Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (6): 1451-1459.DOI: 10.6048/j.issn.1001-4330.2023.06.018
• Microbes·Horticultural Special Local Products·Storage and Preservation Processing • Previous Articles Next Articles
WEI Wei1,2(), SHAN Shouming1(
), XU Wendi1, LI Guangzong1
Received:
2022-10-28
Online:
2023-06-20
Published:
2023-06-20
Correspondence author:
SHAN Shouming(1975-), male, from Linyi, Shandong Province, professor, research direction: grape cultivation, (E-mail) fxssm@163.com
Supported by:
通讯作者:
单守明(1975-),男,山东临沂人,教授,博士研究生,硕士生导师,研究方向为葡萄栽培,(E-mail) fxssm@163.com
作者简介:
韦伟(1996-),男,宁夏青铜峡人,研究方向为葡萄逆境生理与分子生物学,(E-mail)weiwei12312321@163.com
基金资助:
CLC Number:
WEI Wei, SHAN Shouming, XU Wendi, LI Guangzong. Transcriptome analysis of callus at rooting stage in tissue culture of vitis amurensis 'shuangyou'[J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1451-1459.
韦伟, 单守明, 徐文娣, 李光宗. 山葡萄‘双优’组织培养生根期愈伤组织的转录组分析[J]. 新疆农业科学, 2023, 60(6): 1451-1459.
试验组 Test group | 蔗糖浓度 Sucrose concentration (g/L) | NAA浓度 NAA concentration (mg/L) | IBA浓度 IBA concentration (mg/L) |
---|---|---|---|
S1 | 15 | 0.1 | 0.1 |
S2 | 15 | 0.5 | 0.3 |
S3 | 15 | 0.3 | 0.5 |
S4 | 25 | 0.3 | 0.1 |
S5 | 25 | 0.1 | 0.3 |
S6 | 25 | 0.5 | 0.5 |
S7 | 35 | 0.5 | 0.1 |
S8 | 35 | 0.3 | 0.3 |
S9 | 35 | 0.1 | 0.5 |
Tab.1 Orthogonal experimental design table
试验组 Test group | 蔗糖浓度 Sucrose concentration (g/L) | NAA浓度 NAA concentration (mg/L) | IBA浓度 IBA concentration (mg/L) |
---|---|---|---|
S1 | 15 | 0.1 | 0.1 |
S2 | 15 | 0.5 | 0.3 |
S3 | 15 | 0.3 | 0.5 |
S4 | 25 | 0.3 | 0.1 |
S5 | 25 | 0.1 | 0.3 |
S6 | 25 | 0.5 | 0.5 |
S7 | 35 | 0.5 | 0.1 |
S8 | 35 | 0.3 | 0.3 |
S9 | 35 | 0.1 | 0.5 |
基因ID Gene ID | 注释 Annotated | 序列 Sequence (5'-3') |
---|---|---|
VIT_07s0289g00080 | 糖基转移酶 | F: GCTACACGCTTCATCTCCAAGTCC R: GAGCCGCCTTCATCATAGCCATC |
VIT_13s0067g02360 | 过氧化物酶 | F: GGTGTGGTCTCGTGTGCTGATG R: TTGGAGGAGGGATGCTGTTGTTTG |
VIT_18s0041g00710 | 糖基转移酶 | F: AAAGGATTGGAGAACAGCGGACAG R: ATCGGCTTCTTCACTCTGCTTGC |
VIT_00s0615g00020 | 含PKS_ER结构域的蛋白质 | F: GAGATTGTAGGCATCGTGACAGAGG R: GCTCCAACCAGACACCCAACAC |
VIT_14s0128g00660 | 胚蛋白样蛋白 | F: TCATGGCATTGGCTTCCTCTCTTG R: TCTTGGGTTCAGGAATGGCAACAC |
VIT_07s0005g06450 | 含蛋白激酶结构域的蛋白质 | F: GTTTCCTTTCCGTGGCTCCAGAG R: GGCTTCCGCTACTTCTCGTTCAC |
Tab.2 Primer sequences of qRT-PCR
基因ID Gene ID | 注释 Annotated | 序列 Sequence (5'-3') |
---|---|---|
VIT_07s0289g00080 | 糖基转移酶 | F: GCTACACGCTTCATCTCCAAGTCC R: GAGCCGCCTTCATCATAGCCATC |
VIT_13s0067g02360 | 过氧化物酶 | F: GGTGTGGTCTCGTGTGCTGATG R: TTGGAGGAGGGATGCTGTTGTTTG |
