Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (11): 2852-2860.DOI: 10.6048/j.issn.1001-4330.2022.11.033
• Equine Exercise Physiology and Healthy Farming • Previous Articles
WANG Tongliang1(), MENG Jun1,2, ZENG Yaqi1,2, WANG Jianwen1,2, YAO Xinkui1,2(
)
Online:
2022-11-20
Published:
2022-12-28
Correspondence author:
YAO Xinkui
Supported by:
王彤亮1(), 孟军1,2, 曾亚琦1,2, 王建文1,2, 姚新奎1,2(
)
通讯作者:
姚新奎
作者简介:
王彤亮( 1996- ),男,新疆乌鲁木齐人,硕士研究生,研究方向为动物生产学,( E - mail ) 985868408@qq.com
基金资助:
WANG Tongliang, MENG Jun, ZENG Yaqi, WANG Jianwen, YAO Xinkui. Establishment and Analysis of the 90 cm Forelimb Motion Model of Obstacle Horse[J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2852-2860.
王彤亮, 孟军, 曾亚琦, 王建文, 姚新奎. 90 cm高度障碍马前肢运动模型的建立与分析[J]. 新疆农业科学, 2022, 59(11): 2852-2860.
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 149.200(128.400~405.150)Aa | 0.943(0.918~0.969)Bc | 1.429(1.400~2.381)Aa |
三阶多项式 Third-order polynomial | 102.500(67.770~154.950)Ab | 0.975(0.965~0.983)ABb | 1.256(0.958~1.493)Ab |
四阶多项式 Fourth-order polynomial | 38.510(30.380~48.200)ABc | 0.991(0.988~0.993)ABCb | 0.776(0.681~0.830)ABbc |
五阶多项式 Fifth-order polynomial | 28.710(19.245~41.145)BCb | 0.992(0.988~0.996)Aa | 0.675(0.534~0.784)Bbc |
二阶高斯 Second order gauss | 30.740(16.620~45.995)BCb | 0.992(0.987~0.997)Aa | 0.699(0.493~0.825)Bbc |
三阶高斯 Third-order gauss | 17.000(10.665~31.945)BCb | 0.997(0.989~0.998)Aa | 0.512(0.403~0.733)Bc |
四阶高斯 Fourth-order gauss | 12.670(7.668~24.065)BCb | 0.998(0.991~0.998)Aa | 0.452(0.350~0.639)Bc |
五阶高斯 Fourth-order gauss | 9.106(9.006~36.085)BCb | 0.996(0.993~0.998)Aa | 0.411(0.394~0.746)Bc |
Table 1 Analysis on the difference of fitting degree of scapular motion trajectories of horses with a height of 90 cm
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 149.200(128.400~405.150)Aa | 0.943(0.918~0.969)Bc | 1.429(1.400~2.381)Aa |
三阶多项式 Third-order polynomial | 102.500(67.770~154.950)Ab | 0.975(0.965~0.983)ABb | 1.256(0.958~1.493)Ab |
四阶多项式 Fourth-order polynomial | 38.510(30.380~48.200)ABc | 0.991(0.988~0.993)ABCb | 0.776(0.681~0.830)ABbc |
五阶多项式 Fifth-order polynomial | 28.710(19.245~41.145)BCb | 0.992(0.988~0.996)Aa | 0.675(0.534~0.784)Bbc |
二阶高斯 Second order gauss | 30.740(16.620~45.995)BCb | 0.992(0.987~0.997)Aa | 0.699(0.493~0.825)Bbc |
三阶高斯 Third-order gauss | 17.000(10.665~31.945)BCb | 0.997(0.989~0.998)Aa | 0.512(0.403~0.733)Bc |
四阶高斯 Fourth-order gauss | 12.670(7.668~24.065)BCb | 0.998(0.991~0.998)Aa | 0.452(0.350~0.639)Bc |
五阶高斯 Fourth-order gauss | 9.106(9.006~36.085)BCb | 0.996(0.993~0.998)Aa | 0.411(0.394~0.746)Bc |
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 307.100(170.250~452.350)ABCDab | 0.941(0.900~0.962)ABCbcd | 2.174(1.573~2.5100)ABCab |
