Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (11): 2601-2613.DOI: 10.6048/j.issn.1001-4330.2022.11.001
• Crop Genetics and Breeding・Cultivation Physiology・Germplasm Resources • Previous Articles Next Articles
WANG Hongyan1,2,3(), FU Yanbo2,4, WANG Zhiguo2, BIAN Qingyong4, FENG Yaozu3(
), RAO Xiaojuan5
Received:
2021-01-11
Online:
2022-11-20
Published:
2022-12-28
Correspondence author:
FENG Yaozu
Supported by:
王红燕1,2,3(), 付彦博2,4, 王治国2, 扁青永4, 冯耀祖3(
), 饶晓娟5
通讯作者:
冯耀祖
作者简介:
王红燕(1997-),女,新疆乌鲁木齐人,硕士研究生,研究方向为水肥气一体化技术研究和土壤-植物互作,(E-mail)3421009605@qq.com
基金资助:
CLC Number:
WANG Hongyan, FU Yanbo, WANG Zhiguo, BIAN Qingyong, FENG Yaozu, RAO Xiaojuan. Effect of Oxygenated Water Input on Soil Nitrogen in Loam[J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2601-2613.
王红燕, 付彦博, 王治国, 扁青永, 冯耀祖, 饶晓娟. 增氧水输入对壤土土壤氮的影响[J]. 新疆农业科学, 2022, 59(11): 2601-2613.
项目 Item | 处理编号serial number | |||
---|---|---|---|---|
RCK | RD1 | RD2 | RD3 | |
增氧方式 Dissolved -oxygen- improving method | 常规水 | 自然空气 供氧养 曝气增氧 | 33%增氧 供氧曝气 增氧 | 90%增氧 供氧曝气 增氧 |
增氧浓度 Oxygenation concentration (mg/L) | 9.11 | 9.72 | 32.92 | 44.35 |
Table 1 Test treatment and corresponding number
项目 Item | 处理编号serial number | |||
---|---|---|---|---|
RCK | RD1 | RD2 | RD3 | |
增氧方式 Dissolved -oxygen- improving method | 常规水 | 自然空气 供氧养 曝气增氧 | 33%增氧 供氧曝气 增氧 | 90%增氧 供氧曝气 增氧 |
增氧浓度 Oxygenation concentration (mg/L) | 9.11 | 9.72 | 32.92 | 44.35 |
Fig.1 Dynamic changes of NO 3 --N content during mineralization culture Note:Different lowercase letters in A-B diagram showed that there were significant differences between different treatments at the same culture time (P<0.05). Different lowercase letters in C-F diagram showed that there were significant differences between the same treatments at different culture time (P<0.05), the same as below
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
RCK | 组间 | 2591.017 | 4 | 647.754 | 72 455.746 | P<0.01 | |
组内 | 0.089 | 10 | 0.009 | ||||
总数 | 2 591.107 | 14 | |||||
RD1 | 组间 | 2 469.408 | 4 | 617.352 | 20 069.964 | P<0.01 | |
组内 | 0.308 | 10 | 0.031 | ||||
总数 | 2 469.716 | 14 | |||||
RD2 | 组间 | 2 231.932 | 4 | 557.983 | 6 551.661 | P<0.01 | |
组内 | 0.852 | 10 | 0.085 | ||||
总数 | 2 232.784 | 14 | |||||
RD3 | 组间 | 2 231.019 | 4 | 557.755 | 77 753.929 | P<0.01 | |
组内 | 0.072 | 10 | 0.007 | ||||
总数 | 2 231.091 | 14 | |||||
RCK | 组间 | 2 591.017 | 4 | 647.754 | 72 455.746 | P<0.01 | |
组内 | 0.089 | 10 | 0.009 | ||||
总数 | 2 591.107 | 14 | |||||
RD1 | 组间 | 2 469.408 | 4 | 617.352 | 20 069.964 | P<0.01 | |
组内 | 0.308 | 10 | 0.031 | ||||
