Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (10): 2408-2416.DOI: 10.6048/j.issn.1001-4330.2024.10.008
• Horticultural Special Local Products · Forestry • Previous Articles Next Articles
ZHUANG Hongmei1(), ZHAO Jiafen2, WANG Yan3, CHEN Xianzhi4, LIU Huifang1, HAN Hongwei1, Kelibinuer Kaisaier1, WANG Qiang1(
), WANG Hao1(
)
Received:
2024-02-18
Online:
2024-10-20
Published:
2024-11-07
Correspondence author:
WANG Qiang, WANG Hao
Supported by:
庄红梅1(), 赵家芬2, 王燕3, 陈先知4, 刘会芳1, 韩宏伟1, 克丽比努尔·开赛尔1, 王强1(
), 王浩1(
)
通讯作者:
王强,王浩
作者简介:
庄红梅(1987-),女,副研究员,研究方向为新疆特色蔬菜栽培与生理,(E-mail)zhuanghongmei86@163.com
基金资助:
CLC Number:
ZHUANG Hongmei, ZHAO Jiafen, WANG Yan, CHEN Xianzhi, LIU Huifang, HAN Hongwei, Kelibinuer Kaisaier, WANG Qiang, WANG Hao. Metabolomics study of two different varieties of Asparagus based on LC-MS technique[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2408-2416.
庄红梅, 赵家芬, 王燕, 陈先知, 刘会芳, 韩宏伟, 克丽比努尔·开赛尔, 王强, 王浩. 环塔里木盆地2个芦笋品种的代谢组学分析[J]. 新疆农业科学, 2024, 61(10): 2408-2416.
类别 Classification | 数量 Quantity | 含量变化 Content variation | 差异代谢物 Differential metabolites |
---|---|---|---|
黄酮 Flavonoids | 53 | 28种上调 | 粗叶悬钩子苷,芍药花素-3-O-芸香糖苷-5-O-葡萄糖苷,没食子儿茶素,表没食子儿茶素,6,7-二羟基-1,3-二甲氧基-9-蒽酮,黄芩苷,柚皮素查耳酮,矢车菊素-3-O-葡萄糖苷,矢车菊素-3-O-(2″-O-葡萄糖基)芸香糖苷,异鼠李素-3-O-芸香糖苷-7-O-(2″-O-葡萄糖基)葡萄糖醛酸,柚皮素,3,5,7-三羟基黄烷酮 (短叶松素),山柰酚-3-香豆酰双葡萄糖苷-7-葡萄糖苷,山柰酚-3-阿魏酰双葡萄糖甘-7-葡萄糖苷,圣草酚,苜蓿素-5-O-葡萄糖苷,飞燕草素-3-O-(2″-O-葡萄糖基)芸香糖苷,圣草酚-8-C-葡萄糖苷,Rhodiolgin,杨梅素-3-O-芸香糖苷,野黄芩素,没食子儿茶素-(4α→8)-没食子儿茶素,山柰酚-3-O-(6″'-鼠李糖基-2″'-葡萄糖基)葡萄糖苷 (山茶苷 A),矢车菊素-3-O-半乳糖苷,矢车菊素-3-O-(2″-O-葡萄糖基)葡萄糖苷,矢车菊素-3-O-葡萄糖基芸香糖苷*,山柰酚-3-香豆酰双葡萄糖苷,槲皮素-3-O-桑布双糖苷* |
25种下降 | (2S)-Abyssinone II,2,4,2',4'-四羟基-3'-异戊烯基查耳酮,6-甲氧基山奈酚-3-O-葡萄糖苷*,异鼠李素-3-O-葡萄糖苷*,鼠李素-3-O-葡萄糖苷*,槲皮素-3-O-槐糖苷-7-O-鼠李糖苷*,槲皮素-3-O-[鼠李糖(1→2)葡萄糖基]-5-O-葡萄糖苷*,槲皮素-3-O-芸香糖苷 (芦丁)*,牵牛花素-3-O-芸香糖苷,5,7,4'-三羟基-6,8-二甲氧基异黄酮-7-O-半乳糖苷*,飞燕草素-3-O-芸香糖苷,鼠李素-3-O-芸香糖苷-5-O-鼠李糖苷,山柰酚-3,7-O-双葡萄糖苷,柽柳黄素-3-O-葡萄糖苷-7-O-鼠李糖苷*,3,5,7,4'-四羟基-8-甲氧基黄酮-3-O-葡萄糖苷-7-O-鼠李糖苷*,异鼠李素-3-O-阿拉伯糖苷,3'-O-Methyldiplacol,6-羟基木犀草素,木犀草素-8-C-葡萄糖苷 (荭草素),6-羟基山柰酚-7,6-O-二葡萄糖苷,6-羟基山柰酚-3-O-芸香糖-6-O-葡萄糖苷*,槲皮素-3-O-芸香糖苷-7-O-葡萄糖苷*,木犀草素-4'-O-葡萄糖苷*,异鼠李素-3-O-芸香糖苷 (水仙苷)*,去氢异黄柏苷, | ||
氨基酸及 其衍生物 Amino acids and derivatives | 39 | 34种上调 | N-单甲基-L-精氨酸*,N-单甲基-L-精氨酸*,N-羧基-N-(2-氧代-2-苯乙基)-L-丙氨酸,精氨酸甲酯*,芍药花素-3-O-芸香糖苷-5-O-葡萄糖苷,γ-谷氨酰胺酪氨酸,L-茶氨酸,缬氨酸-缬氨酸,N-α-乙酰基-L-鸟氨酸,氧化谷胱甘肽,γ-谷氨酰胺甲硫氨酸,2-((L-酪氨酰)氧基)-5-氨基-5-氧代戊酸,L-谷氨酰-L-谷氨酸,N-乙酰-L-谷氨酸,4-羟基-L-异亮氨酸,N-(乙酰基)苯丙氨酸,γ-L-谷氨酸-L-谷氨酰胺,L-蛋氨酸-L-精氨酸,茉莉酰-L-异亮氨酸,S-磺基-L-半胱氨酸,γ-谷氨酰胺缬氨酸,L-酵母氨酸,Bestim,L-天冬酰胺-L-羟脯氨酸,谷氨酸-天冬酰胺,甲基蒜氨酸,TyrMe-Val-OH,L-蛋氨酸-L-蛋氨酸,L-赖氨酸丁酸酯,环(脯氨酸-亮氨酸),L-天冬酰胺-L-亮氨酸,γ-谷氨酰胺苯丙氨酸,N-甲酰-L-蛋氨酸,(S)-4-氨基-5-氧代-5-(戊氨基)戊酸 |