三阶多项式 Third-order polynomial | 129.600(69.325~171.350)BCDbc | 0.972(0.967~0.985)ABCabc | 1.423(0.972~1.558)ABCbc |
四阶多项式 Fourth-order polynomial | 35.880(29.990~47.050)CDbc | 0.993(0.990~0.994)ABab | 0.727(0.681~0.816)BCbc |
五阶多项式 Fifth-order polynomial | 33.250(19.325~44.415)Dc | 0.994(0.990~0.996)Aa | 0.702(0.545~0.807)Cc |
二阶高斯 Second order gauss | 520.100(453.200~803.400)Aa | 0.863(0.8479~0.906)Cd | 2.883(2.652~3.361)Aa |
三阶高斯 Third-order gauss | 474.000(428.500~753.850)ABa | 0.876(0.854~0.915)Ad | 2.747(2.641~3.3505)ABa |
四阶高斯 Fourth-order gauss | 461.000(410.950~755.850)ABCa | 0.879(0.85645~0.917)BCcd | 2.761(2.651~3.435)Aa |
五阶高斯 Fourth-order gauss | 399.900(17.502~463.300)ABCDabc | 0.922(0.873~0.997)ABCabcd | 2.724(0.527~2.869)ABCabc |
Table 2 Analysis of the difference of fitting degree of shoulder joint motion trajectory of obstacle horses at 90 cm height
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 307.100(170.250~452.350)ABCDab | 0.941(0.900~0.962)ABCbcd | 2.174(1.573~2.5100)ABCab |
三阶多项式 Third-order polynomial | 129.600(69.325~171.350)BCDbc | 0.972(0.967~0.985)ABCabc | 1.423(0.972~1.558)ABCbc |
四阶多项式 Fourth-order polynomial | 35.880(29.990~47.050)CDbc | 0.993(0.990~0.994)ABab | 0.727(0.681~0.816)BCbc |
五阶多项式 Fifth-order polynomial | 33.250(19.325~44.415)Dc | 0.994(0.990~0.996)Aa | 0.702(0.545~0.807)Cc |
二阶高斯 Second order gauss | 520.100(453.200~803.400)Aa | 0.863(0.8479~0.906)Cd | 2.883(2.652~3.361)Aa |
三阶高斯 Third-order gauss | 474.000(428.500~753.850)ABa | 0.876(0.854~0.915)Ad | 2.747(2.641~3.3505)ABa |
四阶高斯 Fourth-order gauss | 461.000(410.950~755.850)ABCa | 0.879(0.85645~0.917)BCcd | 2.761(2.651~3.435)Aa |
五阶高斯 Fourth-order gauss | 399.900(17.502~463.300)ABCDabc | 0.922(0.873~0.997)ABCabcd | 2.724(0.527~2.869)ABCabc |
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 246.400(95.940~635.000)Aa | 0.953(0.887~0.972)Bc | 1.837(1.210~2.969)Aa |
三阶多项式 Third-order polynomial | 74.460(47.760~122.340)ABb | 0.982(0.977~0.989)ABb | 1.017(0.863~1.320)ABb |
四阶多项式 Fourth-order polynomial | 44.310(17.600~79.985)ABb | 0.994(0.986~0.994)Aab | 0.790(0.527~1.081)ABb |
五阶多项式 Fifth-order polynomial | 36.330(13.276~53.825)Bb | 0.994(0.991~0.996)Aa | 0.731(0.457~0.881)Bb |
二阶高斯 Second order gauss | 8236(4244.500~8696.500) | -0.411(-0.549~-0.246) | 11.080(8.267~11.230) |
三阶高斯 Third-order gauss | 8232(1955.675~8689.500) | -0.410(-0.5483~0.342) | 11.33(4.334~11.480) |
四阶高斯 Fourth-order gauss | 8231(4240~8688.500) | -0.410(-0.548~-0.244) | 11.600(8.694~11.750) |
五阶高斯 Fourth-order gauss | 4585(1958.740~8283.500) | -0.410(-0.548~0.410) | 9.301(4.596~11.900) |
Table 3 Analysis on the difference of fitting degree of elbow joint motion trajectory of obstacle horses at 90 cm height