总数 | 2 469.716 | 14 | |||||
RD2 | 组间 | 2 231.932 | 4 | 557.983 | 6 551.661 | P<0.01 | |
组内 | 0.852 | 10 | 0.085 | ||||
总数 | 2 232.784 | 14 | |||||
RD3 | 组间 | 2 231.019 | 4 | 557.755 | 77 753.929 | P<0.01 | |
组内 | 0.072 | 10 | 0.007 | ||||
总数 | 2 231.091 | 14 |
Table 2 Analysis of variance of test results of NO 3 --N and NH 4 +-N content in mineralized culture
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
RCK | 组间 | 2591.017 | 4 | 647.754 | 72 455.746 | P<0.01 | |
组内 | 0.089 | 10 | 0.009 | ||||
总数 | 2 591.107 | 14 | |||||
RD1 | 组间 | 2 469.408 | 4 | 617.352 | 20 069.964 | P<0.01 | |
组内 | 0.308 | 10 | 0.031 | ||||
总数 | 2 469.716 | 14 | |||||
RD2 | 组间 | 2 231.932 | 4 | 557.983 | 6 551.661 | P<0.01 | |
组内 | 0.852 | 10 | 0.085 | ||||
总数 | 2 232.784 | 14 | |||||
RD3 | 组间 | 2 231.019 | 4 | 557.755 | 77 753.929 | P<0.01 | |
组内 | 0.072 | 10 | 0.007 | ||||
总数 | 2 231.091 | 14 | |||||
RCK | 组间 | 2 591.017 | 4 | 647.754 | 72 455.746 | P<0.01 | |
组内 | 0.089 | 10 | 0.009 | ||||
总数 | 2 591.107 | 14 | |||||
RD1 | 组间 | 2 469.408 | 4 | 617.352 | 20 069.964 | P<0.01 | |
组内 | 0.308 | 10 | 0.031 | ||||
总数 | 2 469.716 | 14 | |||||
RD2 | 组间 | 2 231.932 | 4 | 557.983 | 6 551.661 | P<0.01 | |
组内 | 0.852 | 10 | 0.085 | ||||
总数 | 2 232.784 | 14 | |||||
RD3 | 组间 | 2 231.019 | 4 | 557.755 | 77 753.929 | P<0.01 | |
组内 | 0.072 | 10 | 0.007 | ||||
总数 | 2 231.091 | 14 |
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
RCK | 组间 | 12 624.501 | 4 | 3 156.125 | 17 862.837 | P<0.01 | |
组内 | 1.767 | 10 | 0.177 | ||||
总数 | 12 626.267 | 14 | |||||
RD1 | 组间 | 16 852.212 | 4 | 4 213.053 | 22 167.74 | P<0.01 | |
组内 | 1.901 | 10 | 0.19 | ||||
总数 | 16 854.112 | 14 | |||||
RD2 | 组间 | 20 464.457 | 4 | 5 116.114 | 39 342.619 | P<0.01 | |
组内 | 1.3 | 10 | 0.13 | ||||
总数 | 20 465.757 | 14 | |||||
RD3 | 组间 | 29 800.991 | 4 | 7 450.248 | 51 108.44 | P<0.01 | |
组内 | 1.458 | 10 | 0.146 | ||||
总数 | 29 802.448 | 14 | |||||
RCK | 组间 | 6 186.722 | 4 | 1 546.681 | 178 188.999 | P<0.01 | |
组内 | 0.087 | 10 | 0.009 | ||||
总数 | 6 186.809 | 14 | |||||
RD1 | 组间 | 5 650.713 | 4 | 1 412.678 | 92 898.614 | P<0.01 | |
组内 | 0.152 | 10 | 0.015 | ||||
总数 | 5 650.865 | 14 | |||||
RD2 | 组间 | 5 509.751 | 4 | 1 377.438 | 64 851.115 | P<0.01 | |
组内 | 0.212 | 10 | 0.021 | ||||
总数 | 5 509.963 | 14 | |||||
RD3 | 组间 | 5 562.442 | 4 | 1 390.61 | 52 701.256 | P<0.01 | |
组内 | 0.264 | 10 | 0.026 | ||||
总数 | 5 562.706 | 14 |
Table 3 Analysis of variance of test results of NO 3 --N and NH 4 +-N content in nitrification culture
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
RCK | 组间 | 12 624.501 | 4 | 3 156.125 | 17 862.837 | P<0.01 | |
组内 | 1.767 | 10 | 0.177 | ||||
总数 | 12 626.267 | 14 | |||||
RD1 | 组间 | 16 852.212 | 4 | 4 213.053 | 22 167.74 | P<0.01 | |
组内 | 1.901 | 10 | 0.19 | ||||
总数 | 16 854.112 | 14 | |||||
RD2 | 组间 | 20 464.457 | 4 | 5 116.114 | 39 342.619 | P<0.01 | |
组内 | 1.3 | 10 | 0.13 | ||||
总数 | 20 465.757 | 14 | |||||
RD3 | 组间 | 29 800.991 | 4 | 7 450.248 | 51 108.44 | P<0.01 | |
组内 | 1.458 | 10 | 0.146 | ||||
总数 | 29 802.448 | 14 | |||||
RCK | 组间 | 6 186.722 | 4 | 1 546.681 | 178 188.999 | P<0.01 | |
组内 | 0.087 | 10 | 0.009 | ||||
总数 | 6 186.809 | 14 | |||||
RD1 | 组间 | 5 650.713 | 4 | 1 412.678 | 92 898.614 | P<0.01 | |
组内 | 0.152 | 10 | 0.015 | ||||
总数 | 5 650.865 | 14 | |||||
RD2 | 组间 | 5 509.751 | 4 | 1 377.438 | 64 851.115 | P<0.01 | |
组内 | 0.212 | 10 | 0.021 | ||||
总数 | 5 509.963 | 14 | |||||
RD3 | 组间 | 5 562.442 | 4 | 1 390.61 | 52 701.256 | P<0.01 | |
组内 | 0.264 | 10 | 0.026 | ||||
总数 | 5 562.706 | 14 |
Fig. 5 Analysis of change value of inorganic nitrogen content and different oxygen concentration in loam soil Remarks: * represents significant difference, none * represents no significant difference, *P≤ 0.05
处理 Treatments | R2 | S | 拟合方程 Fitting equation | 初始消耗速率 Initial consumption rate (V0) (mg/(kg・d)) | 最大消耗速率 Maximum consumption rate (Vmax) (mg/(kg・d)) | 达到最大消耗 速率所用时间 Time to reach maximum consumption rate (TVmax)(d) |
---|---|---|---|---|---|---|
RCK | 0.999 9 | 0.262 | Nt=65-60.73/(1+exp(1.686-0.722 1 t)) | 5.783 0 | 10.963 3 | 2.334 9 |
RD1 | 0.980 9 | 3.465 | Nt=65-61.11/(1+exp(1.377-0.7572t)) | 7.444 9 | 11.568 1 | 1.818 5 |
RD2 | 0.999 6 | 0.469 | Nt=65-61.57/(1+exp(1.273-0.808t)) | 8.501 8 | 12.437 1 | 1.575 5 |
RD3 | 0.974 3 | 3.988 | Nt=65-61.94/(1+exp(1.263-0.8408t)) | 8.950 1 | 13.019 8 | 1.502 1 |
Table 4 Fitting results and diagnostic values of NH 4 +-N transformation model of Xinjiang loam under different treatments
处理 Treatments | R2 | S | 拟合方程 Fitting equation | 初始消耗速率 Initial consumption rate (V0) (mg/(kg・d)) | 最大消耗速率 Maximum consumption rate (Vmax) (mg/(kg・d)) | 达到最大消耗 速率所用时间 Time to reach maximum consumption rate (TVmax)(d) |
---|---|---|---|---|---|---|
RCK | 0.999 9 | 0.262 | Nt=65-60.73/(1+exp(1.686-0.722 1 t)) | 5.783 0 | 10.963 3 | 2.334 9 |
RD1 | 0.980 9 | 3.465 | Nt=65-61.11/(1+exp(1.377-0.7572t)) | 7.444 9 | 11.568 1 | 1.818 5 |
RD2 | 0.999 6 | 0.469 | Nt=65-61.57/(1+exp(1.273-0.808t)) | 8.501 8 | 12.437 1 | 1.575 5 |
RD3 | 0.974 3 | 3.988 | Nt=65-61.94/(1+exp(1.263-0.8408t)) | 8.950 1 | 13.019 8 | 1.502 1 |
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