VIT_18s0041g00710 | 糖基转移酶 | F: AAAGGATTGGAGAACAGCGGACAG R: ATCGGCTTCTTCACTCTGCTTGC |
VIT_00s0615g00020 | 含PKS_ER结构域的蛋白质 | F: GAGATTGTAGGCATCGTGACAGAGG R: GCTCCAACCAGACACCCAACAC |
VIT_14s0128g00660 | 胚蛋白样蛋白 | F: TCATGGCATTGGCTTCCTCTCTTG R: TCTTGGGTTCAGGAATGGCAACAC |
VIT_07s0005g06450 | 含蛋白激酶结构域的蛋白质 | F: GTTTCCTTTCCGTGGCTCCAGAG R: GGCTTCCGCTACTTCTCGTTCAC |
样品名称 Sample name | RNA 浓度 RNA concentration (ng/μL) | OD260/280 | OD260/230 | RIN值 RIN value |
---|---|---|---|---|
S1-1 | 454.50 | 2.07 | 2.19 | 10 |
S1-2 | 387.20 | 2.10 | 1.77 | 10 |
S1-3 | 437.10 | 2.07 | 1.87 | 10 |
S6-1 | 199.90 | 2.15 | 1.09 | 9.9 |
S6-2 | 316.50 | 2.09 | 1.75 | 10 |
S6-3 | 188.90 | 2.07 | 1.78 | 10 |
Tab.3 The sample total RNA quality test
样品名称 Sample name | RNA 浓度 RNA concentration (ng/μL) | OD260/280 | OD260/230 | RIN值 RIN value |
---|---|---|---|---|
S1-1 | 454.50 | 2.07 | 2.19 | 10 |
S1-2 | 387.20 | 2.10 | 1.77 | 10 |
S1-3 | 437.10 | 2.07 | 1.87 | 10 |
S6-1 | 199.90 | 2.15 | 1.09 | 9.9 |
S6-2 | 316.50 | 2.09 | 1.75 | 10 |
S6-3 | 188.90 | 2.07 | 1.78 | 10 |
样品名称 Sample name | 原始数据 Raw reads | 过滤数据 Clean reads | 错误率 Error rate (%) | Q20 (%) | Q30 (%) | GC含量 Content (%) |
---|---|---|---|---|---|---|
S1-1 | 48.77 | 48. 50 | 0.02 | 98.16 | 94.36 | 46.66 |
S1-2 | 47.93 | 47.69 | 0.02 | 98.22 | 94.5 | 46.67 |
S1-3 | 47.61 | 47.36 | 0.02 | 98.24 | 94.56 | 46.5 |
S6-1 | 44.48 | 44.19 | 0.03 | 98.04 | 94.07 | 46.18 |
S6-2 | 47.89 | 47.65 | 0.02 | 98.19 | 94.38 | 45.95 |
S6-3 | 49.24 | 49.02 | 0.02 | 98.23 | 94.47 | 46.21 |
Tab.4 Statistical of sample sequencing data
样品名称 Sample name | 原始数据 Raw reads | 过滤数据 Clean reads | 错误率 Error rate (%) | Q20 (%) | Q30 (%) | GC含量 Content (%) |
---|---|---|---|---|---|---|
S1-1 | 48.77 | 48. 50 | 0.02 | 98.16 | 94.36 | 46.66 |
S1-2 | 47.93 | 47.69 | 0.02 | 98.22 | 94.5 | 46.67 |
S1-3 | 47.61 | 47.36 | 0.02 | 98.24 | 94.56 | 46.5 |
S6-1 | 44.48 | 44.19 | 0.03 | 98.04 | 94.07 | 46.18 |
S6-2 | 47.89 | 47.65 | 0.02 | 98.19 | 94.38 | 45.95 |
S6-3 | 49.24 | 49.02 | 0.02 | 98.23 | 94.47 | 46.21 |
Fig.5 COG function classification of differentially expressed genes Note: A. RNA processing and modification; B. Chromatin structure and dynamics; C. Energy production and conversion; D. Cell cycle control, cell division, chromosome partitioning; E. Amino acid transport and metabolism; F. Nucleotide transport and metabolism; G. Carbohydrate transport and metabolism; H. Coenzyme transport and metabolism; I. Lipid transport and metabolism; J. Translation, ribosomal structure and biogenesis; K. Transcription; L. Replication, recombination