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 246.400(95.940~635.000)Aa | 0.953(0.887~0.972)Bc | 1.837(1.210~2.969)Aa |
三阶多项式 Third-order polynomial | 74.460(47.760~122.340)ABb | 0.982(0.977~0.989)ABb | 1.017(0.863~1.320)ABb |
四阶多项式 Fourth-order polynomial | 44.310(17.600~79.985)ABb | 0.994(0.986~0.994)Aab | 0.790(0.527~1.081)ABb |
五阶多项式 Fifth-order polynomial | 36.330(13.276~53.825)Bb | 0.994(0.991~0.996)Aa | 0.731(0.457~0.881)Bb |
二阶高斯 Second order gauss | 8236(4244.500~8696.500) | -0.411(-0.549~-0.246) | 11.080(8.267~11.230) |
三阶高斯 Third-order gauss | 8232(1955.675~8689.500) | -0.410(-0.5483~0.342) | 11.33(4.334~11.480) |
四阶高斯 Fourth-order gauss | 8231(4240~8688.500) | -0.410(-0.548~-0.244) | 11.600(8.694~11.750) |
五阶高斯 Fourth-order gauss | 4585(1958.740~8283.500) | -0.410(-0.548~0.410) | 9.301(4.596~11.900) |
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 1458.000(1199.300~1679.000)Aa | 0.895(0.857~0.906)Bb | 4.869(4.468~5.278)Aa |
三阶多项式 Third-order polynomial | 41.600(33.825~113.535)Bb | 0.996(0.992~0.997)Aa | 0.886(0.752~1.339)Bb |
四阶多项式 Fourth-order polynomial | 30.530(22.355~70.380)Bb | 0.998(0.994~0.998)Aa | 0.737(0.622~1.046)Bb |
五阶多项式 Fifth-order polynomial | 22.860(13.945~57.230)Bb | 0.998(0.996~0.999)Aa | 0.670(0.493~0.951)Bb |
二阶高斯 Second order gauss | 27670(24810~32680) | -1.213(-1.424~-1.112) | 22.520(21.360~23.045) |
三阶高斯 Third-order gauss | 27390(11157.850~32680) | -1.112(-1.425~-0.059) | 23.170(11.384~23.630) |
四阶高斯 Fourth-order gauss | 22230(309.433~27530) | -1.213(-1.425~0.081) | 22.230(1.842~23.480) |
五阶高斯 Fourth-order gauss | 28950(28993~29425) | -1.219(-1.350~0.098) | 22.055(21.7481~24.635) |
Table 4 Analysis of the difference of fitting degree of wrist joint motion trajectory of obstacle horses with a height of 90 cm
函数类别 | 和方差 SSE | 拟合度 R2 | 均方差 RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 1458.000(1199.300~1679.000)Aa | 0.895(0.857~0.906)Bb | 4.869(4.468~5.278)Aa |
三阶多项式 Third-order polynomial | 41.600(33.825~113.535)Bb | 0.996(0.992~0.997)Aa | 0.886(0.752~1.339)Bb |
四阶多项式 Fourth-order polynomial | 30.530(22.355~70.380)Bb | 0.998(0.994~0.998)Aa | 0.737(0.622~1.046)Bb |
五阶多项式 Fifth-order polynomial | 22.860(13.945~57.230)Bb | 0.998(0.996~0.999)Aa | 0.670(0.493~0.951)Bb |
二阶高斯 Second order gauss | 27670(24810~32680) | -1.213(-1.424~-1.112) | 22.520(21.360~23.045) |
三阶高斯 Third-order gauss | 27390(11157.850~32680) | -1.112(-1.425~-0.059) | 23.170(11.384~23.630) |
四阶高斯 Fourth-order gauss | 22230(309.433~27530) | -1.213(-1.425~0.081) | 22.230(1.842~23.480) |
五阶高斯 Fourth-order gauss | 28950(28993~29425) | -1.219(-1.350~0.098) | 22.055(21.7481~24.635) |
函数类别 | 和方差SSE | 拟合度R2 | 均方差RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 137.500(76.540~250.900)Aa | 0.989(0.980~0.992)Df | 1.553(1.223~2.138)Aa |