5种下降 | N-乙酰-L-蛋氨酸,L-赖氨酸-L-酪氨酸,L-半胱氨酰-L-甘氨酸,谷胱甘肽还原型,甘氨酰-L-缬氨酸 | ||
酚酸 Phenolic acids | 34 | 14种上调 | 丁香苷,Aeschynanthoside A,王百合苷,4-羟基苯甲酸乙酯,高香草醇; 4-羟基-3-甲氧基苯乙醇,4-羟基苯乙酸,邻氨基苯甲酸,3-(4-羟基苯基)丙酸*,1-O-香草酰-D-葡萄糖,苄基-β-龙胆二糖苷*,咖啡酰对香豆酰酒石酸,苯乙醛,6-O-乙酰熊果苷,水杨醇; 邻羟基苄醇, |
20种下降 | 1-O-菊酯酰奎宁酸,4-O-(3'-O-α-D-吡喃葡萄糖基)咖啡酰奎尼酸,高香草酰奎宁酸,1-O-没食子酰-6-O-对香豆酰-β-D-葡萄糖,苯基丙酸-O-β-D-吡喃葡萄糖苷,(2E)-3-[4-(β-D-吡喃葡萄糖苷)-苯丙烯酸]酸,(E)-3-[(2S,3S)-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-3-methyl-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal,1-O-(6'-O-阿魏酰)葡萄糖苷-3-O-咖啡酰奎尼酸,1,3-O-二对香豆酰甘油酯,1-O-阿魏酰-3-O-对香豆酰甘油,1-O-咖啡酰-6-O-葡萄糖基-β-D-葡萄糖,松果菊苷,5-氧-β-D-吡喃葡萄糖基-3-羟基苯并(b)呋喃-2-酮,4-甲氧基苯丙酸,芥子酰对香豆酰酒石酸,3-P-香豆酰-1-阿魏酰甘油,3,5-二咖啡酰奎尼酸,苄基-(2″-O-木糖基)葡萄糖苷,Orthosiphoic Acid A,毛蕊花糖苷, | ||
木脂素和 香豆素 Lignans and Coumarins | 24 | 4种上调 | 松脂醇*,4β-hydroxypaulownin,[(8S,9R,10S,11R)-3,8,10-三羟基-4,5,19-三甲氧基-9,10-二甲基-15,17-二氧杂双环[10.7.0.02,7.014,18]壬十-1(19),2,4,6,12,14(18)-己烯-11-基]乙酸酯,6'-丙二酰秦皮甲素 |
20种下降 | Buddlenol E,蛇菰宁;蛇菰脂醛素,5'-去甲基沉香木质素,表松脂醇*,5'-甲氧基罗汉松脂苷,Ficusesquilignan B,Hedyotol C,Tortoside A,1-羟基松脂素二葡萄糖苷,赤式-愈创木基甘油-β-O-4'-脱氢二芥子酰醚,脱氢双松柏醇-4-O-葡萄糖苷*,表桉叶明,Murrayacarpin A glucoside,罗汉松脂酚-4'-O-葡萄糖苷 (罗汉松树脂酚苷),Nitensoside B,橄榄树脂素-4'-O-葡萄糖苷,开环异落叶松树脂酚二葡萄糖苷,丁香树脂酚-4'-O-葡萄糖苷; 无梗五加苷B,银柴胡新木质素-β-D-葡萄糖苷A,3,4-二氢-4-(4-羟基-3-甲氧基苯基)-3-(羟甲基)-6,7-二甲氧基-2-萘二甲醛 | ||
生物碱 Alkaloids | 20 | 15种上调 | [(1S,2R,3R,4S,5R,6S,8R,12R,13S,16R,19S,20R,21S)-14-乙基-4,6,19-三甲氧基-16-甲基-9,11-二氧杂-14-氮杂七环[10.7.2.12,501,13.03,8.08,12.016,20]二十二烷-21-基]3,5-二硝基苯甲酸酯,葫芦巴碱,色胺,3-氨基甲酰-1-甲基氧化吡啶,3'-葡萄糖基-6,7-二羟基-N-甲基-苄基四氢异喹啉,芥子碱,N-羟基色胺,N',N″,N″'-对香豆酰肉桂酰咖啡酰亚精胺,亚精胺,N-甲基色胺,L-酪胺,N-(1-脱氧-1-果糖基)氨基壬酸,2-羟基吡啶,N-(1-脱氧-1-果糖基)哌啶酸,N-去乙酰基-N-甲酰-3-去甲基秋水仙碱 |
5种下降 | 麦角新碱,派洛辛碱,佩绕素*,环佩日文碱*,N-Phenylethylcrinasiadine,N-阿魏酰尸胺 | ||
脂类 Lipids | 12 | 10种上调 | 甘磷酸胆碱 GPC,1-α-亚麻酸甘油酯*,1-(9Z-十八烯酰基)-2-(9-氧-壬酰基)-sn-甘油-3-磷酸胆碱,Glycerol 9(E),11(Z),13(E)-octadecatrienoyl ester*,溶血磷脂酰乙醇胺 17:0,溶血磷脂酰胆碱 17:0(2n异构)*,溶血磷脂酰乙醇胺 15:1,溶血磷脂酰乙醇胺 20:2(2n异构),溶血磷脂酰乙醇胺 16:1(2n异构)*,溶血磷脂酰胆碱 19:1, |
2种下降 | 姜糖脂 B,1-O-亚麻酰基-3-O-吡喃半乳糖基-L-甘油 | ||
有机酸 Organic acids | 8 | 6种上调 | 2-吡啶甲酸,2-异丙基苹果酸,柠檬酸二葡萄糖苷,2-丙基苹果酸*,3-异丙基苹果酸*,4-胍基丁酸, |
2种下降 | 2-甲基-3-氧代琥珀酸,α-酮戊二酸, | ||
核苷酸及 其衍生物 Nucleotides and derivatives | 7 | 7种上调 | 5-氨基咪唑核糖核苷酸,7-甲基黄嘌呤,(S)-2-氨基庚酸,异胞嘧啶,胞磷胆碱,N-(1-脱氧-1-果糖基)天冬酰胺,N-(1-脱氧-1-果糖基)丙氨酸 |
萜类 Terpenoids | 7 | 3种上调 | 脱水-β-莎草醇*,薤白皂苷 G,黑麦草内酯* |
4种下降 | 3,23-二羟基-30-去甲基齐墩果-12,20(29)-二烯-28-酸 (30-去甲常春藤皂苷元),布卢门醇 C 葡萄糖苷,3-(3'-羟基丁基)-2,4,4-三甲基环己烷-2,5-二烯酮,布卢门醇 B葡萄糖苷, | ||
维生素 Vitamin | 6 | 6种下降 | 4-吡哆酸-O-葡萄糖苷,4-吡哆酸,吡哆醇,D-生物素,异抗坏血酸,维生素C |
甾体 Steroids | 5 | 1种上调 | 薯蓣皂苷元-半乳糖-葡萄糖苷 |