and repair; M. Cell wall/membrane/envelope biogenesis; O. Posttranslational modification, protein turnover, chaperones; P. Inorganic ion transport and metabolism; Q. Secondary metabolites biosynthesis, transport and catabolism; S. Function unknown; T. Signal transduction mechanisms; U. Intracellular trafficking, secretion, and vesicular transport; V. Defense mechanisms; Z. Cytoskeleton
Fig.9 Heat map of genes related to hormone Note: Using log10(FPKM) value for cluster analysis, red represents high expression genes, blue represents low expression genes, log10(FPKM) gradually increases from blue to red
[1] | 张宇, 徐智慧, 任邵琦, 等. 山葡萄F3'H基因及其启动子的克隆与表达分析[J]. 农业生物技术学报, 2021, 29(11): 2099-2108. |
ZHANG Yu, XU Zhihui, REN Shaoqi, et al. Cloning and Expression Analysis of F3'H Gene and Promoter from Vitis amurensis[J]. Journal of Agricultural Biotechnology, 2021, 29(11): 2099-2108. | |
[2] | Xin S, Lan D, Bao G, et al. A stress associated protein from Chinese wild Vitis amurensis, VaSAP 15, enhances the cold tolerance of transgenic grapes[J]. Scientia Horticulturae, 2021: 285. |
[3] | 沈育杰, 赵淑兰, 杨义明, 等. 我国山葡萄种质资源研究与利用现状[J]. 特产研究, 2006,(3): 53-57. |
SHEN Yujie, ZHAO Shulan, YANG Yiming, et al. The research and utilization on Amur grape (Vitis. amurensis Rupr) germplasm resources in China[J]. Special Wild Economic Animal and Plant Research, 2006,(3): 53-57. | |
[4] |
Oh K E, Shin H, Lee M K, et al. Characterization and optimization of the tyrosinase inhibitory Activity of Vitis amurensis root using LC-Q-TOF-MS coupled with a bioassay and response surface methodology[J]. Molecules, 2021, 26(2): 446.
DOI URL |
[5] | 戴彩虹, 马绍英, 李胜, 等. 山葡萄‘双红’和‘双优’的试管快繁研究[J]. 甘肃农业大学学报, 2014, 49(4): 63-68, 72. |
DAI Caihong, MA Shaoying, LI Sheng, et al. Rapid proliferation of Vitis amurensis ‘Shuanghong’ and ‘Shuangyou’[J]. Journal of Gansu Agricultural University, 2014, 49(4): 63-68, 72. | |
[6] | 莫银屏. 刺葡萄离体快繁体系建立及扦插生根机理研究[D]. 长沙: 湖南农业大学, 2015. |
MO Yinping. Establishment of in vitro rapid propagation system and rooting mechanism of cutting of Vitis spinosa[D]. Changsha: Hunan Agricultural University, 2015. | |
[7] |
崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35(7): 1-9.
DOI |
CUI Kai, WU Weiwei, DIAO Qiyu. Application and research progress on transcriptomics[J]. Biotechnology Bulletin, 2019, 35(7): 1-9.
DOI |
|
[8] | 石田培, 张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3):193-205. |
SHI Tianpei, ZHANG Li. Application of whole transcriptomics in animal husbandry[J]. Hereditas(Beijing), 2019, 35(7): 1-9.