三阶多项式 Third-order polynomial | 108.000(70.285~204.800)ABab | 0.990(0.985~0.992)CDef | 1.469(1.184~1.872)ABab |
四阶多项式 Fourth-order polynomial | 55.150(21.520~106.785)ABCabc | 0.995(0.991~0.998)BCDde | 1.058(0.639~1.378)ABCabc |
五阶多项式 Fifth-order polynomial | 14.950(12.119~42.315)BCDcd | 0.999(0.997~0.999)ABbc | 0.547(0.494~0.838)BCDcde |
二阶高斯 Second order gauss | 24.670(18.740~74.310)ABCbc | 0.998(0.994~0.998)BCDcd | 0.676(0.619~1.120)ABCbc |
三阶高斯 Third-order gauss | 15.550(11.189~51.575)ABCDcd | 0.999(0.996~0.999)ABCbcd | 0.552(0.503~0.949)ABCDcd |
四阶高斯 Fourth-order gauss | 8.929(4.505~14.890)CDde | 0.999(0.999~0.999)ABab | 0.427(0.328~0.564)Cde |
五阶高斯 Fourth-order gauss | 6.199(3.848~7.888)De | 0.999(0.999~0.999)Aa | 0.387(0.300~0.437)De |
Table 5 Analysis on the difference of fitting degree of ball joint motion trajectory before the obstacle horse with a height of 90 cm
函数类别 | 和方差SSE | 拟合度R2 | 均方差RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 137.500(76.540~250.900)Aa | 0.989(0.980~0.992)Df | 1.553(1.223~2.138)Aa |
三阶多项式 Third-order polynomial | 108.000(70.285~204.800)ABab | 0.990(0.985~0.992)CDef | 1.469(1.184~1.872)ABab |
四阶多项式 Fourth-order polynomial | 55.150(21.520~106.785)ABCabc | 0.995(0.991~0.998)BCDde | 1.058(0.639~1.378)ABCabc |
五阶多项式 Fifth-order polynomial | 14.950(12.119~42.315)BCDcd | 0.999(0.997~0.999)ABbc | 0.547(0.494~0.838)BCDcde |
二阶高斯 Second order gauss | 24.670(18.740~74.310)ABCbc | 0.998(0.994~0.998)BCDcd | 0.676(0.619~1.120)ABCbc |
三阶高斯 Third-order gauss | 15.550(11.189~51.575)ABCDcd | 0.999(0.996~0.999)ABCbcd | 0.552(0.503~0.949)ABCDcd |
四阶高斯 Fourth-order gauss | 8.929(4.505~14.890)CDde | 0.999(0.999~0.999)ABab | 0.427(0.328~0.564)Cde |
五阶高斯 Fourth-order gauss | 6.199(3.848~7.888)De | 0.999(0.999~0.999)Aa | 0.387(0.300~0.437)De |
函数类别 | 和方差SSE | 拟合度R2 | 均方差RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 309.900(130.005~480.150)Aa | 0.980(0.961~0.988)Dd | 2.475(1.580~2.955)Aa |
三阶多项式 Third-order polynomial | 128.100(70.015~157.900)Bab | 0.991(0.987~0.993)CDcd | 1.550(1.190~1.742)Aab |
四阶多项式 Fourth-order polynomial | 58.600(50.850~101.490)ABb | 0.994(0.993~0.995)ABCDc | 1.129(1.028~1.357)ABCb |
五阶多项式 Fifth-order polynomial | 51.770(49.060~68.720) ABCbc | 0.995(0.995~0.996)ABCbc | 1.040(1.021~1.150)ABCb |
二阶高斯 Second order gauss | 66.480(50.685~115.900)ABb | 0.994(0.993~0.995)BCDc | 1.215(1.036~1.471)ABab |
三阶高斯 Third-order gauss | 36.050(20.865~46.650) BCcd | 0.997(0.996~0.998)ABab | 0.895(0.681~0.989)BCc |
四阶高斯 Fourth-order gauss | 25.210(16.110~30.635)Cd | 0.998(0.997~0.999)Aa | 0.766(0.602~0.864)Cc |
五阶高斯 Fourth-order gauss | 12.310(10.799~60.455)BCcd | 0.999(0.995~0.999)ABab | 0.577(0.532~1.115)BCc |