净氮矿化量 Net nitrogen mineralization | RCK | 组间 | 259.931 | 3 | 86.644 | 837.136 | P<0.01 |
组内 | 0.828 | 8 | 0.104 | ||||
总数 | 260.759 | 11 | |||||
RD1 | 组间 | 57.869 | 3 | 19.29 | 187.46 | P<0.01 | |
组内 | 0.823 | 8 | 0.103 | ||||
总数 | 58.692 | 11 | |||||
RD2 | 组间 | 260.032 | 3 | 86.677 | 830.31 | P<0.01 | |
组内 | 0.835 | 8 | 0.104 | ||||
总数 | 260.868 | 11 | |||||
RD3 | 组间 | 959.654 | 3 | 319.885 | 2 075.04 | P<0.01 | |
组内 | 1.233 | 8 | 0.154 | ||||
总数 | 960.887 | 11 | |||||
净氮矿化速率 Net nitrogen mineralization rate | RCK | 组间 | 0.354 | 3 | 0.118 | 393.213 | P<0.01 |
组内 | 0.002 | 8 | 0 | ||||
总数 | 0.356 | 11 | |||||
RD1 | 组间 | 8.074 | 3 | 2.691 | 6 210.692 | P<0.01 | |
组内 | 0.003 | 8 | 0 | ||||
总数 | 8.077 | 11 | |||||
RD2 | 组间 | 24.312 | 3 | 8.104 | 10 025.467 | P<0.01 | |
组内 | 0.006 | 8 | 0.001 | ||||
总数 | 24.318 | 11 | |||||
RD3 | 组间 | 29.164 | 3 | 9.721 | 9 484.257 | P<0.01 | |
组内 | 0.008 | 8 | 0.001 | ||||
总数 | 29.172 | 11 |
Table 5 Variance analysis of test results of soil net nitrogen mineralization and net nitrogen mineralization rate
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
净氮矿化量 Net nitrogen mineralization | RCK | 组间 | 259.931 | 3 | 86.644 | 837.136 | P<0.01 |
组内 | 0.828 | 8 | 0.104 | ||||
总数 | 260.759 | 11 | |||||
RD1 | 组间 | 57.869 | 3 | 19.29 | 187.46 | P<0.01 | |
组内 | 0.823 | 8 | 0.103 | ||||
总数 | 58.692 | 11 | |||||
RD2 | 组间 | 260.032 | 3 | 86.677 | 830.31 | P<0.01 | |
组内 | 0.835 | 8 | 0.104 | ||||
总数 | 260.868 | 11 | |||||
RD3 | 组间 | 959.654 | 3 | 319.885 | 2 075.04 | P<0.01 | |
组内 | 1.233 | 8 | 0.154 | ||||
总数 | 960.887 | 11 | |||||
净氮矿化速率 Net nitrogen mineralization rate | RCK | 组间 | 0.354 | 3 | 0.118 | 393.213 | P<0.01 |
组内 | 0.002 | 8 | 0 | ||||
总数 | 0.356 | 11 | |||||
RD1 | 组间 | 8.074 | 3 | 2.691 | 6 210.692 | P<0.01 | |
组内 | 0.003 | 8 | 0 | ||||
总数 | 8.077 | 11 | |||||
RD2 | 组间 | 24.312 | 3 | 8.104 | 10 025.467 | P<0.01 | |
组内 | 0.006 | 8 | 0.001 | ||||
总数 | 24.318 | 11 | |||||
RD3 | 组间 | 29.164 | 3 | 9.721 | 9 484.257 | P<0.01 | |
组内 | 0.008 | 8 | 0.001 | ||||
总数 | 29.172 | 11 |
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
硝化率 Nitri fication rate | RCK | 组间 | 0.262 | 4 | 0.066 | 289 399.909 | P<0.01 |
组内 | 0 | 10 | 0 | ||||
总数 | 0.262 | 14 | |||||
RD1 | 组间 | 0.25 | 4 | 0.063 | 111 384.247 | P<0.01 | |
组内 | 0 | 10 | 0 | ||||
总数 | 0.25 | 14 | |||||
RD2 | 组间 | 0.247 | 4 | 0.062 | 82 959.685 | P<0.01 | |
组内 | 0 | 10 | 0 | ||||
总数 | 0.247 | 14 | |||||
RD3 | 组间 | 0.248 | 4 | 0.062 | 82 949.25 | P<0.01 | |
组内 | 0 | 10 | 0 | ||||
总数 | 0.248 | 14 | |||||
硝化速率 Nitrification rate | RCK | 组间 | 161.522 | 4 | 40.38 | 45 886.818 | P<0.01 |
