Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (12): 3032-3041.DOI: 10.6048/j.issn.1001-4330.2024.12.018
• Soil Fertilizer · Storage and Preservation Processing · Horticultural Special Local Products • Previous Articles Next Articles
WANG Zhenlu1(), BAI Tao1,2(
), LI Dongya1, DAI Shuo1, CHEN Zhen1
Received:
2024-05-11
Online:
2024-12-20
Published:
2025-01-16
Correspondence author:
BAI Tao
Supported by:
王震鲁1(), 白涛1,2(
), 李东亚1, 戴硕1, 陈珍1
通讯作者:
白涛
作者简介:
王震鲁(2000-),男,山东济宁人,硕士研究生,研究方向为计算机视觉、物联网,(E-mail)2425387367@qq.com
基金资助:
CLC Number:
WANG Zhenlu, BAI Tao, LI Dongya, DAI Shuo, CHEN Zhen. Green chili pepper target detection method based on improved YOLOv5[J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3032-3041.
王震鲁, 白涛, 李东亚, 戴硕, 陈珍. 基于改进YOLOv5的绿辣椒目标检测方法[J]. 新疆农业科学, 2024, 61(12): 3032-3041.
参数项 Parameter items | 数值 Numerical value |
---|---|
Epochs | 150 |
Batch-size | 64 |
Img-size | 640 |
Learn_rate | 0.01 |
优化器Optimizer | SGD |
Tab.1 Training parameters
参数项 Parameter items | 数值 Numerical value |
---|---|
Epochs | 150 |
Batch-size | 64 |
Img-size | 640 |
Learn_rate | 0.01 |
优化器Optimizer | SGD |
模型 Model | 平均精确率 Average accuracy (%) | 参数量 Parameter quantity (M) | 权重大小 Weight size (M) |
---|---|---|---|
Faster-RCNN | 89.6 | 137.1 | 108.2 |
YOLOv5s | 89.5 | 7.01 | 13.7 |
YOLOv7 | 90.4 | 37.1 | 71.3 |
YOLOv8s | 90.3 | 11.1 | 21.5 |
Ours | 91.0 | 7.1 | 14.0 |
Tab.2 Comparison results of different models
模型 Model | 平均精确率 Average accuracy (%) | 参数量 Parameter quantity (M) | 权重大小 Weight size (M) |
---|---|---|---|
Faster-RCNN | 89.6 | 137.1 | 108.2 |
YOLOv5s | 89.5 | 7.01 | 13.7 |
YOLOv7 | 90.4 | 37.1 | 71.3 |
YOLOv8s | 90.3 | 11.1 | 21.5 |
Ours | 91.0 | 7.1 | 14.0 |
模型 Model | 平均精确率 Average accuracy (%) | 精确率 Accuracy (%) | 召回率 Recall (%) |
---|---|---|---|
YOLOv5s+GAM | 89.2 | 87.3 | 87.7 |
YOLOv5s+EMA | 89.6 | 87.8 | 87.7 |
YOLOv5s+CA | 89.9 | 86.9 | 89.7 |
Tab.3 Comparison results of attention modules
模型 Model | 平均精确率 Average accuracy (%) | 精确率 Accuracy (%) | 召回率 Recall (%) |
---|---|---|---|
YOLOv5s+GAM | 89.2 | 87.3 | 87.7 |
YOLOv5s+EMA | 89.6 | 87.8 | 87.7 |
YOLOv5s+CA | 89.9 | 86.9 | 89.7 |
模型 Model | 平均精确率 Average accuracy (%) | 召回率 Recall (%) | 平均精确率 Average accuracy (%) |
---|---|---|---|
YOLOv5s | 88.5 | 88.2 | 89.5 |
YOLOv5s+CA | 86.9 | 89.7 | 89.9 |
YOLOv5s+BiFPN | 87.2 | 88.8 | 90.7 |
Ours | 89.4 | 87.5 | 91.0 |
Tab.4 Comparative results of ablation experiments
模型 Model | 平均精确率 Average accuracy (%) | 召回率 Recall (%) | 平均精确率 Average accuracy (%) |
---|---|---|---|
YOLOv5s | 88.5 | 88.2 | 89.5 |
YOLOv5s+CA | 86.9 | 89.7 | 89.9 |
YOLOv5s+BiFPN | 87.2 | 88.8 | 90.7 |
Ours | 89.4 | 87.5 | 91.0 |
[1] | 张子峰. 我国辣椒产业发展现状、主要挑战与应对之策[J]. 北方园艺, 2023,(14): 153-158. |
ZHANG Zifeng. Current development situation, main challenges and its countermeasures of the pepper industry in China[J]. Northern Horticulture, 2023,(14): 153-158. | |