Table 6 Analysis on the difference of fitting degree of front hoof movement of obstacle horses with a height of 90 cm
函数类别 | 和方差SSE | 拟合度R2 | 均方差RMSE |
---|---|---|---|
二阶多项式 Second-order polynomial | 309.900(130.005~480.150)Aa | 0.980(0.961~0.988)Dd | 2.475(1.580~2.955)Aa |
三阶多项式 Third-order polynomial | 128.100(70.015~157.900)Bab | 0.991(0.987~0.993)CDcd | 1.550(1.190~1.742)Aab |
四阶多项式 Fourth-order polynomial | 58.600(50.850~101.490)ABb | 0.994(0.993~0.995)ABCDc | 1.129(1.028~1.357)ABCb |
五阶多项式 Fifth-order polynomial | 51.770(49.060~68.720) ABCbc | 0.995(0.995~0.996)ABCbc | 1.040(1.021~1.150)ABCb |
二阶高斯 Second order gauss | 66.480(50.685~115.900)ABb | 0.994(0.993~0.995)BCDc | 1.215(1.036~1.471)ABab |
三阶高斯 Third-order gauss | 36.050(20.865~46.650) BCcd | 0.997(0.996~0.998)ABab | 0.895(0.681~0.989)BCc |
四阶高斯 Fourth-order gauss | 25.210(16.110~30.635)Cd | 0.998(0.997~0.999)Aa | 0.766(0.602~0.864)Cc |
五阶高斯 Fourth-order gauss | 12.310(10.799~60.455)BCcd | 0.999(0.995~0.999)ABab | 0.577(0.532~1.115)BCc |
[1] | 国际马术联合会. 2018年场地障碍赛年度报告[EB/OL]. (2019-12-15)[2020-02-28]. |
[2] |
Nasser A, Senna, Mohamed B. Evaluation of Limb Conformation in Jumping Thoroughbred Horses[J]. Asian Journal of Animal Sciences 2015. 9(5): 208-216.
DOI URL |
[3] |
Holmstri M M, Philipsson J. Relationships between conformation, performance and health in 4-year-old swedish warmblood riding horses[J]. Livestock Production Science, 1993, 33(3-4): 293-312.
DOI URL |
[4] |
Dutto D J. Moments and power generated by the horse (Equus caFetlockus) hind limb during jumping[J]. Journal of Experimental Biology, 2004, 207(4): 667-674.
DOI URL |
[5] | Bogert A J V D, Jansen M O, Deuel N R. Kinematics of the hind limb push-off in elite show jumping horses[J]. 1994, 26(S17): 80-86. |
[6] | Powers P. The Take Off Kinematics OF Jumping Horses in a Puissance Competition[C]. 2002: 152-155. |
[7] |
Alli, Gokeler, Anne, et al. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction[J]. Physical Therapy in Sport, 2015, 16(2):114-120.
DOI PMID |
[8] | 原兴照. 三级跳的力学原理分析与思考[J]. 中学物理教学参考, 2018, (47): 7. |
YUAN xin-zhao. Analysis and thinking of the mechanics principle of triple jump[J]. China Academic Journal Electronic Public House, 2018, (47): 7. | |
[9] | 吕雪梅. 不同等级背越式跳高运动员起跳过程的运动学分析[D]. 西安: 西安体育学院, 2012. |
LV Xue-mei. Kinematics Analysis on the Take-off Process of Different Levels of Back Style High Jumpers[D]. Xi' an Physical Education Univercity, 2012. | |
[10] | 孟军, 王建文, 孔麒森, 等. 调教训练对伊犁马1km速步赛肢体角度的影响[J]. 中国畜牧兽医, 2020, 47(3): 814-821. |
MENG Jun, Wang Jian-wen, Kong Qi-sen, et al. Effect of training on Body Angle in 1 km Trotter of Yili Horse[J]. China Animal Husbandry& Veterinary Medicine, 2020, 47(3): 814-821. | |
[11] |
蒋文东, 孟军, 王建文, 等. 伊犁马1000 m速度赛步态特征与步速相关性[J]. 新疆农业科学, 2020, 57(2): 375-383.