4种下降 | 偏诺皂苷元-葡萄糖苷,螺旋甾烷-5-烯-3,27-二醇-27-O-葡萄糖苷-3-O-[鼠李糖基(1→4)]葡萄糖苷 (Polygonatoside D)*,螺旋甾烷-5-烯-3-醇-3-O-葡萄糖基(1→2)葡萄糖基(l→4)半乳糖苷 (新西伯利亚蓼苷 D)*,知母皂苷 A3-葡萄糖苷 | ||
糖类 Saccharides | 4 | 3种上调 | D-苏糖酸,松三糖 O-鼠李糖苷,1-(sn-甘油-3-磷酸)-1D-肌醇 |
1种下降 | 海藻糖-6-磷酸 | ||
酮类 Ketones | 2 | 1种上调 | 1-苯基-7-(4-羟基苯基)-4-烯-3-庚酮 |
1种下降 | 羟苯基丁酮 | ||
醌类 Quinones | 1 | 1种上调 | 1,2,4-三羟基蒽醌 |
醛类 Aldehydes | 1 | 1种下降 | 4-甲氧基苯甲醛 |
其它Others | 12 |
Tab.1 Different metabolites of Emerald Pearl asparagus and Golande asparagus
类别 Classification | 数量 Quantity | 含量变化 Content variation | 差异代谢物 Differential metabolites |
---|---|---|---|
黄酮 Flavonoids | 53 | 28种上调 | 粗叶悬钩子苷,芍药花素-3-O-芸香糖苷-5-O-葡萄糖苷,没食子儿茶素,表没食子儿茶素,6,7-二羟基-1,3-二甲氧基-9-蒽酮,黄芩苷,柚皮素查耳酮,矢车菊素-3-O-葡萄糖苷,矢车菊素-3-O-(2″-O-葡萄糖基)芸香糖苷,异鼠李素-3-O-芸香糖苷-7-O-(2″-O-葡萄糖基)葡萄糖醛酸,柚皮素,3,5,7-三羟基黄烷酮 (短叶松素),山柰酚-3-香豆酰双葡萄糖苷-7-葡萄糖苷,山柰酚-3-阿魏酰双葡萄糖甘-7-葡萄糖苷,圣草酚,苜蓿素-5-O-葡萄糖苷,飞燕草素-3-O-(2″-O-葡萄糖基)芸香糖苷,圣草酚-8-C-葡萄糖苷,Rhodiolgin,杨梅素-3-O-芸香糖苷,野黄芩素,没食子儿茶素-(4α→8)-没食子儿茶素,山柰酚-3-O-(6″'-鼠李糖基-2″'-葡萄糖基)葡萄糖苷 (山茶苷 A),矢车菊素-3-O-半乳糖苷,矢车菊素-3-O-(2″-O-葡萄糖基)葡萄糖苷,矢车菊素-3-O-葡萄糖基芸香糖苷*,山柰酚-3-香豆酰双葡萄糖苷,槲皮素-3-O-桑布双糖苷* |
25种下降 | (2S)-Abyssinone II,2,4,2',4'-四羟基-3'-异戊烯基查耳酮,6-甲氧基山奈酚-3-O-葡萄糖苷*,异鼠李素-3-O-葡萄糖苷*,鼠李素-3-O-葡萄糖苷*,槲皮素-3-O-槐糖苷-7-O-鼠李糖苷*,槲皮素-3-O-[鼠李糖(1→2)葡萄糖基]-5-O-葡萄糖苷*,槲皮素-3-O-芸香糖苷 (芦丁)*,牵牛花素-3-O-芸香糖苷,5,7,4'-三羟基-6,8-二甲氧基异黄酮-7-O-半乳糖苷*,飞燕草素-3-O-芸香糖苷,鼠李素-3-O-芸香糖苷-5-O-鼠李糖苷,山柰酚-3,7-O-双葡萄糖苷,柽柳黄素-3-O-葡萄糖苷-7-O-鼠李糖苷*,3,5,7,4'-四羟基-8-甲氧基黄酮-3-O-葡萄糖苷-7-O-鼠李糖苷*,异鼠李素-3-O-阿拉伯糖苷,3'-O-Methyldiplacol,6-羟基木犀草素,木犀草素-8-C-葡萄糖苷 (荭草素),6-羟基山柰酚-7,6-O-二葡萄糖苷,6-羟基山柰酚-3-O-芸香糖-6-O-葡萄糖苷*,槲皮素-3-O-芸香糖苷-7-O-葡萄糖苷*,木犀草素-4'-O-葡萄糖苷*,异鼠李素-3-O-芸香糖苷 (水仙苷)*,去氢异黄柏苷, | ||
氨基酸及 其衍生物 Amino acids and derivatives | 39 | 34种上调 | N-单甲基-L-精氨酸*,N-单甲基-L-精氨酸*,N-羧基-N-(2-氧代-2-苯乙基)-L-丙氨酸,精氨酸甲酯*,芍药花素-3-O-芸香糖苷-5-O-葡萄糖苷,γ-谷氨酰胺酪氨酸,L-茶氨酸,缬氨酸-缬氨酸,N-α-乙酰基-L-鸟氨酸,氧化谷胱甘肽,γ-谷氨酰胺甲硫氨酸,2-((L-酪氨酰)氧基)-5-氨基-5-氧代戊酸,L-谷氨酰-L-谷氨酸,N-乙酰-L-谷氨酸,4-羟基-L-异亮氨酸,N-(乙酰基)苯丙氨酸,γ-L-谷氨酸-L-谷氨酰胺,L-蛋氨酸-L-精氨酸,茉莉酰-L-异亮氨酸,S-磺基-L-半胱氨酸,γ-谷氨酰胺缬氨酸,L-酵母氨酸,Bestim,L-天冬酰胺-L-羟脯氨酸,谷氨酸-天冬酰胺,甲基蒜氨酸,TyrMe-Val-OH,L-蛋氨酸-L-蛋氨酸,L-赖氨酸丁酸酯,环(脯氨酸-亮氨酸),L-天冬酰胺-L-亮氨酸,γ-谷氨酰胺苯丙氨酸,N-甲酰-L-蛋氨酸,(S)-4-氨基-5-氧代-5-(戊氨基)戊酸 |
5种下降 | N-乙酰-L-蛋氨酸,L-赖氨酸-L-酪氨酸,L-半胱氨酰-L-甘氨酸,谷胱甘肽还原型,甘氨酰-L-缬氨酸 | ||
酚酸 Phenolic acids | 34 | 14种上调 | 丁香苷,Aeschynanthoside A,王百合苷,4-羟基苯甲酸乙酯,高香草醇; 4-羟基-3-甲氧基苯乙醇,4-羟基苯乙酸,邻氨基苯甲酸,3-(4-羟基苯基)丙酸*,1-O-香草酰-D-葡萄糖,苄基-β-龙胆二糖苷*,咖啡酰对香豆酰酒石酸,苯乙醛,6-O-乙酰熊果苷,水杨醇; 邻羟基苄醇, |
20种下降 | 1-O-菊酯酰奎宁酸,4-O-(3'-O-α-D-吡喃葡萄糖基)咖啡酰奎尼酸,高香草酰奎宁酸,1-O-没食子酰-6-O-对香豆酰-β-D-葡萄糖,苯基丙酸-O-β-D-吡喃葡萄糖苷,(2E)-3-[4-(β-D-吡喃葡萄糖苷)-苯丙烯酸]酸,(E)-3-[(2S,3S)-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-3-methyl-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal,1-O-(6'-O-阿魏酰)葡萄糖苷-3-O-咖啡酰奎尼酸,1,3-O-二对香豆酰甘油酯,1-O-阿魏酰-3-O-对香豆酰甘油,1-O-咖啡酰-6-O-葡萄糖基-β-D-葡萄糖,松果菊苷,5-氧-β-D-吡喃葡萄糖基-3-羟基苯并(b)呋喃-2-酮,4-甲氧基苯丙酸,芥子酰对香豆酰酒石酸,3-P-香豆酰-1-阿魏酰甘油,3,5-二咖啡酰奎尼酸,苄基-(2″-O-木糖基)葡萄糖苷,Orthosiphoic Acid A,毛蕊花糖苷, | ||