DOI URL |
|
[9] | 林茜, 高营营, 覃换玲, 等. ‘阳光玫瑰’葡萄组培脱毒快繁技术研究[J]. 果树学报, 2021, 38(3): 435-443. |
LIN Xi, GAO Yingying, QIN Huanling, et al. Study on the technology of virus-free and rapid propagation of ‘Shine Muscat’ grape in tissue culture[J]. Journal of Fruit Science, 2021, 38(3): 435-443. | |
[10] | 齐向丽, 师校欣, 杜国强. ‘红国王’葡萄组织培养快速繁殖[J]. 分子植物育种, 2020, 18(3): 982-987. |
QI Xiangli, SHI Xiaoxin, DU Guoqiang. Rapid propagation of ‘Hongguowang’ grape in Vitro[J]. Molecular Plant Breeding, 2020, 18(3): 982-987. | |
[11] | Saini S, Sharma I, Kaur N, et al. Auxin: a master regulator in plant root development[J]. Pant Cell Rep, 2013, 32(6): 741-757. |
[12] |
Ljung K, Bhalerao RP, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth.[J]. The Plant Journal, 2001, 28(4): 465-474.
DOI URL |
[13] |
Ikeda Y, Men S Z, Fischer U, et al. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis[J]. Nature Cell Biology, 2009, 11(6):731-738.
DOI PMID |
[14] | Robert H S, Friml J. Auxin and other signals on the move in plants[J]. Nature Chemical Ciology, 2009, 5(5): 325-332. |
[15] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2):151-165. |
LIN Yuqing, QI Yanhua. Advances in auxin efflux carrier PIN proteins[J]. Chinese Bulletin of Botany, 2021, 56(2): 151-165. | |
[16] |
孙雪丽, 刘范, 田娜, 等. 香蕉Aux/IAA基因家族的全基因组鉴定及表达分析[J]. 园艺学报, 2019, 46(10): 1919-1935.
DOI |
SUN Xueli, LIU Fan, TIAN Na, et al. Genome-wide identification and expression analysis of Aux/IAA gene family in banana[J]. Acta Horticulturae Sinica, 2019, 46(10): 1919-1935.
DOI |
|
[17] |
李俊男, 燕晓杰, 李枢航, 等. 植物AUX/IAA基因家族研究进展[J]. 中国农学通报, 2018, 34(15): 89-92.
DOI |
LI Junnan, YAN Xiaojie, LI Shuhang, et al. Plants AUX/IAA gene family: research progress[J]. Chinese Agricultural Science Bulletin, 2018, 34(15): 89-92. | |
[18] |
曾文芳, 王小贝, 潘磊, 等. 桃Aux/IAA家族基因鉴定及在果实成熟过程中的表达分析[J]. 园艺学报, 2017, 44(2): 233-244.
DOI |
ZENG Wenfang, WANG Xiaobei, PAN Lei, et al. Identification and expression profiling of Aux/IAA family gene during peach fruit ripening[J]. Acta Horticulturae Sinica, 2017, 44(2): 233-244.
DOI |
|
[19] | 黎颖, 左开井, 唐克轩. 植物GH3基因家族的功能研究概况[J]. 植物学通报, 2008,(5): 507-515. |
LI Ying, ZUO Kaijing, TANG Kexuan. A survey of functional studies of the GH3 gene family in plants[J]. Chinese Bulletin of Botany, 2008,(5): 507-515. | |
[20] |
曾文芳, 潘磊, 牛良, 等. 桃GH3基因家族的生物信息学分析及其在果实发育中的表达[J]. 园艺学报, 2015, 42(5): 833-842.
DOI |
ZENG Wenfang, PAN Lei, NIU Liang, et al. Bioinformatics analysis and expression of the nectarine indole-3-aceticacid-amido synthase(GH 3)gene family during fruit development[J]. Acta Horticulturae Sinica, 2015, 42(5): 833-842.
DOI |
|
[21] |
刘晓东, 王若仲, 焦彬彬, 等. 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应[J]. 植物学报, 2016, 51(5): 586-593.
DOI |
LIU Xiaodong, WANG Ruozhong, JIAO Binbin, et al. Indole acetic acid-amido synthetase GH3-6 negatively regulates response to drought and salt in Arabidopsis[J]. Chinese Bulletin of Botany, 2016, 51(5): 586-593. | |
[22] | 刘帅, 徐伟荣, 张亚红, 等. 基于转录组研究补光对设施‘红地球’葡萄萌芽的影响[J]. 果树学报, 2021, 38(3): 305-317. |
LIU Shuai, XU Weirong, ZHANG Yahong, et al. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing[J]. Journal of Fruit Science, 2021, 38(3): 305-317. | |
[23] | 尚骁尧, 周玲芳, 石欣玥, 等. 蒺藜苜蓿细胞分裂素响应调节因子ARR9自激活检测及表达分析[J]. 中国草地学报, 2021, 43(12): 1-10. |
SHANG Xiaorao, ZHOU Linfang, SHI Xinyue, et al. Self-activation detection and expression analysis of cytokinin response regulator ARR9 in Medicago truncatula[J]. Chinese Journal of Grassland, 2021, 43(12): 1-10. |
[1] | YANG Jing, WANG Weiran, WANG Meng, ZHU Jiahui, NING Xinmin, Alifu Aierxi, MIN Ling, KONG Jie. Preliminary Study on the Embryogenic Callus Culture System of Xinjiang Island Cotton (G. barbadense L. ) [J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1321-1329. |
[2] | YANG Jie, JIA Kai, YAN Hui-zhuan, GAO Jie. Establishment of Isolated Culture Regeneration System of Brassica rapa L. [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1516-1522. |
[3] | ZHONG Ying,FENG Jian-rong,FANG Xin-min,REN Huan-xi,ZHANG Xiu-kang,XU Zhu-ye. Establishment of Regeneration System of Leaves in -vitro of Korla Fragrant Pear [J]. Xinjiang Agricultural Sciences, 2018, 55(5): 829-836. |
[4] | ZHANG Yi-yuan, GUO Yang-hua, WANG Cong-hui, TANG Hong, NAN Hai-yan, WANG Li-min, ZHOU Pin. Induction and Transcriptomics Analysis of Ovine iPS Cells [J]. Xinjiang Agricultural Sciences, 2018, 55(11): 2142-2149. |
[5] | BAO Qiu-juan, ZHANG Li-li, Hainar Wulazibai, ZHANG Fu-chun. Analysis of DNA Damage Repair Related Genes in Drought Stress Cotton Transcriptome [J]. Xinjiang Agricultural Sciences, 2017, 54(11): 1999-2005. |
[6] | PAN Yue;SHI Yan-jiang;SONG Feng-hui;TAO Xiu-dong. Effects of Different Factors on Cutting Rooting of Corylus heterophylla Fisch.× Corylus avellana L.Twigs [J]. , 2016, 53(6): 1034-1041. |
[7] | LI Yue-rong;LI Rong-fei;ZHANG Bo;LI Di-di;WANG Xiao-qin. The Relationship between FeCl3-induced Resveratrol Accumulation and Oxidative Stress in Grapevine Callus [J]. , 2016, 53(1): 149-155. |
[8] | ZHANG Yan-hong;ZHAO zhi-qiang;WU Ze-xin;YUAN Jie;Buhaliqiemu;WANG Feng-bin. Study on the Genetic Transformation System Mediated by Agrobacterium Tumefactions in Xinjiang Rice [J]. , 2014, 51(8): 1457-1462. |
[9] | ZHANG Xia;ZHANG Fu-Chun. Establishment of Suspension Cell Line of Halostachys caspica [J]. , 2013, 50(9): 1718-1723. |
[10] | LI Peng-fei;ZHU Hua-guo;CHENG Wen-han;WANG Fan-long;ZHANG Xin-yu;SUN Jie. Study on Protocol of Efficiency Genetic Transformation in Xinluzao 33 (Gossypium hirsutum L.) [J]. , 2013, 50(6): 981-987. |
[11] | ZHOU Long;PENG Ni;WANG Chao;SU Xiang-hui;ZHAO Li-kui;YE Dan. Study on Different Hormone Treatments on Soft Wood Cutting Rooting Efficiency of Cerasus tianschanica Pojark [J]. , 2013, 50(12): 2236-2240. |
[12] | MENG Ling-zhen;CHEN Quan-jia;YANG Ting;Ayixiamu Guli;WANG Xi-dong;QU Yan-ying. Studies on Genetic Transformation of Agrobacterium mediated Bar Gene and Bt Gene [J]. , 2013, 50(12): 2189-2196. |
[13] | . Preliminary Study on in Vitro Culture and Callus-induced of Ornamental Lily [J]. , 2009, 46(6): 1318-1321. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 73
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 373
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||