[2] | 段洁利, 王昭锐, 叶磊, 等. 水果采摘机械臂运动规划研究进展与发展趋势[J]. Journal of Intelligent Agricultural Mechanization(in Chinese and English), 2021, (2): 7-17. |
DUAN Jieli, WANG Zhaorui, YE Lei, et al. Research progress and development trend of motion planning of fruit picking robot arm[J]. Journal of Intelligent Agricultural Mechanization, 2021, (2): 7-17. | |
[3] | 金晶, 张小明, 付浩. 贵州省辣椒产业发展现状及建议[J]. 北方园艺, 2021,(21): 152-156. |
JIN Jing, ZHANG Xiaoming, FU Hao. Status and suggestions of chili industry development in Guizhou Province[J]. Northern Horticulture, 2021,(21): 152-156. | |
[4] | Kang D, Benipal S S, Gopal D L, et al. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J]. Automation in Construction, 2020, 118: 103291. |
[5] | 韩文霆, 崔家伟, 崔欣, 等. 基于特征优选与机器学习的农田土壤含盐量估算研究[J]. 农业机械学报, 2023, 54(3): 328-337. |
HAN Wenting, CUI Jiawei, CUI Xin, et al. Estimation of farmland soil salinity content based on feature optimization and machine learning algorithms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 328-337. | |
[6] | 陈小毛, 王立成, 张健, 等. 融合YOLOv5与ASFF算法的海产品目标检测算法研究[J]. 无线电工程, 2023, 53(4): 824-830. |
CHEN Xiaomao, WANG Licheng, ZHANG Jian, et al. Research on seafood object detection algorithm integrating YOLOv5 and ASFF algorithm[J]. Radio Engineering, 2023, 53(4): 824-830. | |
[7] | 周岳淮, 李震, 左嘉明, 等. 基于改进YOLOv5s模型的山地果园单轨运输机搭载柑橘的检测[J]. 湖南农业大学学报(自然科学版), 2023, 49(4): 491-496. |
ZHOU Yuehuai, LI Zhen, ZUO Jiaming, et al. Detection of Citrus carried by mountainous orchard monorail transporter based on improved YOLOv5s[J]. Journal of Hunan Agricultural University (Natural Sciences), 2023, 49(4): 491-496. | |
[8] | Tian Y N, Yang G D, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426. |
[9] | 段洁利, 王昭锐, 邹湘军, 等. 采用改进YOLOv5的蕉穗识别及其底部果轴定位[J]. 农业工程学报, 2022, 38(19): 122-130. |
DUAN Jieli, WANG Zhaorui, ZOU Xiangjun, et al. Recognition of bananas to locate bottom fruit axis using improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 122-130. | |
[10] | Wang F H, Sun Z X, Chen Y, et al. Xiaomila green pepper target detection method under complex environment based on improved YOLOv5s[J]. Agronomy, 2022, 12(6): 1477. |
[11] | 王圆圆, 林建, 王姗. 基于YOLOv4-tiny模型的水稻早期病害识别方法[J]. 江苏农业科学, 2023, 51(16): 147-154. |
WANG Yuanyuan, LIN Jian, WANG Shan. An early rice disease recognition method based on YOLOv4-tiny model[J]. Jiangsu Agricultural Sciences, 2023, 51(16): 147-154. | |
[12] | Tang Z, Zhou L, Qi F, et al. An improved lightweight and real-time YOLOv5 network for detection of surface defects on Indocalamus leaves[J]. Journal of Real-Time Image Processing, 2023, 20(1): 14. |
[13] | 高芳征, 汤文俊, 陈光明, 等. 基于改进YOLOv3的复杂环境下西红柿成熟果实快速识别[J]. 中国农机化学报, 2023, 44(8): 174-183. |
GAO Fangzheng, TANG Wenjun, CHEN Guangming, et al. Fast recognition of ripe tomato fruits in complex environment based on improved YOLOv3[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 174-183.
