Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (3): 699-707.DOI: 10.6048/j.issn.1001-4330.2024.03.020
• Plant Protection·Microbes • Previous Articles Next Articles
ZHANG You1,2,3(), LIU Maoxiu2,4(
), SHI Junhui2,4, WANG Xinying2,4, Aijier Abula2,4, ZHANG Yan3(
)
Received:
2023-08-09
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
LIU Maoxiu (1976-), female, from Sichuan,associate researcher, research direction: desertification control and vegetation restoration,(E-mail)Supported by:
张优1,2,3(), 刘茂秀2,4(
), 史军辉2,4, 王新英2,4, 艾吉尔·阿不拉2,4, 张炎3(
)
通讯作者:
刘茂秀(1976-),女,四川人,副研究员,硕士生导师,研究方向为荒漠化治理及植被恢复,(E-mail)作者简介:
张优(1997-),女,贵州人,硕士研究生,研究方向为植物营养,(E-mail)463867715@qq.com
基金资助:
CLC Number:
ZHANG You, LIU Maoxiu, SHI Junhui, WANG Xinying, Aijier Abula, ZHANG Yan. Numerical analysis of soil and vegetation nutrient characteristics in the initial year of returning farmland in the core area of Tarim River Populus euphratica forest[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 699-707.
张优, 刘茂秀, 史军辉, 王新英, 艾吉尔·阿不拉, 张炎. 塔河胡杨林核心区退耕地初始年土壤及植被养分特征数值分析[J]. 新疆农业科学, 2024, 61(3): 699-707.
研究区域 Research area | 坐标 Coordinate | 垂直塔河距离 Vertical tahe river distance(km) | 主要植被 Main vegetation |
---|---|---|---|
Ⅰ | 84°44'E~84°45'E, 41°10'N~41°11'N | 1 | 胡杨、柽柳、芦苇、河西苣(Hexinia polydichotoma)、甘草(Suaeda physophora pall)、萹蓿(Polygonum aviculare)、灰藜(Chenopodium album Linn)、花花柴(Karelinia caspia) |
Ⅱ | 84°45'E~84°46'E, 41°11'N~41°11'N | 2 | 胡杨、芦苇、胀果甘草、柽柳、骆驼刺 |
Ⅲ | 84°16'E~84°16'E 41°14'N~41°15 N | 3 | 胡杨、柽柳、芦苇、疏叶骆驼刺(Alhagi sparsifolia Shap)、胀果甘草、罗布麻(Apocynum venetum)、铃铛刺 |
Ⅳ | 84°19'E~84°20'E, 41°15'N~41°16'N | 3.5 | 胡杨、柽柳、芦苇、罗布麻、疏叶骆驼刺、花花柴、疏叶骆驼刺 |
Ⅴ | 84°19'E~84°20'E, 41°17'N~41°17'N | 4 | 胡杨、柽柳、芦苇、车前草(Plantago asiatica L)、灰藜 |
Tab.1 Overview of the study area
研究区域 Research area | 坐标 Coordinate | 垂直塔河距离 Vertical tahe river distance(km) | 主要植被 Main vegetation |
---|---|---|---|
Ⅰ | 84°44'E~84°45'E, 41°10'N~41°11'N | 1 | 胡杨、柽柳、芦苇、河西苣(Hexinia polydichotoma)、甘草(Suaeda physophora pall)、萹蓿(Polygonum aviculare)、灰藜(Chenopodium album Linn)、花花柴(Karelinia caspia) |
Ⅱ | 84°45'E~84°46'E, 41°11'N~41°11'N | 2 | 胡杨、芦苇、胀果甘草、柽柳、骆驼刺 |
Ⅲ | 84°16'E~84°16'E 41°14'N~41°15 N | 3 | 胡杨、柽柳、芦苇、疏叶骆驼刺(Alhagi sparsifolia Shap)、胀果甘草、罗布麻(Apocynum venetum)、铃铛刺 |
Ⅳ | 84°19'E~84°20'E, 41°15'N~41°16'N | 3.5 | 胡杨、柽柳、芦苇、罗布麻、疏叶骆驼刺、花花柴、疏叶骆驼刺 |
Ⅴ | 84°19'E~84°20'E, 41°17'N~41°17'N | 4 | 胡杨、柽柳、芦苇、车前草(Plantago asiatica L)、灰藜 |
研究区域 Research area | 营养物质Nutrient | |||
---|---|---|---|---|
有机质 Organic matter (g/kg) | 碱解N Alkaline hydrolysis N (mg/kg) | 有效P Olsen-P (mg/kg) | 速效K Available K (mg/kg) | |
Ⅰ区 | 4.63±2.35a | 18.24±6.57a | 4.30±4.18a | 95.63±20.44a |
Ⅱ区 | 4.61±1.80a | 15.38±9.25a | 5.25±4.50a | 97.43±27.43a |
Ⅲ区 | 3.81±1.14a | 14.55±6.74a | 6.95±5.48a | 115.97±13.35a |
Ⅳ区 | 6.28±3.04ab | 23.79±14.05a | 11.93±11.74a | 122.20±32.60a |
Ⅴ区 | 8.46±2.25b | 16.63±2.40a | 13.09±11.35a | 168.00±25.02b |
Tab.2 Average soil nutrients in the initial year of returned farmland at different distances from the vertical Tarim River
研究区域 Research area | 营养物质Nutrient | |||
---|---|---|---|---|
有机质 Organic matter (g/kg) | 碱解N Alkaline hydrolysis N (mg/kg) | 有效P Olsen-P (mg/kg) | 速效K Available K (mg/kg) | |
Ⅰ区 | 4.63±2.35a | 18.24±6.57a | 4.30±4.18a | 95.63±20.44a |
Ⅱ区 | 4.61±1.80a | 15.38±9.25a | 5.25±4.50a | 97.43±27.43a |
Ⅲ区 | 3.81±1.14a | 14.55±6.74a | 6.95±5.48a | 115.97±13.35a |
Ⅳ区 | 6.28±3.04ab | 23.79±14.05a | 11.93±11.74a | 122.20±32.60a |
Ⅴ区 | 8.46±2.25b | 16.63±2.40a | 13.09±11.35a | 168.00±25.02b |
研究区域 Research area | 土壤层次 Soil layer | 营养物质Nutrient | |||
---|---|---|---|---|---|
有机质 Organic matter (g/kg) | 碱解N Alkaline hydrolysis N (mg/kg) | 有效P Olsen-P (mg/kg) | 速效K Available K (mg/kg) | ||
Ⅰ区 | 0~10 cm | 7.51±2.94a* | 25.84±13.60a | 10.20±6.55a* | 124.86±48.62a |
10~20 cm | 6.86±2.58a | 21.48±7.30a | 9.77±6.10a* | 101.43±28.11a | |
20~40 cm | 3.13±0.97ab | 18.45±13.56a | 2.35±2.58ab | 75.86±17.8a | |
40~60 cm | 2.56±1.68b* | 11.58±8.05a | 0.67±0.30b* | 84.57±49.32a | |
60~100 cm | 3.08±1.68b | 9.84±6.96a | 0.79±0.43b | 89.86±29.46a | |
平均 | 4.63±2.91 | 17.44±11.47 | 4.76±5.87 | 95.31±38.61 | |
Ⅱ区 | 0~10 cm | 4.55±2.47ab | 14.87±10.66ab | 4.86±4.72ab | 101.47±42.42a |
10~20 cm | 6.67±1.81a | 24.78±9.75a | 10.25±4.99a | 129.83±38.80a | |
20~40 cm | 6.05±2.18ab | 23.03±8.84a | 8.84±4.70ab | 106.71±38.62a | |
40~60 cm | 2.58±1.38ab | 6.21±6.53bab | 2.15±1.09ab | 75.00±31.75a | |
60~100 cm | 3.07±1.61b | 12.06±10.37ab | 1.99±1.22b | 82.29±26.78a | |
平均 | 4.55±2.47 | 14.87±10.66 | 4.86±4.72 | 101.47±42.42 | |
Ⅲ区 | 0-10cm | 4.92±1.52a | 23.48±11.28a | 13.55±10.17a | 122.33±37.64a |
10~20 cm | 4.69±1.04a | 19.60±3.28a | 11.77±7.78a | 120.17±31.33a | |
20~40 cm | 3.71±1.27ab | 12.36±1.70ab | 5.67±3.44ab | 129.17±62.32a | |
40~60 cm | 3.34±2.49ab | 9.47±3.80ab | 1.74±0.57b | 107.86±50.80a | |
60~100 cm | 2.21±0.67b | 4.37±4.01b | 15.58±15.65b | 50.77±59.59a | |
平均 | 3.95±1.73 | 12.65±8.89 | 10.11±10.95 | 99.79±57.92 | |
Ⅳ区 | 0~10 cm | 9.34±4.46a | 44.53±26.21a | 25.02±12.10a | 165.43±51.68a |
10~20 cm | 9.46±3.81a | 13.45±7.17b | 20.30±11.37a | 123.86±49.57a | |
20~40 cm | 5.96±4.42ab | 10.98±1.87b | 7.95±9.37ab | 114.00±40.73a | |
40~60 cm | 3.46±0.95ab | 25.66±8.66a | 1.84±0.69b | 108.00±60.33a | |
60~100 cm | 3.18±2.11b | 25.17±10.48ab | 1.36±0.76b | 92.29±67.17a | |
平均 | 6.28±4.26 | 23.96±17.58 | 11.30±12.68 | 120.71±57.08 | |
Ⅴ区 | 0~10 cm | 10.75±3.70ab | 16.12±8.77a | 18.70±13.69a | 200.29±48.15a |
10~20 cm | 6.86±2.58ab | 14.08±8.73a | 26.14±17.25a | 123.86±49.57a | |
20~40 cm | 8.17±3.76ab | 17.37±9.33a | 10.78±9.67ab | 114.00±40.73a | |
40~60 cm | 6.59±4.36ab | 16.54±11.39a | 2.00±0.93b | 108.00±60.33a | |
60~100 cm | 6.01±3.74ab | 19.17±10.50a | 2.46±1.64b | 92.29±67.17a | |
平均 | 7.68±3.85 | 16.65±9.36 | 12.02±13.88 | 127.69±63.55 |
Tab.3 Soil nutrients in the initial years of land conversion with different vertical depths
研究区域 Research area | 土壤层次 Soil layer | 营养物质Nutrient | |||
---|---|---|---|---|---|
有机质 Organic matter (g/kg) | 碱解N Alkaline hydrolysis N (mg/kg) | 有效P Olsen-P (mg/kg) | 速效K Available K (mg/kg) | ||
Ⅰ区 | 0~10 cm | 7.51±2.94a* | 25.84±13.60a | 10.20±6.55a* | 124.86±48.62a |
10~20 cm | 6.86±2.58a | 21.48±7.30a | 9.77±6.10a* | 101.43±28.11a | |
20~40 cm | 3.13±0.97ab | 18.45±13.56a | 2.35±2.58ab | 75.86±17.8a | |
40~60 cm | 2.56±1.68b* | 11.58±8.05a | 0.67±0.30b* | 84.57±49.32a | |
60~100 cm | 3.08±1.68b | 9.84±6.96a | 0.79±0.43b | 89.86±29.46a | |
平均 | 4.63±2.91 | 17.44±11.47 | 4.76±5.87 | 95.31±38.61 | |
Ⅱ区 | 0~10 cm | 4.55±2.47ab | 14.87±10.66ab | 4.86±4.72ab | 101.47±42.42a |
10~20 cm | 6.67±1.81a | 24.78±9.75a | 10.25±4.99a | 129.83±38.80a | |
20~40 cm | 6.05±2.18ab | 23.03±8.84a | 8.84±4.70ab | 106.71±38.62a | |
40~60 cm | 2.58±1.38ab | 6.21±6.53bab | 2.15±1.09ab | 75.00±31.75a | |
60~100 cm | 3.07±1.61b | 12.06±10.37ab | 1.99±1.22b | 82.29±26.78a | |
平均 | 4.55±2.47 | 14.87±10.66 | 4.86±4.72 | 101.47±42.42 | |
Ⅲ区 | 0-10cm | 4.92±1.52a | 23.48±11.28a | 13.55±10.17a | 122.33±37.64a |
10~20 cm | 4.69±1.04a | 19.60±3.28a | 11.77±7.78a | 120.17±31.33a | |
20~40 cm | 3.71±1.27ab | 12.36±1.70ab | 5.67±3.44ab | 129.17±62.32a | |
40~60 cm | 3.34±2.49ab | 9.47±3.80ab | 1.74±0.57b | 107.86±50.80a | |
60~100 cm | 2.21±0.67b | 4.37±4.01b | 15.58±15.65b | 50.77±59.59a | |
平均 | 3.95±1.73 | 12.65±8.89 | 10.11±10.95 | 99.79±57.92 | |
Ⅳ区 | 0~10 cm | 9.34±4.46a | 44.53±26.21a | 25.02±12.10a | 165.43±51.68a |
10~20 cm | 9.46±3.81a | 13.45±7.17b | 20.30±11.37a | 123.86±49.57a | |
20~40 cm | 5.96±4.42ab | 10.98±1.87b | 7.95±9.37ab | 114.00±40.73a | |
40~60 cm | 3.46±0.95ab | 25.66±8.66a | 1.84±0.69b | 108.00±60.33a | |
60~100 cm | 3.18±2.11b | 25.17±10.48ab | 1.36±0.76b | 92.29±67.17a | |
平均 | 6.28±4.26 | 23.96±17.58 | 11.30±12.68 | 120.71±57.08 | |
Ⅴ区 | 0~10 cm | 10.75±3.70ab | 16.12±8.77a | 18.70±13.69a | 200.29±48.15a |
10~20 cm | 6.86±2.58ab | 14.08±8.73a | 26.14±17.25a | 123.86±49.57a | |
20~40 cm | 8.17±3.76ab | 17.37±9.33a | 10.78±9.67ab | 114.00±40.73a | |
40~60 cm | 6.59±4.36ab | 16.54±11.39a | 2.00±0.93b | 108.00±60.33a | |
60~100 cm | 6.01±3.74ab | 19.17±10.50a | 2.46±1.64b | 92.29±67.17a | |
平均 | 7.68±3.85 | 16.65±9.36 | 12.02±13.88 | 127.69±63.55 |
不同部位 Different parts | 样地 Sample plot | 全N Total N (g/kg) | 全P Total P (g/kg)) | 全K Total K (g/kg) | 有机碳 Organic carbon (g/kg) |
---|---|---|---|---|---|
棉秆 Cotton stalk | Ⅰ区 | 11.09±2.01ab | 1.54±0.27a | 25.02±1.33ab | 419.33±15.98b |
Ⅱ区 | 12.58±4.61ab | 1.71±0.45a | 24.27±6.93ab | 397.86±54.39ab | |
Ⅲ区 | 9.59±2.26a | 1.67±0.58a | 28.38±5.57a | 384.67±30.70a | |
Ⅳ区 | 13.25±2.22b | 1.39±0.08a | 24.01±6.93b | 414.00±18.87b | |
Ⅴ区 | 12.22±1.86ab | 1.64±0.25a | 25.43±7.52ab | 439.00±22.83b | |
根系 Root system | Ⅰ区 | 10.2±1.52ab | 3.85±1.74ab | 35.1±14.58ab | 409.00±36.41b |
Ⅱ区 | 10.7±1.50ab | 3.81±1.98b | 34.9±9.58b | 393.00±60.57b | |
Ⅲ区 | 7.73±3.10a | 1.30±0.38a | 13.9±8.16ab | 277.00±132.62a | |
Ⅳ区 | 13.1±2.80b | 1.47±0.39a | 13.6±12.17a | 381.00±42.59b | |
Ⅴ区 | 12.9±2.21b | 1.76±0.38a | 13.2±3.27ab | 420.00±23.57b |
Tab.4 Nutrient content of residual cotton in different returned farmland
不同部位 Different parts | 样地 Sample plot | 全N Total N (g/kg) | 全P Total P (g/kg)) | 全K Total K (g/kg) | 有机碳 Organic carbon (g/kg) |
---|---|---|---|---|---|
棉秆 Cotton stalk | Ⅰ区 | 11.09±2.01ab | 1.54±0.27a | 25.02±1.33ab | 419.33±15.98b |
Ⅱ区 | 12.58±4.61ab | 1.71±0.45a | 24.27±6.93ab | 397.86±54.39ab | |
Ⅲ区 | 9.59±2.26a | 1.67±0.58a | 28.38±5.57a | 384.67±30.70a | |
Ⅳ区 | 13.25±2.22b | 1.39±0.08a | 24.01±6.93b | 414.00±18.87b | |
Ⅴ区 | 12.22±1.86ab | 1.64±0.25a | 25.43±7.52ab | 439.00±22.83b | |
根系 Root system | Ⅰ区 | 10.2±1.52ab | 3.85±1.74ab | 35.1±14.58ab | 409.00±36.41b |
Ⅱ区 | 10.7±1.50ab | 3.81±1.98b | 34.9±9.58b | 393.00±60.57b | |
Ⅲ区 | 7.73±3.10a | 1.30±0.38a | 13.9±8.16ab | 277.00±132.62a | |
Ⅳ区 | 13.1±2.80b | 1.47±0.39a | 13.6±12.17a | 381.00±42.59b | |
Ⅴ区 | 12.9±2.21b | 1.76±0.38a | 13.2±3.27ab | 420.00±23.57b |
样地 Sample plot | 全N Total N (g/kg) | 全P Total P (g/kg)) | 全K Total K (g/kg) | 有机碳 Organic carbon (g/kg) |
---|---|---|---|---|
Ⅰ区 | 27.62±2.25b | 1.35±0.33b | 16.40±6.02b | 333.33±56.15b |
Ⅱ区 | 24.58±4.30b | 1.96±1.09b | 22.70±10.09ab | 304.17±43.99ab |
Ⅲ区 | 14.22±7.23a | 2.84±1.71a | 33.34±19.12ab | 247.57±99.59a |
Ⅳ区 | 25.26±8.55b | 4.14±1.49b | 41.67±16.69a | 309.00±80.11ab |
Ⅴ区 | 24.86±5.09b | 3.00±0.45a | 39.03±23.45a | 332.29±32.78b |
Tab.5 Characteristics of herb nutrient content
样地 Sample plot | 全N Total N (g/kg) | 全P Total P (g/kg)) | 全K Total K (g/kg) | 有机碳 Organic carbon (g/kg) |
---|---|---|---|---|
Ⅰ区 | 27.62±2.25b | 1.35±0.33b | 16.40±6.02b | 333.33±56.15b |
Ⅱ区 | 24.58±4.30b | 1.96±1.09b | 22.70±10.09ab | 304.17±43.99ab |
Ⅲ区 | 14.22±7.23a | 2.84±1.71a | 33.34±19.12ab | 247.57±99.59a |
Ⅳ区 | 25.26±8.55b | 4.14±1.49b | 41.67±16.69a | 309.00±80.11ab |
Ⅴ区 | 24.86±5.09b | 3.00±0.45a | 39.03±23.45a | 332.29±32.78b |
[1] | 曾勇, 赵成义, 李传金, 等. 塔里木河沿岸不同生境下胡杨(Populus euphratica)群落的空间分布格局及关联性[J]. 生态学质志, 2019, 38(11):3273-3282. |
ZENG Yong, ZHAO Chengyi, LI Chuanjin, et al. Spatial distribution pattern and correlation of Populus euphratica community in different habitats along the Tarim River[J]. Ecology, 2019, 38(11):3273-3282. | |
[2] | 刘加珍, 陈亚宁, 陈永金. 塔里木河下游物种多样性恢复速率分析[J]. 干旱区地理, 2008, 31(6):870-877. |
LIU Jiazhen, CHEN Yaning, CHEN Yongjin. Analysis of restoration rate of species diversity in the lower reaches of Tarim River[J]. Arid Land Geography, 2008, 31(6):870-877. | |
[3] |
Gamfeldt L, Snäll T, Bagchi R, et al. Higher levels of multiple ecosystem services are found in forests with more tree species[J]. Nature Communications, 2013, 4:1340.
DOI PMID |
[4] | 马博虎, 刘毅, 李世清, 等. 黄土高原生态环境建设与土壤质量演变[J]. 生态经济, 2007, 23(3):39-46. |
MA Bohu, LIU Yi, LI Shiqing, et al. Ecological Environment Construction and Soil Quality Evolution on the Loess Plateau[J]. Ecological Economy, 2007, 23(3):39-46. | |
[5] | 韩新辉, 杨改河, 徐丽萍, 等. 黄土高原林(草)生态工程作用机理及模型验证[J]. 西北农林科技大学学报(自然科学版), 2008, 36(7):118-126. |
HAN Xinhui, YANG Gaihe, XU Liping, et al. Mechanism and model validation of forest(grass) ecological engineering on the Loess Plateau[J]. Journal of Northwest A&F University(Natural Science Edition), 2008, 36(7):118-126. | |
[6] |
邵新庆, 石永红, 韩建国, 等. 典型草原自然演替过程中土壤理化性质动态变化[J]. 草地学报, 2008, 16(6):566-571.
DOI |
SHAO Xinqing, SHI Yonghong, HAN Jianguo, et al. Dynamic changes in soil physicochemical properties during natural succession of typical grasslands[J]. Journal of Grassland Science, 2008, 16(6):566-571. | |
[7] | 温仲明, 焦峰, 刘宝元, 等. 黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J]. 应用生态学报, 2005, 16(11):2025-2029. |
WEN Zhongming, JIAO Feng, LIU Baoyuan, et al. Natural vegetation restoration and soil nutrient changes in the abandoned farmland in the Forest steppe area of the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2005, 16(11):2025-2029.
PMID |
|
[8] | 杨玉海, 陈亚宁, 李卫红. 新疆塔里木河下游土壤特性及其对物种多样性的影响[J]. 生态学报, 2008, 28(2):602-611. |
YANG Yuhai, CHEN Yaning, LI Weihong. Soil characteristics in the lower reaches of the Tarim River in Xinjiang and their impact on species diversity[J]. Acta Ecologica Sinica, 2008, 28(2):602-611. | |
[9] | 邓铭江. 塔里木河生态输水与生态修复研究与实践[J]. 中国水利, 2022,(19):29-32. |
DENG Mingjiang. Research and Practice on Ecological Water Transport and Ecological Restoration of the Tarim River[J]. China Water Conservancy, 2022,(19):29-32. | |
[10] | 陈亚宁, 李卫红, 陈亚鹏, 等. 塔里木河下游断流河道输水的生态响应与生态修复[J]. 干旱区研究, 2006, 23(4):521-530. |
CHEN Yaning, LI Weihong, CHEN Yapeng, et al. Ecological response and ecological restoration of water transport in the interrupted river channels of the lower reaches of the Tarim River[J]. Arid Zone Research, 2006, 23(4):521-530. | |
[11] | 李卫红, 陈亚鹏, 张宏峰, 等. 塔里木河下游断流河道应急输水与地表植被响应[J]. 中国沙漠, 2004, 24(3):301-305. |
LI Weihong, CHEN Yapeng, ZHANG Hongfeng, et al. Emergency water supply and surface vegetation response in the downstream of the Tarim River in the cut off channel[J]. Journal of Desert Research, 2004, 24(3):301-305. | |
[12] | 古丽努尔·沙布尔哈孜, 尹林克, 严成. 塔里木河下游人工胡杨林生态恢复过程的初步研究[J]. 干旱区地理, 2004, 27(3):384-387. |
Gulinuer Shabuerhazi, YIN Linke, YAN Cheng. Preliminary study on the ecological restoration process of artificial Populus euphratica forest in the lower reaches of the Tarim River[J]. Arid Land Geography, 2004, 27(3):384-387. | |
[13] | 汪飞. 尉犁县退耕还林综合效益评价研究[D]. 乌鲁木齐: 新疆大学, 2009. |
WANG Fei. Research on the Comprehensive Benefit Evaluation of Returning Farmland to Forests in Yuli County[D]. Urumqi: Xinjiang University, 2009. | |
[14] |
Lei J, Du H L, Duan A G, et al. Effect of stand density and soil layer on soil nutrients of a 37-year-old Cunninghamia lanceolata plantation in Naxi,Sichuan Province,China[J]. Sustainability, 2019, 11(19):5410.
DOI URL |
[15] | 古丽努尔·沙布尔哈孜, 尹林克, 热合木都拉·阿地拉. 塔里木河中下游退耕还林还草综合生态效益评价研究[J]. 水土保持学报, 2004, 18(5):80-83. |
Gulinuer Shabuerhazi, YIN Linke, Rehemudula Adila. Study on the Comprehensive Ecological Benefit Evaluation of Returning Farmland to Forests and Grassland in the Middle and Lower Reaches of the Tarim River[J]. Journal of Soil and Water Conservation, 2004, 18(5):80-83. | |
[16] | 李裕元, 邵明安. 黄土高原气候变迁、植被演替与土壤干层的形成[J]. 干旱区资源与环境, 2001, 15(1):72-77. |
LI Yuyuan, SHAO Mingan. Climate change,vegetation succession,and formation of soil dry layer on the Loess Plateau[J]. Journal of Arid Land Resources and Environment, 2001, 15(1):72-77. | |
[17] | 刘加珍, 陈亚宁, 李卫红, 等. 塔里木河下游植物群落分布与衰退演替趋势分析[J]. 生态学报, 2004, 24(2):379-383. |
LIU Jiazhen, CHEN Yaning, LI Weihong, et al. Analysis of distribution and decline succession trend of plant community in the lower reaches of Tarim River[J]. Acta Ecologica Sinica, 2004, 24(2):379-383. | |
[18] | 徐海量, 宋郁东, 陈亚宁, 等. 应用因子分析研究塔里木河下游生态环境的退化[J]. 干旱区地理, 2005, 28(1):21-25. |
XU Hailiang, SONG Yudong, CHEN Yaning, et al. Study on the degeneration of ecological environment in the lower reaches of the Tarim River by using factor analysis[J]. Arid Land Research, 2005, 28(1):21-25. | |
[19] | Clements F E. Nature and structure of the climax.[J]. Eco., 1936, 24:252-284. |
[20] | Holdridge. L if e z one ecology.San Jose,Costa Rica: T ropical science center,1967. |
[21] |
史军辉, 刘茂秀, 王新英, 等. 塔里木河胡杨林生长过程土壤层碳氮磷化学计量变化特征及与其叶含量的相关性[J]. 新疆农业科学, 2019, 56(10):1879-1887.
DOI |
SHI Junhui, LIU Maoxiu, WANG Xinying, et al. Characteristics of stoichiometric changes in soil carbon,nitrogen,and phosphorus during the growth process of Populus euphratica forests in the Tarim River and their correlation with leaf content[J]. Xinjiang Agricultural Sciences, 2019, 56(10):1879-1887.
DOI |
|
[22] | 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Soil Agrochemical Analysis(Third Edition)[M]. Beijing: China Agriculture Press, 2000. | |
[23] |
韩路, 王海珍, 彭杰, 等. 塔里木荒漠河岸林植物群落演替下的土壤理化性质研究[J]. 生态环境学报, 2010, 19(12):2808-2814.
DOI |
HAN Lu, WANG Haizhen, PENG Jie, et al. Study on soil physical and chemical properties under succession of plant community in Tarim desert riparian forest[J]. Journal of Ecological Environment, 2010, 19(12):2808-2814. | |
[24] |
Knops J M H, Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology, 2000, 81(1):88.
DOI URL |
[25] |
左小安, 赵学勇, 赵哈林, 等. 沙地退化植被恢复过程中灌木发育对草本植物和土壤的影响[J]. 生态环境学报, 2009, 18(2):643-647.
DOI |
ZUO Xiaoan, ZHAO Xueyong, ZHAO Halin, et al. The impact of shrub development on herbaceous plants and soil during the restoration of degraded vegetation in sandy land[J]. Journal of Ecology and Environment, 2009, 18(2):643-647. | |
[26] | 张兆彤, 王金满, 张佳瑞. 矿区复垦土壤与植被交互影响的研究进展[J]. 土壤, 2018, 50(2):239-247. |
ZHANG Zhaotong, WANG Jinman, ZHANG Jiarui. Research progress on the interaction between soil and vegetation in mining area reclamation[J]. Soils, 2018, 50(2):239-247. | |
[27] | 吴彦, 刘庆, 乔永康, 等. 亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J]. 植物生态学报, 2001, 25(6):648-655. |
WU Yan, LIU Qing, QIAO Yongkang, et al. Change of community species diversity in different restoration stages of subalpine coniferous forest and its impact on soil physical and chemical properties[J]. Chinese Journal of Plant Ecology, 2001, 25(6):648-655. | |
[28] | 温仲明, 焦峰, 赫晓慧, 等. 黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J]. 草业学报, 2007, 16(1):16-23. |
WEN Zhongming, JIAO Feng, HE Xiaohui, et al. Natural restoration of vegetation on abandoned farmland in the forest edge area of the Loess Plateau and its impact on soil nutrient changes[J]. Acta Prataculturae Sinica, 2007, 16(1):16-23. | |
[29] | 王凯博, 陈美玲, 秦娟, 等. 子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J]. 西北植物学报, 2007, 27(10):2089-2096. |
WANG Kaibo, CHEN Meiling, QIN Juan, et al. Shangguan Zhouping. Changes in plant diversity and their relationship with soil physicochemical properties during natural vegetation succession in Ziwuling[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(10):2089-2096. | |
[30] | 刘鸿雁, 黄建国. 缙云山森林群落次生演替中土壤理化性质的动态变化[J]. 应用生态学报, 2005, 16(11):2041-2046. |
LIU Hongyan, HUANG Jianguo, JI Yunshang. Dynamics of soil properties under secondary succession forest communities in Mt.Jinyuan[J]. Chinese Journal of Applied Ecology, 2005, 16(11):2041-2046.
PMID |
|
[31] | 王新英, 史军辉, 刘茂秀. 塔里木河流域不同龄组胡杨林土壤理化性质及相关性[J]. 东北林业大学学报, 2016, 44(9):63-68. |
WANG Xinying, SHI Junhui, LIU Maoxiu. Soil physicochemical properties and correlation of Populus euphratica forests of different age groups in the Tarim River Basin[J]. Journal of Northeast Forestry University, 2016, 44(9):63-68. | |
[32] | 牛沙沙, 周永斌, 刘丽颖, 等. 不同林龄樟子松人工林土壤理化性质[J]. 东北林业大学学报, 2015, 43(2):47-50,62. |
NIU Shasha, ZHOU Yongbin, LIU Liying, et al. Soil physicochemical properties of Pinus sylvestris plantations of different ages[J]. Journal of Northeast Forestry University, 2015, 43(2):47-50,62. | |
[33] | 赵伟红, 康峰峰, 韩海荣, 等. 冀北辽河源地区不同林龄油松天然次生林土壤理化特征的研究[J]. 西北林学院学报, 2014, 29(3):1-8. |
ZHAO Weihong, KANG Fengfeng, HAN Hairong, et al. Study on soil physicochemical characteristics of natural secondary forests of Pinus tabulaeformis at different ages in the Liaohe River source area of northern Hebei[J]. Journal of Northwest Forestry University, 2014, 29(3):1-8. | |
[34] | 温仲明, 焦锋, 卜耀军, 等. 植被恢复重建对环境影响的研究进展[J]. 西北林学院学报, 2005, 20(1):10-15. |
WEN Zhongming, JIAO Feng, BU Yaojun, et al. Research progress on the impact of vegetation restoration and reconstruction on the environment[J]. Journal of Northwest Forestry University, 2005, 20(1):10-15. | |
[35] | 张久丹, 李均力, 包安明, 等. 2013-2020年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2022, 45(6):1824-1835. |
ZHANG Jiudan, LI Junli, BAO Anming, et al. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013-202[J]. Arid Land Geography, 2022, 45(6):1824-1835. | |
[36] | 朱成刚, 艾克热木·阿布拉, 李卫红, 等. 塔里木河下游生态输水条件下胡杨林生态系统恢复研究[J]. 干旱区地理, 2021, 44(3):629-636. |
ZHU Chenggang, Aikeremu Abula, LI Weihong, et al. Study on the restoration of Populus euphratica forest ecosystem under ecological water transport conditions in the lower reaches of the Tarim River[J]. Arid Land Geography, 2021, 44(3):629-636. | |
[37] | 田洪艳, 郭平, 周道玮. 草原开垦对草原土壤及植被的扰动生态学作用[J]. 干旱区研究, 2001, 18(3):67-71. |
TIAN Hongyan, GUO Ping, ZHOU Daowei. Ecological disturbance effects of grassland reclamation on grassland soil and vegetation[J]. Arid Zone Research, 2001, 18(3):67-71. | |
[38] | 郑秋红, 张宏, 贾海坤. 怀来盆地弃耕地自然恢复过程中土壤养分动态[J]. 生态与农村环境学报, 2006, 22(1):24-28. |
ZHENG Qiuhong, ZHANG Hong, JIA Haikun, et al. Soil nutrient dynamics during the natural restoration of abandoned farmland in the Huailai Basin[J]. Journal of Ecology and Rural Environment, 2006, 22(1):24-28. | |
[39] | 王雷涛, 尹林克, 孙霞, 等. 塔里木河中下游退耕还林还草地的评价方法研究[J]. 干旱区研究, 2005, 22(4):537-540. |
WANG Leitao, YIN Linke, SUN Xia, et al. Study on the evaluation method of returning farmland to forests and grasslands in the middle and lower reaches of the Tarim River[J]. Arid Zone Research, 2005, 22(4):537-540. | |
[40] | 李春香, 戴乐, 吴晓菊. 塔里木河中下游退耕还林还草工程生态经济效益评价[J]. 湖北农业科学, 2012, 51(19):4440-4442. |
LI Chunxiang, DAI Le, WU Xiaoju. Ecological and economic benefits evaluation of the project of returning farmland to forests and grasslands in the middle and lower reaches of the Tarim River[J]. Hubei Agricultural Sciences, 2012, 51(19):4440-4442. | |
[41] | 孟林, 尹林克, 白根本, 等. 塔里木河中下游退耕还林还草适宜区域界定与优化布局模式研究[J]. 草业学报, 2003, 12(6):36-41. |
MENG Lin, YIN Linke, BAI Gengen, et al. Study on the definition and optimized layout model of suitable areas for returning farmland to forests and grasslands in the middle and lower reaches of the Tarim River[J]. Acta Prataculturae Sinica, 2003, 12(6):36-41. |
[1] | WANG Xin-ying, SHI Jun-hui, LIU Mao-xiu. Nutrient Accumulation Characteristics and Dynamic Change of Natural Populus euphratica Forest in the Tarim River Basin [J]. Xinjiang Agricultural Sciences, 2018, 55(6): 1036-1045. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||