Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (12): 3032-3041.DOI: 10.6048/j.issn.1001-4330.2024.12.018

• Soil Fertilizer · Storage and Preservation Processing · Horticultural Special Local Products • Previous Articles     Next Articles

Green chili pepper target detection method based on improved YOLOv5

WANG Zhenlu1(), BAI Tao1,2(), LI Dongya1, DAI Shuo1, CHEN Zhen1   

  1. 1. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    2. Engineering Research Center for Intelligent Agriculture of Ministry of Education/Xinjiang Research Center for Agricultural Information Technology, Urumqi 830052, China
  • Received:2024-05-11 Online:2024-12-20 Published:2025-01-16
  • Correspondence author: BAI Tao
  • Supported by:
    S &T Innovation 2030 Major Project of Ministry of Science and Technology "Group Intelligent Independent Operation of Intelligent Farm"(2022ZD0115800);Major Scientific R & D Program Project of Xinjiang Uygur Autonomous Region "Research on Key Technologies of Farm Intelligent Platform"(2022A02011-4);Central Government Guiding the Local Science and Technology Development Special Fund Project(ZYYD2022B12);Basic Scientific Research Project for Universities in Xinjiang Uygur Autonomous Region "Agricultural Big Data Exchange, Sharing and Visualization Platform"(XJEDU2022J009)

基于改进YOLOv5的绿辣椒目标检测方法

王震鲁1(), 白涛1,2(), 李东亚1, 戴硕1, 陈珍1   

  1. 1.新疆农业大学计算机与信息工程学院,乌鲁木齐 830052
    2.智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052
  • 通讯作者: 白涛
  • 作者简介:王震鲁(2000-),男,山东济宁人,硕士研究生,研究方向为计算机视觉、物联网,(E-mail)2425387367@qq.com
  • 基金资助:
    科技部科技创新2030重大项目“群体智能自主作业智慧农场”(2022ZD0115800);新疆维吾尔自治区重大科技专项“农场智能平台关键技术研究”(2022A02011-4);中央引导地方科技发展专项“智慧农业创新平台建设”(ZYYD2022B12);新疆维吾尔自治区高校基本科研业务费科研项目“农业大数据交换共享与可视化平台”(XJEDU2022J009)

Abstract:

【Objective】 Accurate recognition of green chili peppers using machine vision is an important prerequisite for realizing intelligent picking of chili peppers, so in view of the natural conditions of pepper occlusion, this study aims to accurately identify the problem.【Methods】 A chili pepper target detection model based on improved YOLOv5 was proposed, CA (Coordinate Attention) was added in YOLOv5 backbone network Attention mechanism in the YOLOv5 backbone network to enhance the extraction of chili pepper feature information and further enhance the extraction of target location information; meanwhile, a Bi-FPN structure was used in the feature fusion network to improve the model's ability to recognize occluded chili peppers.【Results】 By training on the self-constructed chili pepper dataset, the results showed that the improved model achieved an average accuracy of 91%, which was higher compared to the other models.【Conclusion】 The method proposed in this paper has high accuracy in recognizing occluded green chili peppers in natural environments, which can provide technical support for the accurate recognition of chili pepper intelligent picking robots.

Key words: YOLOv5; CA attention mechanism; Bi-FPN; green chili pepper detection; shading

摘要:

【目的】 使用机器视觉对绿辣椒的精准识别是实现辣椒智能化采摘的重要前提,研究自然条件下辣椒遮挡情况、绿色辣椒及准确识别的方法,为辣椒智能化采摘机器人的精准识别提供技术支持。【方法】 提出一种基于改进YOLOv5辣椒目标检测模型,在YOLOv5主干网络加入CA(Coordinate Attention)注意力机制,以增强辣椒特征信息的提取,进一步增强对目标位置信息的提取;同时在特征融合网络中使用Bi-FPN结构,提高模型对遮挡辣椒的识别能力。【结果】 通过在自建辣椒数据集上进行训练,改进后的模型平均准确率达到91%,相比于研究其他所对比模型,改进模型的平均准确率更高。【结论】 基于改进YOLOv5的遮挡绿色辣椒的识别具有较高的准确性。

关键词: YOLOv5, CA注意力机制, Bi-FPN, 绿辣椒检测, 遮挡

CLC Number: