Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (8): 2046-2054.DOI: 10.6048/j.issn.1001-4330.2023.08.027
• Plant Protection · Microbes • Previous Articles Next Articles
ZHU Jing(), ZHANG Zhidong(
), TANG Qiyong, GU Meiying
Received:
2022-11-03
Online:
2023-08-20
Published:
2023-08-14
Correspondence author:
ZHANG Zhidong (1977-), male, Urumqi of Xinjiang, master degree professor, research field in special environmental microbiology, (E-mail)zhangzheedong@sohu.comSupported by:
通讯作者:
张志东(1977- ),男,新疆乌鲁木齐人,研究员,硕士生导师,研究方向为特殊环境微生物学,(E-mail)zhangzheedong@sohu.com作者简介:
朱静(1981-),女,云南昆明人,研究员,硕士,研究方向为特殊环境微生物学,(E-mail)122543537@qq.com
基金资助:
CLC Number:
ZHU Jing, ZHANG Zhidong, TANG Qiyong, GU Meiying. Effects of radiation on metabolic activities of Aureobasidium melanogenum based on biolog FF system[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2046-2054.
朱静, 张志东, 唐琦勇, 顾美英. 基于Biolog FF技术解析辐射对产黑色素短梗霉代谢活性的影响[J]. 新疆农业科学, 2023, 60(8): 2046-2054.
Fig.2 Mycelial characteristics of the strain MF1 Note:cultured on Czapek Dox Agar at 28℃ for 7 days and observed under an Olympus BX43 (40×) microscope
辐射剂量Radiation Dose(Gy) | |||||||
---|---|---|---|---|---|---|---|
0 Gy | 2 500 Gy | 5 000 Gy | 10 000 Gy | ||||
碳源 Carbon source | 吸光值 Absorbance (Ci -R) | 碳源 Carbon source | 吸光值 Absorbance (Ci -R) | 碳源 Carbon source | 吸光值 Absorbance (Ci -R) | 碳源 Carbon source | 吸光值 Absorbance (Ci -R) |
L-苹果酸 L-Malic Acid | 0.716 | 熊果苷 Arbutin | 0.608 | 熊果苷 Arbutin | 0.562 | D-核糖 D-Ribose | 0.188 |
反丁烯二酸 Fumaric Acid | 0.656 | 反丁烯二酸 Fumaric Acid | 0.555 | D-木糖 D-Xylose | 0.391 | 蔗糖 Sucrose | 0.138 |
琥珀酸 Succinic Acid | 0.609 | L-脯氨酸 L-Proline | 0.537 | D-蜜三糖 D-Raffinose | 0.242 | D-阿拉伯糖 D-Arabinose | 0.126 |
L-谷氨酸 L-Glutamic Acidine | 0.602 | L-苹果酸 L-Malic Acid | 0.497 | 6-O-D-吡喃葡萄 糖酰-D-呋喃果糖 Palatinose | 0.239 | D-海藻糖 D-Trehalose | 0.126 |
L-脯氨酸 L-Prol | 0.597 | 琥珀酸 Succinic Acid | 0.444 | D-松三糖 D-Melezitose | 0.232 | 熊果苷 Arbutin | 0.106 |
熊果苷 Arbutin | 0.576 | 水杨苷 Salicin | 0.402 | 糊精 Dextrin | 0.217 | D-木糖 D-Xylose | 0.105 |
6-O-D-吡喃葡萄 糖酰-D-呋喃果糖 Palatinose | 0.531 | D-木糖 D-Xylose | 0.389 | 溴代琥珀酸 Bromosuccinic Acid | 0.215 | L-阿拉伯糖 L-Arabinose | 0.101 |
水杨苷 Salicin | 0.481 | 糊精 Dextrin | 0.37 | D-果糖 D-Fructose | 0.197 | ||
D-葡萄醛酸 D-Glucuronic Acid | 0.476 | L-谷氨酸 L-Glutamic Acid | 0.367 | D-海藻糖 D-Trehalose | 0.195 | ||
D-木糖 D-Xylose | 0.468 | 海藻糖 D-Trehalose | 0.336 | 琥珀酸甲基酯 Succinic Acid Mono-Methyl Ester | 0.192 |
Tab.1 Utilization of 10 carbon sources by strain under different radiation doses
辐射剂量Radiation Dose(Gy) | |||||||
---|---|---|---|---|---|---|---|
0 Gy | 2 500 Gy | 5 000 Gy | 10 000 Gy | ||||
碳源 Carbon source | 吸光值 Absorbance (Ci -R) | 碳源 Carbon source | 吸光值 Absorbance (Ci -R) | 碳源 Carbon source | 吸光值 Absorbance (Ci -R) | 碳源 Carbon source | 吸光值 Absorbance (Ci -R) |
L-苹果酸 L-Malic Acid | 0.716 | 熊果苷 Arbutin | 0.608 | 熊果苷 Arbutin | 0.562 | D-核糖 D-Ribose | 0.188 |
反丁烯二酸 Fumaric Acid | 0.656 | 反丁烯二酸 Fumaric Acid | 0.555 | D-木糖 D-Xylose | 0.391 | 蔗糖 Sucrose | 0.138 |
琥珀酸 Succinic Acid | 0.609 | L-脯氨酸 L-Proline | 0.537 | D-蜜三糖 D-Raffinose | 0.242 | D-阿拉伯糖 D-Arabinose | 0.126 |
L-谷氨酸 L-Glutamic Acidine | 0.602 | L-苹果酸 L-Malic Acid | 0.497 | 6-O-D-吡喃葡萄 糖酰-D-呋喃果糖 Palatinose | 0.239 | D-海藻糖 D-Trehalose | 0.126 |
L-脯氨酸 L-Prol | 0.597 | 琥珀酸 Succinic Acid | 0.444 | D-松三糖 D-Melezitose | 0.232 | 熊果苷 Arbutin | 0.106 |
熊果苷 Arbutin | 0.576 | 水杨苷 Salicin | 0.402 | 糊精 Dextrin | 0.217 | D-木糖 D-Xylose | 0.105 |
6-O-D-吡喃葡萄 糖酰-D-呋喃果糖 Palatinose | 0.531 | D-木糖 D-Xylose | 0.389 | 溴代琥珀酸 Bromosuccinic Acid | 0.215 | L-阿拉伯糖 L-Arabinose | 0.101 |
水杨苷 Salicin | 0.481 | 糊精 Dextrin | 0.37 | D-果糖 D-Fructose | 0.197 | ||
D-葡萄醛酸 D-Glucuronic Acid | 0.476 | L-谷氨酸 L-Glutamic Acid | 0.367 | D-海藻糖 D-Trehalose | 0.195 | ||
D-木糖 D-Xylose | 0.468 | 海藻糖 D-Trehalose | 0.336 | 琥珀酸甲基酯 Succinic Acid Mono-Methyl Ester | 0.192 |
[1] |
Cox M M, Battista J R. Deinococcus radiodurans - the consummate survivor[J]. Nature Reviews Microbiology, 2005, 3: 882-892.
DOI |
[2] |
McGee E J, Synnott H J, Johanson K J, et al. Chernobyl fallout in a Swedish spruce forest ecosystem[J]. Journal of Environmental Radioactivity, 2000, 48:59-78.
DOI URL |
[3] |
Baeza A, Guillén J. Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms[J]. Applied Radiation and Isotopes, 2006, 64:1020-1026.
PMID |
[4] |
Dighton J, Tugay T, Zhdanova N. Fungi and ionizing radiation from radionuclides[J]. FEMS microbiology letters, 2008, 281: 109-120.
DOI PMID |
[5] |
Mironenko N V, Alekhina I A, Zhdanova N N, et al. Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: A case study of strains inhabiting Chernobyl reactor No.4[J]. Ecotoxicology and Environmental Safety, 2000, 45:177-187.
PMID |
[6] | 王戈林, 宁华, 沈萍, 等. 酪氨酸酶基因工程菌产黑色素的发酵条件研究[J]. 中国医药工业杂志, 1999, 30(4):150-154. |
WANG Gelin, NING Hua, SHEN Ping, et al. Study on production of melanin by tyrosinase gene engineering bacteria[J]. Chinese Journal of Pharmaceuticals, 1999, 30(4):150-154. | |
[7] |
Zalar P, Gostinĉar C, de Hoog Gauth, et al. Redefinition of Aureobasidium pullulans and its varieties[J]. Studies in Mycology, 2008, 61(1): 21-38.
DOI URL |
[8] | 张志东, 谢玉清, 王玮, 等. 耐辐射黑色酵母状真菌的筛选和特性研究[J]. 微生物学通报, 2012, 39(5): 724-731. |
ZHANG Zhidong, XIE Yuqing, WANG Wei, et al. Isolation and character of radio-resistant blackyeast-like fungus[J]. Microbiology China, 2012, 39(5): 724-731. | |
[9] | 周宁一. 耐辐射的产黑色素酵母状真菌[J]. 微生物学通报, 2012, 39(5):722-723. |
ZHOU Ningyi. Radio resistant melanin-producing yeast-like fungi[J]. Microbiology China, 2012, 39(5):722-723. | |
[10] | 王丽敏, 李军, 胡小松. 苹果原料中酵母菌的分离鉴定[J]. 中国农业大学学报, 2004, 9(4): 14-17. |
WANG Limin, LI Jun, HU Xiaosong. Isolation and identification of yeastsfrom apple[J]. Journal of China Agricultural University, 2004, 9(4): 14-17. | |
[11] | 李运, 盛慧, 赵荣华. Biolog微生物鉴定系统在菌种鉴定中的应用[J]. 酿酒科技, 2005, 26(7): 84-85. |
LI Yun, SHENG Hui, ZHAO Ronghua. Utilization of biolog microbesidentification system in the identification of microbial species[J]. Liquor-making Science & Technology, 2005, 26(7): 84-85. | |
[12] | Buyer J S, Roberts D P, Millner P, et al. Analysis of fungal communities by sole carbon source utilization profiles[J]. Journal of Microbiological Methods, 2001,(45): 53-60. |
[13] | 朱静, 顾美英, 王玮, 等. 一株耐辐射真菌的鉴定及黑色素分离提取[J]. 新疆农业科学, 2013, 50(10):1858-1864. |
ZHU Jing, GU Meiying, WANG Wei, et al. Study on the tolerance and adsorption of heavy metal ions by bacteria isolated from radiation-polluted soil[J]. Xinjiang Agricultural Sciences, 2013, 50(6): 1101-1107. | |
[14] | 朱静, 房世杰, 王玮, 等. 耐辐射短梗霉黑色素的发酵条件优化及稳定性研究[J]. 新疆农业科学, 2016, 53(9): 1692-1699. |
ZHU Jing, Fang Shijie, WANG Wei, et al. Study on the optimization of fermentation conditions and stability of melanin from a radiation-resistant Aureobasidium pullulans[J]. Xinjiang Agricultural Sciences, 2016, 53(9):1692-1699. | |
[15] | Gerrits van der Ende AHG, de Hoog G S. Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana[J]. Studies in Mycology, 1999, (43): 151-162. |
[16] |
Zalar P, Gostinĉar C, de Hoog G S, et al. Redefinitionof Aureobasidium pullulans and its varieties[J]. Studies in Mycology, 2008, 61(1): 21-38.
DOI URL |
[17] |
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987,(4): 406-425.
DOI PMID |
[18] | Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis usingmaximum likelihood, evolutionary distance, andmaximum parsimony methods[J]. MolecularBiology and Evolution, 2011, 28(10): 2731-2739. |
[19] | 邢华铭, 杜海涛, 张黎黎, 等. PCR-DGGE 与Biolog技术在土壤微生物多样性研究的比较[J]. 农业开发与装备, 2013, (10):48-49. |
XING Huaming, DU Haitao, ZHANG Lili, et al. Comparison of PCR-DGGEand Biolog technology research in soil microbial diversity[J]. Agricultural Development and Equipments, 2013, (10): 48-49. | |
[20] | Jiang S Y, Wang WX, Xue X X. Diversity in Microbial Carbon Metabolism of the Oil Shale at the Western Open Group in Fushun Basin[J]. Advanced Materials Research, 2014, 864-867:140-144. |
[21] | 杨永华, 姚健, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响[J]. 微生物学杂志, 2000, 20(2): 23-25. |
YANG Yonghua, YAO Jian, HUA Xiaomei. Effect of pesticide pollution against functional microbial diversity in soil[J]. Journal of Microbiology, 2000, 20(2): 23-25. | |
[22] | Tugai T, Zhdanova N N, Zheltonozhskii V A, et al. Development of radioadaptive properties for microscopic fungi, long time located on terrains with a heightened background radiation after emergency on Chernobyl NPP[J]. Radiats Biol Radioecol, 2007, 47(5):543-549. |
[23] |
Gu MY, Zhang ZD, Wang W, et al. The Effects of Radiation Pollution on the PopulationDiversities and Metabolic Characteristics of Soil Microorganisms[J]. Water Air Soil Pollut., 2014, 225: 2133.
DOI URL |
[24] | 张志东, 张丽娟, 朱静, 等. 核辐射污染区真菌的分布及多样性研究[J]. 微生物学杂志, 2018, 38(1):50-57. |
ZHANG Zhidong, ZHANG Lijuan, ZHU Jing, et al. Preliminary study on fungi distribution and diversity in nuclearradiation polluted area[J]. Journal of Microbiology, 2018, 38(1): 50-57. | |
[25] |
Taylor TN, Hass H, Kerp H, et al. Perithecial ascomycetes from the 400 million year old Rhyniechert: an example of ancestral polymorphism[J]. Mycologia, 2005, 97: 269-285.
PMID |
[26] | Jansonius J, Kalgutkar RM. Redescription of some fossil fungal spores[J]. Palynology, 2000, (24): 37-47. |
[27] |
Robinson CH. Cold adaptation in Arctic and Antarctic fungi[J]. New Phytologist, 2001, 151: 341-353.
DOI URL |
[28] |
Durrell L, Shields LM. Fungi Isolated in Culture from Soils of the Nevada Test Site[J]. Mycologia, 1960, 52: 636-641.
DOI URL |
[29] |
Gochenaur S, Woodwell G M. The Soil Microfungi of a Chronically Irradiated Oak-Pine Forest[J]. Ecology, 1974, 55: 1004-1016.
DOI URL |
[30] |
Andrea S, Luz M M, Ramón de Anda, et al. A novel plasmid vector designed for chromosomal gene integration and expression: Use for developing a genetically stable Escherichia coli melanin production strain[J]. Plasmid, 2013, 69: 16-23.
DOI PMID |
[31] |
Charles E T, Amy A E, Charles E M, et al. Gamma radiation interacts with melanin to alter its oxidation-reduction potential and results in electric current production[J]. Bioelectrochemistry, 2011, 82: 69-73.
DOI PMID |
[32] |
Ravella, S R Quinones, T S. Ret1er, et al. Extracellular polysacchatide (EPS) production by a novel strain of yeast-like fungus Aureobasidium pullulans[J]. Carbohydrate Polymers, 2010, 82(3):728-732.
DOI URL |
[33] |
Zheng Weifa, Bradley S M, Barbara M S, et al. Effects of melanin on the accumulation of exopolysaccharides byAureobasidium pullulans grown on Nitrate[J]. Bioresource Technology, 2008, 99(16):7480-7486.
DOI PMID |
[34] |
Zhang D P, Spadaro D V, Garibaldi S, et al. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens[J]. International Journal of Food Microbiology, 2012, 153(3):453-464.
DOI URL |
[35] | 陈波, 蒲刚军. 出芽短梗霉的发酵性能研究[J]. 食品科技, 2002, (11):15-17. |
CHEN Bo, PU Gangjun. Study on Fermentation Properties of Aureobasidium pullulans[J]. Food Science and Technology, 2002, (11):15-17. | |
[36] |
Schu T M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology and Biochemistry, 2001, 33(11):1481-1491.
DOI URL |
[37] |
Sangyong L, Jong-Hyun J, Laurence B, et al. Conservation and diversity of radiation and oxidativestress resistance mechanisms in Deinococcus species[J]. FEMS Microbiology Reviews, 2019, 43:19-52.
DOI PMID |
[38] |
易星, 莫远亮, 姜冬梅, 等. 多胺的生物学功能及其调控机制[J]. 动物营养学报, 2014, 26(2): 348-352.
DOI |
YI Xing, MO Yuanliang, JIANG Dongmei, et al. Biological Functions of polyamine and its regulatory mechanisms[J]. Chinese Journal of Animal Nutrition, 2014, 26(2): 348-352. | |
[39] |
Wang H, Wang J, Li L, et al. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate[J]. Scientific Reports, 2016, 6:31025.