DOI |
JIANG Wen-dong, Men Jun, Wang Jian-wen, et al. Study on Correlation between Gait Characteristics and Pace Speed in 1000 Meter Speed Race of Yili Horse[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 375-383. | |
[12] |
王川坤, 曾亚琦, 孟军, 等. 不同水平障碍赛马越障步态特征[J]. 新疆农业科学, 2020, 57(2): 384-392.
DOI |
WANG Chuan-kun, Zeng Ya-qi, Meng Jun, et al. Preliminary Study on the Gait Characteristics of Obstacle Race Horses at Different Levels[J]. Xinjiang Agricultural Science, 2020, 57(2): 384-392. | |
[13] | 武文佳. MATLAB在数学建模中的应用[J]. 现代制造技术与装备, 2019,(11):78-79. |
WU Wen-jia. Application of MATLAB in Mathematical Modeling[J]. Modern manufacturing technology and equipment 2019,(11): 78-79. | |
[14] |
El-Raheem R M A, Kamel R M, Ali M F. Reliability of Using Kinovea Program in Measuring Dominant Wrist Joint Range of Motion[J]. Trends in Applied Sciences Research, 2015, 10(4): 224-230.
DOI URL |
[15] | Lewczuk D. The usefulness of video image analysis in prediction of halfbred horse jumping skills in young stallion's training centres[J]. Folia Universitatis Agriculturae Stetinensis Zootechnica, 2000, 12(12): 012013. |
[16] | Burstein L. Curve fitting commands and the Basic Fitting tool[J]. A MATLAB Primer for Technical Programming in Materials Science and Engineering, 2020: 169-204. |
[17] | 陈勇. 黄牛在松软地面的行走运动及仿生应用[D]. 长春: 吉林大学, 2008. |
CHEN Yong. Motion of the Yellow Cattle Bostaurus Walking on Soft Ground and Its Bionic Application[D]. Chang chun: JILIN University, 2008. | |
[18] | Parent A., M. Morin, and P. Lavigne. Propagation of super-Gaussian field distributions.[J]. Optical and quantum electronics, 1992, 24(9):1071-1079. |
[19] | 孟军. 伊犁马速步赛血气指标、分段速度和步态特征变化规律研究[D]. 乌鲁木齐: 新疆农业大学博士论文, 2013. |
MENG Jun. Variation Law of Blood Gas Indexes, Seg-mentation Speed and Gait Characteristics of Yili Horse in Trotting Race[D]. Xinjiang Agricultural University, Urumqi, 2013. | |
[20] | 姚芳芳. 对侧步马前肢运动轨迹数学模型建立与分析[J]. 新疆农业科学, 53(8): 1554-1561. |
YAO Fang-fang. Mathematical Model Establishment and Analysis of Forelimb Trajectory for Horse in Pacing[J]. Xinjiang Agricultural Science, 2016, 53(8): 1554-1561. | |
[21] | Shuping Li, Qiangqiang, et al. A study on the representative point of horse's center of gravity[J]. Isbs Proceedings Archive, 2017. |
[22] |
Waiboer R. R., Aarts R. G. K. M., & Jonker J. B. Application of a perturbation method for realistic dynamic simulation of industrial robots[J]. Multibody System Dynamics, 13(3):323-338, 2015.
DOI URL |
[1] | YANG Yuyao, Subinuer Kahaer, DOU Rongqian, YIN Wenbin, MENG Jun, ZENG Yaqi, WANG Jianwen, GUO Yaya, YANG Kaifeng, YAO Xinkui. Correlation Analysis of Limb Angle and Jumping Gait Characteristics in 80 cm Height of Jumping Horses [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2844-2851. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||