组内 | 0.009 | 10 | 0.001 | ||||
总数 | 161.53 | 14 | |||||
RD1 | 组间 | 183.615 | 4 | 45.904 | 71 724.568 | P<0.01 | |
组内 | 0.006 | 10 | 0.001 | ||||
总数 | 183.621 | 14 | |||||
RD2 | 组间 | 222.533 | 4 | 55.633 | 28 192.514 | P<0.01 | |
组内 | 0.02 | 10 | 0.002 | ||||
总数 | 222.553 | 14 | |||||
RD3 | 组间 | 274.475 | 4 | 68.619 | 64 330.084 | P<0.01 | |
组内 | 0.011 | 10 | 0.001 | ||||
总数 | 274.486 | 14 |
Table 6 Variance analysis of soil nitrification rate and nitrification rate test results
变异来源 Source of variation | 平方和 Sum of squares | 自由度df Degree of freedom df | 均方 mean square | 比值F Ratio F | 显著性 Significance | ||
---|---|---|---|---|---|---|---|
硝化率 Nitri fication rate | RCK | 组间 | 0.262 | 4 | 0.066 | 289 399.909 | P<0.01 |
组内 | 0 | 10 | 0 | ||||
总数 | 0.262 | 14 | |||||
RD1 | 组间 | 0.25 | 4 | 0.063 | 111 384.247 | P<0.01 | |
组内 | 0 | 10 | 0 | ||||
总数 | 0.25 | 14 | |||||
RD2 | 组间 | 0.247 | 4 | 0.062 | 82 959.685 | P<0.01 | |
组内 | 0 | 10 | 0 | ||||
总数 | 0.247 | 14 | |||||
RD3 | 组间 | 0.248 | 4 | 0.062 | 82 949.25 | P<0.01 | |
组内 | 0 | 10 | 0 | ||||
总数 | 0.248 | 14 | |||||
硝化速率 Nitrification rate | RCK | 组间 | 161.522 | 4 | 40.38 | 45 886.818 | P<0.01 |
组内 | 0.009 | 10 | 0.001 | ||||
总数 | 161.53 | 14 | |||||
RD1 | 组间 | 183.615 | 4 | 45.904 | 71 724.568 | P<0.01 | |
组内 | 0.006 | 10 | 0.001 | ||||
总数 | 183.621 | 14 | |||||
RD2 | 组间 | 222.533 | 4 | 55.633 | 28 192.514 | P<0.01 | |
组内 | 0.02 | 10 | 0.002 | ||||
总数 | 222.553 | 14 | |||||
RD3 | 组间 | 274.475 | 4 | 68.619 | 64 330.084 | P<0.01 | |
组内 | 0.011 | 10 | 0.001 | ||||
总数 | 274.486 | 14 |
[1] | 李恒震. 微纳米气泡特性及其在地下水修复中的应用[D]. 北京: 清华大学, 2014. |
Li Hengzhen. Micro-nano bubble characteristics and its application in groundwater remediation[D]. Beijing: Tsinghua University, 2014. | |
[2] | 胡德勇. 增氧灌溉改善秋黄瓜生长及土壤环境的机理研究[D]. 长沙: 湖南农业大学, 2014. |
Hu Deyong. Study on the Mechanism of Improving Autumn Cucumber Growth and Soil Environment by Aerated Irrigation[D]. Changsha: Hunan Agricultural University, 2014. | |
[3] | 王露阳. 增氧灌溉下设施蔬菜水肥高效利用及碳足迹研究[D]. 郑州: 华北水利水电大学, 2020. |
Wang Luyang. Study on the efficient utilization of water and fertilizer and carbon footprint of greenhouse vegetables under aerobic irrigation[D]. Zhenzhou: North China University of Water Resources and Hydropower, 2020. | |
[4] | 刘欢. 曝气滴灌条件下设施菜地土壤N2O排放及影响因子研究[D]. 郑州: 华北水利水电大学, 2019. |
Liu Huan. Study on N2O emission and influencing factors of greenhouse vegetable soil under aeration and drip irrigation[D]. Zhenzhou: North China University of Water Resources and Hydropower, 2019. | |