DOI |
|
[14] | 朱立成, 韩振浩, 赵博, 等. 基于VINS-MONO和改进YOLO v4-Tiny的果园自主寻筐方法[J]. 农业机械学报, 2023, 54(8): 97-109. |
ZHU Licheng, HAN Zhenhao, ZHAO Bo, et al. Autonomous basket searching method for orchards transporter based on VINS-MONO and improved YOLO v4-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 97-109. | |
[15] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[16] | 汤文虎, 吴龙, 黎尧, 等. 基于改进Faster RCNN的钢线圈头部小目标检测算法[J]. 现代制造工程, 2023, (8): 127-133, 147. |
TANG Wenhu, WU Long, LI Yao, et al. Improved faster RCNN based steel coil head detection algorithm for small objects[J]. Modern Manufacturing Engineering, 2023, (8): 127-133, 147. | |
[17] | 吕宗旺, 邱帅欣, 孙福艳, 等. 基于改进YOLOv5s的轻量化储粮害虫检测方法[J]. 中国粮油学报, 2023, 38(8): 221-228. |
LYU Zongwang, QIU Shuaixin, SUN Fuyan, et al. Lightweight grain storage pest detection method based on improved YOLOv5s[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(8): 221-228. | |
[18] | 李淑菲, 李凯雨, 乔岩, 等. 基于可见光光谱和改进YOLOv5的自然场景下黄瓜病害检测方法[J]. 光谱学与光谱分析, 2023, 43(8): 2596-2600. |
LI Shufei, LI Kaiyu, QIAO Yan, et al. Cucumber disease detection method based on visible light spectrum and improved YOLOv5 in natural scenes[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2596-2600. | |
[19] | Hong W W, Ma Z H, Ye B L, et al. Detection of green Asparagus in complex environments based on the improved YOLOv5 algorithm[J]. Sensors, 2023, 23(3): 1562. |
[20] | 杨国亮, 王吉祥, 聂子玲. 基于改进型YOLOv5s的番茄实时识别方法[J]. 江苏农业科学, 2023, 51(15): 187-193. |
YANG Guoliang, WANG Jixiang, NIE Ziling. A real-time tomato recognition method based on improved YOLOv5s[J]. Jiangsu Agricultural Sciences, 2023, 51(15): 187-193. | |
[21] | 李尚平, 郑创锐, 文春明, 等. 基于改进YOLO v5s的甘蔗切种茎节特征识别定位技术[J]. 农业机械学报, 2023, 54(10): 234-245,293. |
LI Shangping, ZHENG Chuangrui, WEN Chunming, et al. Stem node feature recognition and positioning technology for transverse cutting of sugarcane based on improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(10): 234-245,293. | |
[22] | 姜国权, 杨正元, 霍占强, 等. 基于改进YOLOv5网络的疏果前苹果检测方法[J]. 江苏农业科学, 2023, 51(14): 205-215. |
JIANG Guoquan, YANG Zhengyuan, HUO Zhanqiang, et al. Apple detection method before thinning fruit based on improved YOLOv5 model[J]. Jiangsu Agricultural Sciences, 2023, 51(14): 205-215. | |
[23] | Zhe T, Lin Z, Fang Q, et al. An improved lightweight and real-time YOLOv5 network for detection of surface defects on indocalamus leaves[J]. Journal of Real-Time Image Processing, 2023, 20(1). |
[24] | 杨永闯, 王昊, 王新良. 基于改进SSD的食物浪费行为识别方法[J]. 计算机工程与设计, 2023, 44(8): 2523-2530. |
YANG Yongchuang, WANG Hao, WANG Xinliang. Food waste behavior recognition method based on improved SSD[J]. Computer Engineering and Design, 2023, 44(8): 2523-2530. | |