木脂素和 香豆素 Lignans and Coumarins | 24 | 4种上调 | 松脂醇*,4β-hydroxypaulownin,[(8S,9R,10S,11R)-3,8,10-三羟基-4,5,19-三甲氧基-9,10-二甲基-15,17-二氧杂双环[10.7.0.02,7.014,18]壬十-1(19),2,4,6,12,14(18)-己烯-11-基]乙酸酯,6'-丙二酰秦皮甲素 |
20种下降 | Buddlenol E,蛇菰宁;蛇菰脂醛素,5'-去甲基沉香木质素,表松脂醇*,5'-甲氧基罗汉松脂苷,Ficusesquilignan B,Hedyotol C,Tortoside A,1-羟基松脂素二葡萄糖苷,赤式-愈创木基甘油-β-O-4'-脱氢二芥子酰醚,脱氢双松柏醇-4-O-葡萄糖苷*,表桉叶明,Murrayacarpin A glucoside,罗汉松脂酚-4'-O-葡萄糖苷 (罗汉松树脂酚苷),Nitensoside B,橄榄树脂素-4'-O-葡萄糖苷,开环异落叶松树脂酚二葡萄糖苷,丁香树脂酚-4'-O-葡萄糖苷; 无梗五加苷B,银柴胡新木质素-β-D-葡萄糖苷A,3,4-二氢-4-(4-羟基-3-甲氧基苯基)-3-(羟甲基)-6,7-二甲氧基-2-萘二甲醛 | ||
生物碱 Alkaloids | 20 | 15种上调 | [(1S,2R,3R,4S,5R,6S,8R,12R,13S,16R,19S,20R,21S)-14-乙基-4,6,19-三甲氧基-16-甲基-9,11-二氧杂-14-氮杂七环[10.7.2.12,501,13.03,8.08,12.016,20]二十二烷-21-基]3,5-二硝基苯甲酸酯,葫芦巴碱,色胺,3-氨基甲酰-1-甲基氧化吡啶,3'-葡萄糖基-6,7-二羟基-N-甲基-苄基四氢异喹啉,芥子碱,N-羟基色胺,N',N″,N″'-对香豆酰肉桂酰咖啡酰亚精胺,亚精胺,N-甲基色胺,L-酪胺,N-(1-脱氧-1-果糖基)氨基壬酸,2-羟基吡啶,N-(1-脱氧-1-果糖基)哌啶酸,N-去乙酰基-N-甲酰-3-去甲基秋水仙碱 |
5种下降 | 麦角新碱,派洛辛碱,佩绕素*,环佩日文碱*,N-Phenylethylcrinasiadine,N-阿魏酰尸胺 | ||
脂类 Lipids | 12 | 10种上调 | 甘磷酸胆碱 GPC,1-α-亚麻酸甘油酯*,1-(9Z-十八烯酰基)-2-(9-氧-壬酰基)-sn-甘油-3-磷酸胆碱,Glycerol 9(E),11(Z),13(E)-octadecatrienoyl ester*,溶血磷脂酰乙醇胺 17:0,溶血磷脂酰胆碱 17:0(2n异构)*,溶血磷脂酰乙醇胺 15:1,溶血磷脂酰乙醇胺 20:2(2n异构),溶血磷脂酰乙醇胺 16:1(2n异构)*,溶血磷脂酰胆碱 19:1, |
2种下降 | 姜糖脂 B,1-O-亚麻酰基-3-O-吡喃半乳糖基-L-甘油 | ||
有机酸 Organic acids | 8 | 6种上调 | 2-吡啶甲酸,2-异丙基苹果酸,柠檬酸二葡萄糖苷,2-丙基苹果酸*,3-异丙基苹果酸*,4-胍基丁酸, |
2种下降 | 2-甲基-3-氧代琥珀酸,α-酮戊二酸, | ||
核苷酸及 其衍生物 Nucleotides and derivatives | 7 | 7种上调 | 5-氨基咪唑核糖核苷酸,7-甲基黄嘌呤,(S)-2-氨基庚酸,异胞嘧啶,胞磷胆碱,N-(1-脱氧-1-果糖基)天冬酰胺,N-(1-脱氧-1-果糖基)丙氨酸 |
萜类 Terpenoids | 7 | 3种上调 | 脱水-β-莎草醇*,薤白皂苷 G,黑麦草内酯* |
4种下降 | 3,23-二羟基-30-去甲基齐墩果-12,20(29)-二烯-28-酸 (30-去甲常春藤皂苷元),布卢门醇 C 葡萄糖苷,3-(3'-羟基丁基)-2,4,4-三甲基环己烷-2,5-二烯酮,布卢门醇 B葡萄糖苷, | ||
维生素 Vitamin | 6 | 6种下降 | 4-吡哆酸-O-葡萄糖苷,4-吡哆酸,吡哆醇,D-生物素,异抗坏血酸,维生素C |
甾体 Steroids | 5 | 1种上调 | 薯蓣皂苷元-半乳糖-葡萄糖苷 |
4种下降 | 偏诺皂苷元-葡萄糖苷,螺旋甾烷-5-烯-3,27-二醇-27-O-葡萄糖苷-3-O-[鼠李糖基(1→4)]葡萄糖苷 (Polygonatoside D)*,螺旋甾烷-5-烯-3-醇-3-O-葡萄糖基(1→2)葡萄糖基(l→4)半乳糖苷 (新西伯利亚蓼苷 D)*,知母皂苷 A3-葡萄糖苷 | ||
糖类 Saccharides | 4 | 3种上调 | D-苏糖酸,松三糖 O-鼠李糖苷,1-(sn-甘油-3-磷酸)-1D-肌醇 |
1种下降 | 海藻糖-6-磷酸 | ||
酮类 Ketones | 2 | 1种上调 | 1-苯基-7-(4-羟基苯基)-4-烯-3-庚酮 |
1种下降 | 羟苯基丁酮 | ||
醌类 Quinones | 1 | 1种上调 | 1,2,4-三羟基蒽醌 |
醛类 Aldehydes | 1 | 1种下降 | 4-甲氧基苯甲醛 |
其它Others | 12 |
差异代谢物 Differential metabolites | 类别 Classification | 哥兰德中的 相对含量 Relative content in goland | 翡翠明珠中 相对含量 Relative content in jadeite pearls | 差异倍数 Difference multiplier |
---|---|---|---|---|