[5] | 朱艳. 温室番茄生长和根区土壤微环境对加气灌溉的响应机制[D]. 杨凌: 西北农林科技大学, 2020. |
Zhu Yan. The response mechanism of greenhouse tomato growth and root zone soil microenvironment to aerated irrigation[D]. Yanglin:Northwest Agricultural and Forestry University, 2020. | |
[6] | 张伟, 刘少东, 张钰婷, 等. 增氧灌溉技术研究现状与进展[J]. 现代化农业, 2019,(7):69-72. |
Zhang Wei, Liu Shaodong, Zhang Yuting, et al. Research status and progress of oxygenated irrigation technology[J]. Modern agriculture, 2019, (7) : 69-72. | |
[7] | 李世博. 水稻秸秆生物炭对紫色土氮素平衡及氮循环功能基因的影响研究[D]. 重庆: 重庆大学, 2019. |
Li Shibo. Effects of rice straw biochar on nitrogen balance and functional genes of nitrogen cycle in purple soil[D]. Chongqing: Chongqing University, 2019. | |
[8] | 杨雪辰. 松嫩草地土壤微生物对降水变化的响应及其对氮循环的调节机制[D]. 长春: 东北师范大学, 2020. |
Yang Xuechen. Response of soil microorganism to precipitation change and its regulation mechanism on nitrogen cycle in Songnen grassland[D]. Changchun: Northeast Normal University, 2020. | |
[9] | 黄容. 有机替代对菜园土壤温室气体排放和氮转化的影响[D]. 重庆: 西南大学, 2019. |
Huang Rong. Effects of organic substitution on greenhouse gas emissions and nitrogen transformation in vegetable soil[D]. Southwest University, 2019. | |
[10] | 黄丹丹. 免耕下黑土氮素转化及玉米吸收利用的研究[D]. 长春: 吉林农业大学, 2019. |
[11] |
Jutta Rudolph, Matthias Koschorreck, Ralf Conrad. Oxidative and reductive microbial consumption of nitric oxide in a heathland soil[J]. Soil Biology and Biochemistry, 1996, 28(10) : 1389-1396.
DOI URL |
[12] | 杨艳菊, 蔡祖聪, 张金波. 氧气浓度对水稻土N2O排放的影响[J]. 土壤, 2016, 48(3):539-545. |
Yang Yanju, Cai Zucong, Zhang Jinbo. Effect of oxygen concentration on N2O emission from paddy soil[J]. Soil, 2016, 48 (3) : 539-545. | |
[13] | 缑丽娜. 增氧淡水和微咸水灌溉下春小麦生长特征研究[D]. 西安: 西安理工大学, 2020. |
Lina. Growth Characteristics of Spring Wheat under Aerated Fresh Water and Brackish Water Irrigation[D]. Xian: Xi 'an University of Technology, 2020. | |
[14] | 曲植, 李铭江, 王全九, 等. 培养条件下微纳米增氧水添加对新疆砂壤土硝化作用的影响[J]. 农业工程学报, 2020, 36(22):189-196. |
Qu Zhi, Li Mingjiang, Wang Quanjiu, et al. Effects of micro-nano oxygenated water addition on the nitrification of sandy soil in Xinjiang[J]. Agricultural Engineering Journal, 2020, 36 (22) : 189-196. | |
[15] | 刘若萱, 张丽梅, 白刃等. 模拟条件下土壤硝化作用及硝化微生物对不同水分梯度的响应[J]. 土壤学报, 2015, 52(2):415-422. |
Liu Ruoxuan, Zhang Limei , white blade , et al. The response of soil nitrification and nitrification microorganisms to different water gradients under simulated conditions[J]. Soil science report, 2015, 52 (2) : 415-422. | |
[16] | 胡继杰, 朱练峰, 胡志华. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响[J]. 农业工程学报, 2017, 33(1):167-174. |
