DOI |
[28] |
乐荣武, 张娜, 王晶杰, 等. 2000-2019年内蒙古草地地上生物量的时空变化特征[J]. 中国科学院大学学报, 2022, 39(1): 21-33.
DOI |
Le Rongwu, ZHANG Na, WANG Jingjie, et al. Spatiotemporal variation of grassland aboveground biomass in Inner Mongolia from 2000 to 2019[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(1): 21-33.
DOI |
|
[29] | 刘亮, 关靖云, 穆晨, 等. 2008-2018年伊犁河流域植被净初级生产力时空分异特征[J]. 生态学报, 2022, 42(12): 4861-4871. |
LIU Liang, GUAN Jingyun, MU Chen, et al. Spatio-temporal characteristics of vegetation net primary productivity in the Ili River Basin from 2008 to 2018[J]. Acta Ecologica Sinica, 2022, 42(12): 4861-4871. | |
[30] | Jobbagy E G, Sala O E. Controls of grass and shrub aboveground production in the Patagonian steppe[J]. Ecological Applications, 2000, 10(2): 541. |
[31] | Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431(7005): 181-184. |
[32] | 孙国军, 李卫红, 朱成刚, 等. 2000-2015年伊犁河谷植被覆盖时空变化特征[J]. 干旱区地理, 2020, 43(6): 1551-1558. |
SUN Guojun, LI Weihong, ZHU Chenggang, et al. Spatial-temporal characteristics of vegetation cover in Ili River Valley from 2000 to 2015[J]. Arid Land Geography, 2020, 43(6): 1551-1558.
DOI |
|
[33] | 闫俊杰, 陈晨, 赵阳, 等. 基于TINDVI的伊犁河谷草地覆盖变化[J]. 水土保持研究, 2021, 28(3): 331-339. |
Yan Junjie, Chen Chen, Zhao Yang, et al. Dynamics of grassland coverage in Ili River valley based on TINDVI[J]. Research of Soil and Water Conservation, 2021, 28(3): 331-339. | |
[34] |
White M A, Running S W, Thornton P E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest[J]. International Journal of Biometeorology, 1999, 42(3): 139-145.
PMID |
[35] | Piao S L, Fang J Y, Zhou L M, et al. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): e2002jd002848. |
[36] | 王明明, 刘新平, 何玉惠, 等. 科尔沁沙质草地生物量积累过程对降水变化的响应模拟[J]. 生态学报, 2020, 40(11): 3656-3665. |
WANG Mingming, LIU Xinping, HE Yuhui, et al. Simulating the response of biomass accumulation process in semi-arid grassland to changes in precipitation[J]. Acta Ecologica Sinica, 2020, 40(11): 3656-3665. | |
[37] | 仲涛, 李漠岩, 李建豪, 等. 伊犁河流域陆表水域面积时空变化及驱动力分析[J]. 人民长江, 2023, 54(4): 101-107. |
ZHONG Tao, LI Moyan, LI Jianhao, et al. Spatio-temporal variation and driving force analysis of water area on land surface in Ili River Basin[J]. Yangtze River, 2023, 54(4): 101-107. | |
[38] | 刘芳, 张红旗, 董光龙. 伊犁河谷草地植被NDVI变化及其降水敏感性特征[J]. 资源科学, 2014, 36(8): 1724-1731. |
LIU Fang, ZHANG Hongqi, DONG Guanglong. Vegetation dynamics and precipitation sensitivity in Yili valley grassland[J]. Resources Science, 2014, 36(8): 1724-1731. | |
[39] |
孙国军, 李卫红, 朱成刚, 等. 新疆伊犁河谷表层土壤容重的空间变异性分析[J]. 资源科学, 2016, 38(7): 1222-1228.
DOI |
SUN Guojun, LI Weihong, ZHU Chenggang, et al. Spatial variation analysis of topsoil bulk density in the Yili Valley, Xinjiang[J]. Resources Science, 2016, 38(7): 1222-1228.
DOI |
|
[40] |
王公鑫, 井长青, 董萍, 等. 新疆荒漠草地生物量估算及影响因素研究[J]. 草地学报, 2022, 30(7): 1862-1872.
DOI |
WANG Gongxin, JING Changqing, DONG Ping, et al. Study on biomass estimation and influencing factors of desert grassland in Xinjiang[J]. Acta Agrestia Sinica, 2022, 30(7): 1862-1872.
DOI |
|
[41] | Liu N, Ding Y X, Peng S Z. Temporal effects of climate on vegetation trigger the response biases of vegetation to human activities[J]. Global Ecology and Conservation, 2021, 31: e01822. |
[42] | Chen J H, Wang Y F, Sun J, et al. Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau[J]. Global Ecology and Conservation, 2021, 32: e01886. |
[43] | Zhang J, Fang S B, Liu H H. Estimation of alpine grassland above-ground biomass and its response to climate on the Qinghai-Tibet Plateau during 2001 to 2019[J]. Global Ecology and Conservation, 2022, 35: e02065. |
[44] |
姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化” 特征[J]. 干旱区研究, 2022, 39(2): 333-346.
DOI |
YAO Junqiang, LI Moyan, Dilinuer Tuoliewubieke, et al. The assessment on “warming-wetting” trend in Xinjiang at multi-scale during 1961-2019[J]. Arid Zone Research, 2022, 39(2): 333-346.
DOI |
|
[45] | 恒巴特·阿赛那力, 海力且木·斯依提, 阿依吐尔逊·沙木西. 草原生态补偿政策实施效果评价——以伊犁河谷为例[J]. 湖北农业科学, 2021, 60(14): 144-147, 191. |
Hengbate Asainali, Hailiqiemu Siyiti, Ayituerxun Shamuxi. Implementation effect evaluation and improvement suggestions of grassland eco-compensation policies: based on Yili River valley[J]. Hubei Agricultural Sciences, 2021, 60(14): 144-147, 191. | |
[46] |
赵哲, 陈建成, 王梦, 等. 中国生态草牧业政策梳理及评价[J]. 中国农学通报, 2019, 35(9): 132-137.
DOI |
ZHAO Zhe, CHEN Jiancheng, WANG Meng, et al. Ecological grass husbandry in China: analysis and evaluation of the policies[J]. Chinese Agricultural Science Bulletin, 2019, 35(9): 132-137.
DOI |
[1] | XU Jiao-mei;XU Wen-xiu;ZHANG Fu-wei;Ayizuohere. The Analysis Temporal and Spatial Variation Characteristics about the Period Precipitation of ≥ 0 ℃ and ≥ 10 ℃ in Ili River Basin in Recent 50 Years [J]. , 2013, 50(10): 1806-1813. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||