矢车菊素-3-O-半乳糖苷 Cyanidin-3-O-galactoside | 黄酮 | 9 | 1.91×106 | 17.69 |
没食子儿茶素-(4α→8)-没食子儿茶素 Gallocatechin-(4α→8)-gallocatechin | 黄酮 | 9 | 6.22×105 | 16.08 |
薯蓣皂苷元-半乳糖-葡萄糖苷 Disogenin-Gal-Glc | 甾体 | 9 | 4.93×105 | 15.74 |
丁香苷Syringin | 酚酸 | 9 | 2.24×105 | 14.60 |
飞燕草素-3-O-(2″-O-葡萄糖基) 芸香糖苷Delphinidin-3-O- (2″-O-glucosyl)rutinoside | 黄酮 | 9 | 1.23×105 | 13.74 |
芥子碱Sinapine | 生物碱 | 9 | 4.90×104 | 12.41 |
2-乙酰基-5-甲基呋喃 2-Acetyl-5-methylfuran | 其它 | 9 | 4.19×104 | 12.19 |
顺-β-D-葡萄糖基-2-羟基肉桂酸酯 cis-coumarinic acid-beta-D-glucoside | 其它 | 9 | 2.51×104 | 11.44 |
葫芦巴碱Trigonelline | 生物碱 | 2.39×105 | 2.62×107 | 6.78 |
3-氨基甲酰-1-甲基氧化吡啶 3-Carbamyl-1-methylpyridinium; (1-Methylnicotinamide) | 生物碱 | 2.55×105 | 2.67×107 | 6.71 |
粗叶悬钩子苷 Alcesefoliside | 黄酮 | 2.70×105 | 9.20×106 | 5.09 |
矢车菊素-3-O-(2″-O-葡萄糖基)芸香糖苷 Cyanidin-3-O-(2″-O-glucosyl)rutinoside | 黄酮 | 2.94×105 | 8.67×106 | 4.88 |
矢车菊素-3-O-葡萄糖基芸香糖苷* Cyanidin-3-O-glucosylrutinoside* | 黄酮 | 4.95×104 | 5.60×105 | 3.56 |
槲皮素-3-O-桑布双糖苷* Quercetin-3-O-sambubioside* | 黄酮 | 3.30×105 | 3.78×106 | 3.52 |
L-酪胺L-Tyramine | 生物碱 | 5.84×104 | 6.26×105 | 3.42 |
知母皂苷 A3-葡萄糖苷 Timosaponin A3-glucoside | 甾体 | 2.98×105 | 1.07×104 | -4.80 |
1-O- (6'-O-阿魏酰)葡萄糖苷- 3-O-咖啡酰奎尼酸 1-O-(6'-O-feruloyl) glucoside -3-O-Caffeoyl Quinic Acid | 酚酸 | 1.07×104 | 9 | -10.21 |
毛蕊花糖苷 Acteoside | 酚酸 | 1.18×104 | 9 | -10.35 |
N-阿魏酰尸胺 N-Feruloyl-Cadaverine | 生物碱 | 5.40×104 | 9 | -12.55 |
葡萄糖基 5,8-二羟基-2, 6-二甲基八碳-2,6-二烯酸 Glucosyl 5, 8-dihydroxy-2, 6-dimethylocta-2, 6-dienoic acid | 其它 | 1.05×104 | 9 | -13.52 |
Tab.2 Top 20 metabolites in different multiples of Jade Pearl and Goland asparagus
差异代谢物 Differential metabolites | 类别 Classification | 哥兰德中的 相对含量 Relative content in goland | 翡翠明珠中 相对含量 Relative content in jadeite pearls | 差异倍数 Difference multiplier |
---|---|---|---|---|
矢车菊素-3-O-半乳糖苷 Cyanidin-3-O-galactoside | 黄酮 | 9 | 1.91×106 | 17.69 |
没食子儿茶素-(4α→8)-没食子儿茶素 Gallocatechin-(4α→8)-gallocatechin | 黄酮 | 9 | 6.22×105 | 16.08 |
薯蓣皂苷元-半乳糖-葡萄糖苷 Disogenin-Gal-Glc | 甾体 | 9 | 4.93×105 | 15.74 |
丁香苷Syringin | 酚酸 | 9 | 2.24×105 | 14.60 |
飞燕草素-3-O-(2″-O-葡萄糖基) 芸香糖苷Delphinidin-3-O- (2″-O-glucosyl)rutinoside | 黄酮 | 9 | 1.23×105 | 13.74 |
芥子碱Sinapine | 生物碱 | 9 | 4.90×104 | 12.41 |
2-乙酰基-5-甲基呋喃 2-Acetyl-5-methylfuran | 其它 | 9 | 4.19×104 | 12.19 |
顺-β-D-葡萄糖基-2-羟基肉桂酸酯 cis-coumarinic acid-beta-D-glucoside | 其它 | 9 | 2.51×104 | 11.44 |
葫芦巴碱Trigonelline | 生物碱 | 2.39×105 | 2.62×107 | 6.78 |
3-氨基甲酰-1-甲基氧化吡啶 3-Carbamyl-1-methylpyridinium; (1-Methylnicotinamide) | 生物碱 | 2.55×105 | 2.67×107 | 6.71 |
粗叶悬钩子苷 Alcesefoliside | 黄酮 | 2.70×105 | 9.20×106 | 5.09 |