Hu Jijie, Zhu Lianfeng, Hu Zhihua, et al. Effects of soil oxygenation on nitrogen transformation, nitrogen utilization and yield of rice[J]. Agricultural Engineering Journal, 2017, 33 (1 ) : 167-174. | |
[17] | 李平, 郎漫, 李煜姗. 不同施肥处理对黑土硝化作用和矿化作用的影响[J]. 农业环境科学学报, 2015, 34(7):1326-1332. |
Li Ping, Lang Man, Li Yushan, et al. Effects of different fertilization treatments on nitrification and mineralization of black soil[J]. Journal of Agricultural Environment Science, 2015, 34 (7): 1326-1332. | |
[18] | 李光敏, 陈伏生, 徐志文. 间伐和林下植被剔除对毛竹林土壤氮矿化速率及其温度敏感性的影响[J]. 生态学报, 2019, 39(11):4106-4115. |
Li Guangmin, Chen Fusheng, Xu Zhiwen, et al. Effects of thinning and understory removal on soil nitrogen mineralization rate and its temperature sensitivity in moso bamboo forest[J]. Ecology, 2019, 39 (11) : 4106-4115. | |
[19] |
B. R. Sabey, L. R. Frederick, W. V. Bartholomew. The Formation of Nitrate from Ammonium Nitrogen in Soils: IV. Use of the Delay and Maximum Rate Phases for Making Quantitative Predictions†[J]. Soil Science Society of America Journal, 1969, 33(2) : 276-278.
DOI URL |
[20] | 张树兰, 杨学云, 吕殿青, 等. 几种土壤剖面的硝化作用及其动力学特征[J]. 土壤学报, 2000,(3):372-379. |
Zhang Shulan, Yang Xueyun, Lyu Dianqing, et al. Nitrification and its kinetic characteristics in several soil profiles[J]. Soil Science, 2000 (3) : 372-379. | |
[21] | 张树兰, 杨学云, 吕殿青, 等. 温度、水分及不同氮源对土壤硝化作用的影响[J]. 生态学报, 2002,(12):2147-2153. |
Zhang Shulan, Yang Xueyun, Lv Dianqing, et al. Effects of temperature, moisture and different nitrogen sources on soil nitrification[J]. Ecological report, 2002, (12) : 2147-2153. | |
[22] | 张国桢. 石灰性土壤硝化作用模型的研究[D]. 杨凌: 西北农林科技大学, 2007. |
Zhang Guozhen. Study on nitrification model of calcareous soil[D]. Yanglin:Northwest A & F University, 2007. | |
[23] | 郎漫, 李平, 魏玮. 不同质地黑土净氮转化速率和温室气体排放规律研究[J]. 农业环境科学学报, 2020, 39(2):429-436. |
Lang Man, Li Ping, Wei Wei. Study on net nitrogen transformation rate and greenhouse gas emission in black soil with different textures[J]. Journal of Agricultural Environmental Sciences, 2020, 39 (2) : 429-436. | |
[24] |
T. Harrison-Kirk et al. Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation[J]. Soil Biology and Biochemistry, 2014, 74 : 50-60.
DOI URL |
[25] |
Sleutel S, Moeskops B, Huybrechts W, et al. Modeling soil moisture effects on net nitrogen mineralization in loamy wetland soils[J]. Wetlands, 2008, 28(3):724-734.
DOI URL |
[26] | 雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2):297-308. |
Lei Hongjun, Hu Shiguo, Pan Hongwei, et al. Advances in soil aeration and oxygenated irrigation[J]. Soil Science, 2017, 54 (2) : 297-308.