[25] | 郭殿鹏, 柯海森, 李孝禄, 等. 基于改进YOLOv7的织物疵点检测算法[J]. 棉纺织技术, 2023, 51(12): 5-11. |
GUO Dianpeng, KE Haisen, LI Xiaolu, et al. Fabric defect detection algorithm based on improved YOLOv7[J]. Cotton Textile Technology, 2023, 51(12): 5-11. | |
[26] | 崔海彬, 蒲东兵, 陆云凤, 等. 基于CA-YOLO的安全帽佩戴检测[J]. 东北师大学报(自然科学版), 2023, 55(3): 94-100. |
CUI Haibin, PU Dongbing, LU Yunfeng, et al. Helmet wearing detection based on CA-YOLO[J]. Journal of Northeast Normal University (Natural Science Edition), 2023, 55(3): 94-100. |
[1] | Abudoukeyoumu·Abudourezike, GAO Qiang, XU Lin, ZHANG Xuechao, WANG Li, YAN Qingqing, ZHANG Yan, Gulimila Aikebaier, NIE Qiuhai. Effects of Shading on the Physiological Characteristics of Taraxacum kok-saghyz Rodin [J]. Xinjiang Agricultural Sciences, 2020, 57(11): 2126-2134. |
[2] | Halidan Yikeremu, HUANG Tian-rong, ZHOU An-ding ,GAO Yong-hong, FANG Hui, FAN Gui-qiang, WU Xin-yuan. Molecular Identification of Genes Related to Growth and Development Characteristics of Winter Wheat under Shading Condition [J]. Xinjiang Agricultural Sciences, 2019, 56(4): 624-631. |
[3] | ZHANG Hong-zhi, Aizizi Julaiti, CUI Yue, ZHAO QI, KONG De-peng, HU Ai-zhi,WANG Li-hong, WANG Zhong, ZHANG Yue-qiang, FAN Zhe-ru, LI Jian-feng. Effect of Shading on the Photosynthetic Characteristics and Yield in Winter Wheat in Southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2019, 56(10): 1765-1771. |
[4] | FANG Hui, FAN Gui-qiang, GAO Yong-hong, ZHOU An-ding, WU Xin-yuan, ZHANG Yong-qiang, LU Jing, HUANG Tian-rong. Effects of Shading on Grain-Filling and Quality Characteristics of Different Winter Wheat Varieties [J]. Xinjiang Agricultural Sciences, 2018, 55(9): 1593-1600. |
[5] | Sajidan Abudukerimu, Batur Bake, Akrem Ahmet, Zulikeyan Manaf, WANG Meng-hui, LUO Na-na. Effects of Different Dust Stresses and Shading Treatment Gradients on Organic Osmotic Adjustment Substances of Four Kinds of Fruit Tree Leaves [J]. Xinjiang Agricultural Sciences, 2017, 54(8): 1460-1468. |
[6] | Aizizi Julaiti;CUI Yue;ZHAO Qi;ZHANG Hong-zhi;FAN Zhe-ru;LI Jian-feng;WANG Zhong. Effects of Shading and Nitrogen Fertilizer on the Population Growth Dynamics and Yield of Winter Wheat [J]. , 2017, 54(5): 785-794. |
[7] | ZHANG Yong-qiang, CHENG Xing-wu, Sailihan Sai, XUE Li-hua, LEI Jun-jie. Effects of Shading and Planting Density on Photosynthetic Characteristics of Flag Leaves during Filling Stage of Winter Wheat under Drip Irrigation [J]. Xinjiang Agricultural Sciences, 2017, 54(12): 2164-2173. |
[8] | . Effect of Nitrogen Levels on the Growth, Development and Yield of Cotton under Shading Conditions [J]. , 2013, 50(10): 1765-1772. |
Viewed | ||||||||||||||||||||||
Full text 21
|
|
|||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||