矢车菊素-3-O-(2″-O-葡萄糖基)芸香糖苷 Cyanidin-3-O-(2″-O-glucosyl)rutinoside | 黄酮 | 2.94×105 | 8.67×106 | 4.88 |
矢车菊素-3-O-葡萄糖基芸香糖苷* Cyanidin-3-O-glucosylrutinoside* | 黄酮 | 4.95×104 | 5.60×105 | 3.56 |
槲皮素-3-O-桑布双糖苷* Quercetin-3-O-sambubioside* | 黄酮 | 3.30×105 | 3.78×106 | 3.52 |
L-酪胺L-Tyramine | 生物碱 | 5.84×104 | 6.26×105 | 3.42 |
知母皂苷 A3-葡萄糖苷 Timosaponin A3-glucoside | 甾体 | 2.98×105 | 1.07×104 | -4.80 |
1-O- (6'-O-阿魏酰)葡萄糖苷- 3-O-咖啡酰奎尼酸 1-O-(6'-O-feruloyl) glucoside -3-O-Caffeoyl Quinic Acid | 酚酸 | 1.07×104 | 9 | -10.21 |
毛蕊花糖苷 Acteoside | 酚酸 | 1.18×104 | 9 | -10.35 |
N-阿魏酰尸胺 N-Feruloyl-Cadaverine | 生物碱 | 5.40×104 | 9 | -12.55 |
葡萄糖基 5,8-二羟基-2, 6-二甲基八碳-2,6-二烯酸 Glucosyl 5, 8-dihydroxy-2, 6-dimethylocta-2, 6-dienoic acid | 其它 | 1.05×104 | 9 | -13.52 |
[1] | 杨晓春, 黎重阳, 张玲玲, 等. 响应面法优化绿芦笋罐头的生产工艺[J]. 食品研究与开发, 2023, 44(8): 82-88. |
YANG Xiaochun, LI Chongyang, ZHANG Lingling, et al. Processing technology optimization of canned green Asparagus by response surface method[J]. Food Research and Development, 2023, 44(8): 82-88. | |
[2] | 毛丽萍, 郭伟民. 芦笋营养价值与保健功能[J]. 食品工程, 2012(3): 63-64. |
MAO Liping, GUO Weimin. Nutrition value and health function of asparagus[J]. Food Engineering, 2012(3): 63-64. | |
[3] | Wu Y Q, Zhang C H, Huang Z J, et al. The color difference of rubus fruits is closely related to the composition of flavonoids including anthocyanins[J]. LWT, 2021, 149: 111825. |
[4] | Liang Z X, Liang H R, Guo Y Z, et al. Cyanidin 3- O-galactoside: a natural compound with multiple health benefits[J]. International Journal of Molecular Sciences, 2021, 22(5): 2261. |
[5] |
Plumb G W, de Pascual-Teresa S, Santos-Buelga C, et al. Antioxidant properties of gallocatechin and prodelphinidins from pomegranate peel[J]. Redox Report: Communications in Free Radical Research, 2002, 7(1): 41-46.
PMID |
[6] | 胡闪闪, 胡红杰, 徐艳萍, 等. 紫丁香苷对LPS/D-GalN诱导的急性肝损伤的保护作用研究[J]. 畜牧与兽医, 2023, 55(4): 120-126. |
HU Shanshan, HU Hongjie, XU Yanping, et al. Protective effect of syringin on LPS/D-GalN induced acute liver injury[J]. Animal Husbandry & Veterinary Medicine, 2023, 55(4): 120-126. | |
[7] | 杨占婷, 张得钧. 芥子碱的研究进展[J]. 华西药学杂志, 2017, 32(6): 658-661. |
YANG Zhanting, ZHANG Dejun. Research progress of sinapine[J]. West China Journal of Pharmaceutical Sciences, 2017, 32(6): 658-661. | |
[8] | 孙宝国, 李勇. 2-乙酰基-5-甲基呋喃的合成研究[J]. 精细化工, 1993, 10(6): 13-15. |
SUN Baoguo, LI Yong. A new method for the synthesis of 2-acetyl-5-methylfuran[J]. Fine Chemicals, 1993, 10(6): 13-15. | |
[9] |
Ilavenil S, Kim D H, Jeong Y I, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells[J]. Asian Pacific Journal of Tropical Medicine, 2015, 8(4): 263-268.