DOI URL |
|
[27] | 王静静. 盐碱土区农田土壤团聚体有机碳组分变化特征与影响因素研究[D]. 长春: 吉林大学, 2020. |
Wang Jingjing. Study on the change characteristics and influencing factors of organic carbon components in farmland soil aggregates in saline-alkali soil area[D]. Changchun: Jilin University, 2020. | |
[28] | 魏样. 石油污染对土壤性状的影响及植物修复效应研究[D]. 杨凌: 西北农林科技大学, 2019. |
Wei Xiang. Effects of oil pollution on soil properties and phytoremediation effect[D]. Yanglin:Northwest A & F University, 2019. | |
[29] | 赵婷, 张军辉, 王芳, 等. 全球森林土壤氮素总转化速率的调控因素及空间分布[J]. 生态学杂志, 2018, 37(12):3746-3756. |
Zhao Ting, Zhang Junhui, Wang Fang, et al. The regulatory factors and spatial distribution of total nitrogen transformation rate in global forest soils[J]. Ecological Journal, 2018, 37 (12) : 3746-3756. | |
[30] | 刘敏, 刘爱菊, 李梦红, 等. 土壤理化性质与土壤硝化势相关性研究[J]. 山东理工大学学报(自然科学版), 2012, 26(5):100-103. |
Liu Min, Liu Aiju, Li Menghong, et al. Correlation between soil physical and chemical properties and soil nitrification potential[J]. Journal of Shandong University of Technology ( Natural Science Edition ), 2012, 26 (5) : 100-103. | |
[31] | 吴宏伟. 大气-植被-土体相互作用:理论与机理[J]. 岩土工程学报, 2017, 39(1):1-47. |
Wu Hongwei. Atmospheric-Vegetation-Soil Interaction: Theory and Mechanism[J]. Journal of Geotechnical Engineering, 2017, 39(1): 1-47. | |
[32] | 雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2):297-308. |
Lei Hongjun, Hu Shiguo, Pan Hongwei, et al. Research progress on soil aeration and oxygenated irrigation[J]. Soil science paper, 2017, 54 (2) : 297-308. | |
[33] | 肖元松. 增氧栽培对桃根系构型及植株生长发育影响的研究[D]. 泰安: 山东农业大学, 2015. |
Pinus xiaoyuanensis. Effects of aerobic cultivation on root system configuration and plant growth and development[D]. Tai'an: Shandong Agricultural University, 2015. | |
[34] | 雷宏军, 童文彬, 潘红卫. 不同类型土壤下不同增氧灌溉方式对甜椒生长生理指标、产量和灌溉水利用效率的影响[J]. 华北水利水电大学学报(自然科学版), 2021, 42(5):94-101. |
Lei Hongjun, Tong Wenbin, Pan Hongwei, et al. Effects of different aerobic irrigation methods on growth physiological indexes, yield and irrigation water use efficiency of sweet pepper in different types of soil[J]. Journal of North China University of Water Resources and Hydropower ( Natural Science Edition ), 2021, 42 (5) : 94-101. | |
[35] | 饶晓娟. 增氧对新疆膜下滴灌棉田土壤肥力及棉花生长的影响[D]. 乌鲁木齐: 新疆农业大学, 2017. |
Rao Xiaojuan. Effects of oxygen addition on soil fertility and cotton growth in cotton field under mulched drip irrigation in Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2017. | |
[36] | 张国桢, 李世清. 三种氨态氮肥在石灰性土壤中硝化作用的模拟研究[J]. 干旱地区农业研究, 2007,(6):177-182,211. |
Zhang Guozhen, Li Shiqing. Simulation study on nitrification of three ammonia nitrogen fertilizers in calcareous soil[J]. Agricultural research in arid areas, 2007,(6) : 177-182,211. |
[1] | YE Yang, HOU Zhen'an, MIN Wei, GUO Huijuan. Effects of urease/nitrification inhibitors on nutrient absorption and yield of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 814-822. |
[2] | . Effects of Saline Water on Soil Ammonia-oxidizing Bacteria and Enzyme Activity in Cotton Field under Drip Irrigation Condition [J]. , 2014, 51(11): 2038-2045. |
[3] | WANG Yu-ge;MENG Xiang-yun;PENG Si-ming;CHU Gui-xin;LIU Huai-feng. Effects of Nitrification Inhibitor Nitrapyrin (N +) on the Yield and Quality of Jujube (Ziziphus jujube Mill.Cv.Hui Zao) [J]. , 2014, 51(10): 1803-1807. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||