DOI PMID |
[1] | Bahayiding Wupuer, Abulaike Niyazi, Huxidan Maimaiti, LYU Xiaolong, WANG Haomiao, MA Huiqin. Mutagenesis effect of 60Co-γ radiation on the annual branches of different fig varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 373-381. |
[2] | ZHANG Lijuan, TANG Qiyong, XIE Xuqing, GU Meiying, WANG Bo, ZHU Jing, SONG Suqin, HUANG Wei, ZHANG Zhidong, WANG Wei. Isolation and Identification of Filamentous Fungi F161 and Its Biosorption and Enrichment Characteristics of Strontiu [J]. Xinjiang Agricultural Sciences, 2021, 58(5): 882-892. |
[3] | HAN Peng, HUANG Chunyan, WANG Dengwei, XIAO Conghe. The Related Analysis between Canopy Photosynthetic Active Radiation and Its Yield and Yield Components in Cotton under Different Nitrogen Conditions [J]. Xinjiang Agricultural Sciences, 2021, 58(5): 785-793. |
[4] | YAO Qingqing, SUN Huijian, LUO Jing, DENG Yongming, LI Weiping. Effects of Nitrogen Fertilizer Reduction Regulation on Cotton Canopy Photosynthetic Effective Radiation and Yield [J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1404-1410. |
[5] | Alapati Tayierjiang, JIA Kai, LIU Qianjie, ZHANG Ni, LIU Yu, GAO Jie. Effects of Active Daylighting in Solar Greenhouses on Photosynthetic Characteristics of Tomatoes with Different Planting Densities [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 97-103. |
[6] | CHU Min, LING Qing, ZHANG Zhi-dong, GAO Yan, SHI Yin-wu, YANG Hong-mei, HUO XIANG-dong, GU Mei-ying, ZENG Jun, LI Yu-guo, Otkur, ZHANG Tao. Microbial Metabolic Activity and Diversity Response in Different Oil and Gas Storage Areas [J]. Xinjiang Agricultural Sciences, 2018, 55(10): 1927-1935. |
[7] | TIAN Chun-yan;HUANG Chun-yan;GUO Xiao-fei;LIU Xin-yue;WANG Deng-wei. Estimation of Cotton Canopy Fractional Interception of Absorbed Photosynthetic Active Radiation and Leaf Net Photosynthetic Rate Based on Hyperspectral Vegetation Index [J]. , 2017, 54(6): 981-987. |
[8] | NIU Ying-ying;LIAO Kang;ZHAO Shi-rong;PANG Hong-xiang;XU Gui-xiang;JIANG Zhen-bin;NIU Zhen-zhen. Study on PAR Change Rule of Korla Fragrant Pear Canopy in Different Planting Densities [J]. , 2016, 53(3): 420-428. |
[9] | LI Na;CHEN Chao;MA Cai-wen;ZHOU Ping;LING Hao-shu;ZHANG Ming-xing. Simulation Calculation on Solar Greenhouse Optimum Orientation Based on the Principle of Building Thermal [J]. , 2016, 53(11): 2112-2118. |
[10] | . The Effects of 60 Co-γ Rays Irradiation on Characters and glucan Content of the Progeny Barley [J]. , 2015, 52(12): 2180-2186. |
[11] | ZHAO Ying-shan;GOU Ling;XUE Jun;SHI Zhi-guo;YAO Min-na;ZHANG Wang-feng. Changes of Radiation Use Efficiency of Spring Maize under Different Plant Densities in Xinjiang [J]. , 2015, 52(12): 2166-2172. |
[12] | . Activated Sludge Culture Added with Microbes from the Radiation Pollution Area for Treatment Process of Wastewater of Oil Shale and the Microbial Community Composition Analysis [J]. , 2015, 52(1): 115-122. |
[13] | SONG Su-qin;CHU Min;WANG Wei;ZHU Jing;GU Mei-ying;TANG Qi-yong. Isolation and Related Characterization of the Polysaccharides of the Radiation-resistant Bacterium with High-yielding Polysaccharides [J]. , 2014, 51(12): 2262-2268. |
[14] | ZHU Jing;GU Mei-Ying;SONG Su-Qin;XIE Yu-qing;TANG Qi-yong;WANG Wei;ZHANG Zhi-dong. Study on the Tolerance and Adsorption of Heavy Metal Ions by Bacteria Isolated from Radiation-polluted Soil [J]. , 2013, 50(6): 1101-1107. |
[15] | WANG Qing-tao;PAN Cun-de;WANG Shi-wei;GUO Zhi-chao;HU Zhen-zhu;DING Fan;LI Yuan. Light Environmental Characteristics in Intercropping Alley of Armeniaca vulgaris 'Luntaibaixing' with Winter Wheat [J]. , 2013, 50(5): 817-822. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||