DOI PMID |
[10] | Folwarczna J, Janas A, Pytlik M, et al. Effects of trigonelline, an alkaloid present in coffee, on diabetes-induced disorders in the rat skeletal system[J]. Nutrients, 2016, 8(3): 133. |
[11] | Song Q B, Xia X, Ji C M, et al. Optimized flash extraction and UPLC-MS analysis on antioxidant compositions ofNitraria sibirica fruit[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172: 379-387. |
[12] | Li X, Yang L P, Liu S Y, et al. Effect of quercetin-3-O-sambubioside isolated fromEucommia ulmoidesmale flowers on spontaneous activity and convulsion rate in mice[J]. Planta Medica, 2014, 80(12): 974-977. |
[13] | 王丰青, 王丽娜, 智惊宇, 等. 不同品种地黄中毛蕊花糖苷的动态积累规律变化[J]. 中国实验方剂学杂志, 2017, 23(24): 78-83. |
WANG Fengqing, WANG Lina, ZHI Jingyu, et al. Changes in dynamic accumulation of acteoside from differentRehmannia glutinosa cultivars[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(24): 78-83. | |
[14] | 张迪, 张娟利, 马忠英. 毛蕊花糖苷对中波紫外线所致小鼠皮肤损伤的保护作用研究[J]. 中药新药与临床药理, 2023, 34(1): 57-63. |
ZHANG Di, ZHANG Juanli, MA Zhongying. Study on the protective effect of verbascoside on the skin damage induced by UVB in mice[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2023, 34(1): 57-63. | |
[15] | 赵晶, 张致平, 陈鸿珊, 等. 黄芩甙衍生物的合成及抗人免疫缺陷病毒活性研究[J]. 药学学报, 1998, 33(1): 22-27. |
ZHAO Jing, ZHANG Zhiping, CHEN Hongshan, et al. Synthesis of baicalin derivatives and evaluation of their anti-human immunodeficiency virus(hiv-1) activity[J]. Acta Pharmaceutica Sinica, 1998, 33(1): 22-27. | |
[16] | 李远志, 王钧冬, 岳朝驰, 等. 野黄芩素在结肠癌发生发展中的作用机制研究[J]. 中国当代医药, 2021, 28(20): 12-16, 20. |
LI Yuanzhi, WANG Jundong, YUE Chaochi, et al. Study on the effect mechanism of scutellarin in the occurrence and development of colon cancer[J]. China Modern Medicine, 2021, 28(20): 12-16, 20. | |
[17] | 林惠军, 杨倩, 龚潇. 野黄芩素经Akt/FoxO1信号通路抑制视网膜神经节细胞凋亡[J]. 中南医学科学杂志, 2022, 50(4): 482-485, 490. |
LIN Huijun, YANG Qian, GONG Xiao. The mechanism of scutellariae inhibiting apoptosis of retinal ganglion cells via Akt/FoxO1 signaling pathway[J]. Medical Science Journal of Central South China, 2022, 50(4): 482-485, 490. | |
[18] | 王梦娜, 梅茜钰, 陆宾, 等. 野黄芩素改善高糖诱导小胶质细胞活化引起的血脑屏障功能障碍[J]. 中国药理学通报, 2020, 36(11): 1542-1547. |
WANG Mengna, MEI Xiyu, LU Bin, et al. Scutellarein alleviates dysfunction of blood-brain-barrier initiated by hyperglycemia-stimulated microglia cells[J]. Chinese Pharmacological Bulletin, 2020, 36(11): 1542-1547. | |
[19] | 刘思佳, 吴堃, 任凯强, 等. 柚皮素通过抑制NF-κB-iNOS/COX-2通路减轻小鼠糖尿病肝损伤[J]. 中国病理生理杂志, 2023, 39(3): 445-450. |
LIU Sijia, WU Kun, REN Kaiqiang, et al. Naringin attenuates diabetic hepatopathy in mice by inhibition of NF-κBiNOS/COX-2 pathway[J]. Chinese Journal of Pathophysiology, 2023, 39(3): 445-450. | |
[20] | 牛金明, 程莉雅, 吴美美. 柚皮素对过敏性鼻炎模型大鼠鼻黏膜组织TLR4/NF-κB/TNF-α信号通路的影响[J]. 中国实验诊断学, 2023, 27(4): 483-488. |
NIU Jinming, CHENG Liya, WU Meimei. Effect of naringenin on TLR4/NF-κB/TNF-α signal pathway in nasal mucosa of rats with allergic rhinitis[J]. Chinese Journal of Laboratory Diagnosis, 2023, 27(4): 483-488. | |
[21] | 刘斌, 王叨, 孙霞, 等. 圣草酚对DG-75细胞生长的抑制作用及相关作用机制研究[J]. 中国实验血液学杂志, 2021, 29(6): 1790-1796. |
LIU Bin, WANG Dao, SUN Xia, et al. Inhibition effect of eriodictyol to growth of DG-75 cells and the related action mechanism[J]. Journal of Experimental Hematology, 2021, 29(6): 1790-1796.
DOI PMID |
|
[22] | 杨敏, 张锋, 付姣, 等. 圣草酚对高脂饮食诱导的糖尿病大鼠肝损伤的保护作用及机制探讨[J]. 天津中医药大学学报, 2022, 41(3): 355-360. |
YANG Min, ZHANG Feng, FU Jiao, et al. The protective effect and mechanism of eriodictyol on the liver injury in diabetic rats induced by high-fat diet[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2022, 41(3): 355-360. | |
[23] | 应勤丽, 黄月碧, 杨秀翠, 等. 圣草酚通过抑制TGF-β1/Smad3信号通路改善糖尿病肾病大鼠肾纤维化[J]. 中国免疫学杂志, 2023, 39(4): 693-697. |
YING Qinli, HUANG Yuebi, YANG Xiucui, et al. Eriodictyol ameliorates kidney fibrosis in diabetic nephropathy rat by inhibiting TGF-β1/Smad3 signaling pathway[J]. Chinese Journal of Immunology, 2023, 39(4): 693-697. | |
[24] | 杨舒钧, 梁红亮, 滕俊, 等. 圣草酚对DSS诱导的大鼠溃疡性结肠炎的改善作用及机制探讨[J]. 中国免疫学杂志, 2022, 38(18): 2188-2192, 2199. |
YANG Shujun, LIANG Hongliang, TENG Jun, et al. Ameliorating effect and mechanism of eriodictyol on DSS-induced ulcerative colitis in rats[J]. Chinese Journal of Immunology, 2022, 38(18): 2188-2192, 2199. | |
[25] | 任亚爽, 夏小雯, 王香君, 等. 芦丁镇痛作用机制研究进展及临床应用展望[J]. 中国药理学通报, 2023, 39(5): 807-811. |
REN Yashuang, XIA Xiaowen, WANG Xiangjun, et al. Research on analgesic effect and prospect of clinical application of rutin[J]. Chinese Pharmacological Bulletin, 2023, 39(5): 807-811. | |
[26] | Li F H, Liao X, Jiang L, et al. Orientin attenuated d-GalN/LPS-induced liver injury through the inhibition of oxidative stress via Nrf2/Keap1 pathway[J]. Journal of Agricultural and Food Chemistry, 2022, 70(26): 7953-7967. |
[27] | 冯茜, 董波, 杨旭红. 松果菊苷治疗神经系统疾病作用机制的研究进展[J]. 中草药, 2023, 54(5): 1654-1662. |
FENG Qian, DONG Bo, YANG Xuhong. Research progress on mechanisms of echinacoside in treatment of neurological diseases[J]. Chinese Traditional and Herbal Drugs, 2023, 54(5): 1654-1662. |
[1] | TIAN Quanming, QI Huamei, YAN Beibei, WEI Jia, ZHANG Zheng, WANG Man, XIN Shijun, YUAN Yuyao, WU Bin. Regulation of postharvest fruit reactive oxygen metabolism by preharvest spraying of calcium chloride on prunes [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1937-1946. |
[2] | ZHANG Hao, LIANG Qigan, ZHANG Xuejun, FU Xiaofa, CHEN Jihao, ZHOU Bo, HUANG Yuan. The resistance analysis of Cucumis metuliferus and its effect of grafting on melon quality [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1963-1968. |
[3] | TIAN Quanming, YAN Beibei, QI Huamei, WEI Jia, ZHANG Zheng, XIN Shijun, WANG Man, YUAN Yuyao, WU Bin. Effect of preharvest spraying of CaCl2 on postharvest fruit softening quality of prunes [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1717-1726. |
[4] | LI Hui, BI Ying, WANG Xinyu, LEI Yaxin, ZHANG Qi, HUANG Shuai, Rezha kuwangdeke, WANG Jing. Effects of regulation of walnut green peel polyphenols on postharvest active oxygen metabolism and reduction of rotten in Hami melon [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2966-2975. |
[5] | LIU Yang, BAI Yujia, ZHANG Zhengxiao, CHU Chenli, WANG Tiantian, FENG Zuoshan. Changes of related proteins and phenylpropane metabolic enzymes in melon infected by Alternaria alternata [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1780-1789. |
[6] | CHANG Xuehua, YAN Bowen, ZHAI Rongzhen, ZHANG Zheng, WU Bin, WEI Jia. Effects of sulfur dioxide on sugar content and sugar metabolism pathway in Munage grape [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1216-1225. |
[7] | YANG Shiying, MA Yue, JIA Binxin, HUA Zhenyu, SHEN Qi, LIU Fengjuan, WANG Cheng. Study on degradation of pesticide residues in muskmelon by brassinolide [J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2541-2550. |
[8] | LIU Lv, LI Xiaobin, MA Yan, YANG Hao, ZHANG Wenjie, LU Hao, WEI Xinlan, GAO Junjie, OUYANG Wen, YANG Kailun. CEffects of Supplemented with Guanidinoacetic Acid on the Plasma Guanidinoacetic Acid and Creatine Concentrations of Yili Horses During Exercise Training [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2267-2275. |
[9] | WANG Ming, LIU Zihao, CHENG Ping, YANG Lu, ZHANG Zhigang, LI Hong. Effects of Different Storage Methods on Respiratory Metabolism and Texture Indexes of Amygdalus ferganensis var nectarina [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1650-1658. |
[10] | Ataura Timur, Ablak Niyazi, TIAN Quanming, ZHANG Jian, XU Bin, WU Bin. Effects of Hanging Cellaring on Storage Quality of Chinese Cabbage in Winter in Southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1292-1300. |
[11] | FANG Xiaotong, FAN Yingying, LIU Fengjuan, XUE Peng, KANG Lu, TIAN Weina, WANG Cheng. Dynamic Changes of Endogenous Benzoic Acid and Related Phenolic Acids in Jun Jujube [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 403-409. |
[12] | Bumareyamu Aishan, PAN Yan, SUN Xi, XU Bin, MENG Xintao, ZHANG Ting. Effects of Harvest Maturity on Browning and Related Metabolic Enzymes of Green Walnut Fruits [J]. Xinjiang Agricultural Sciences, 2022, 59(12): 3066-3074. |
[13] | ZHENG Xinxia, ZHANG Wenju, LIU Yanfeng, NIU Yujie, ZHANG Li, WANG Hailiang. Effects of Different Feeding Levels on Digestion, Metabolism and Serum Indices of 20~35kg Multifarious Suffolk Ewes [J]. Xinjiang Agricultural Sciences, 2022, 59(12): 3104-3111. |
[14] | ZHONG Haojie, YAO Xinkui, LUO Penghui, MENG Jun, YAO Yueyang, WANG Chuankun, REN Wanlu. Effects of Supplemental Fermented Soybean Meal on Fecal Metabolites in Yili Foal Based on Metabolomics Analysis [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2800-2807. |
[15] | Weizheng LI, Zhongxiong NING, He LIANG, Wei LU. Determination of DIMBOA Residues in Helicoverpa armigera by UPLC-MS/MS [J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1846-1850. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||