Xinjiang Agricultural Sciences ›› 2021, Vol. 58 ›› Issue (10): 1821-1828.DOI: 10.6048/j.issn.1001-4330.2021.10.007
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Cultivation Physiology·Physiology and Biochenistry·Agricultural Product Analysis and Detection • Previous Articles Next Articles
Tianfa GUO1,2(), Changwen CHEN2, Yong LI2, Jinlong WU2, Renci XIONG1(
)
Received:
2020-12-03
Online:
2021-10-20
Published:
2021-10-26
Correspondence author:
Renci XIONG
Supported by:
郭天发1,2(), 陈昌文2, 李勇2, 吴金龙2, 熊仁次1(
)
通讯作者:
熊仁次
作者简介:
郭天发(1996-),男,甘肃武威人,硕士研究生,研究方向为果树种质资源与遗传育种,(E-mail) gtfzky@126.com
基金资助:
CLC Number:
Tianfa GUO, Changwen CHEN, Yong LI, Jinlong WU, Renci XIONG. Evaluation of Chilling and Heat Requirements of New Peach Cultivars and Preliminary Study on Dynamic Model[J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1821-1828.
郭天发, 陈昌文, 李勇, 吴金龙, 熊仁次. 桃新品种需冷量和需热量评价及动力学模型分析[J]. 新疆农业科学, 2021, 58(10): 1821-1828.
日期 Data | 平均气温 Average temperature (℃) | 日期 Data | 平均气温 Average temperature (℃) | 日期 Data | 平均气温 Average temperature (℃) |
---|---|---|---|---|---|
11.16 | 9.74 | 11.21 | 10.1 | 11.26 | 4.9 |
11.17 | 10.3 | 11.22 | 9.3 | 11.27 | 5.1 |
11.18 | 7.3 | 11.23 | 12.5 | 11.28 | 2.9 |
11.19 | 6.7 | 11.24 | 10 | 11.29 | 4.5 |
11.2 | 7.8 | 11.25 | 3.5 | 11.3 | 5.6 |
Table 1 Daily average temperature values (Zhengzhou, Henan Province, 2019)
日期 Data | 平均气温 Average temperature (℃) | 日期 Data | 平均气温 Average temperature (℃) | 日期 Data | 平均气温 Average temperature (℃) |
---|---|---|---|---|---|
11.16 | 9.74 | 11.21 | 10.1 | 11.26 | 4.9 |
11.17 | 10.3 | 11.22 | 9.3 | 11.27 | 5.1 |
11.18 | 7.3 | 11.23 | 12.5 | 11.28 | 2.9 |
11.19 | 6.7 | 11.24 | 10 | 11.29 | 4.5 |
11.2 | 7.8 | 11.25 | 3.5 | 11.3 | 5.6 |
温度 Temperature (℃) | 冷温单位 Chilling Unit (C·U) |
---|---|
1.4 | 0 |
1.5~2.4 | 0.5 |
2.5~9.1 | 1 |
9.2~12.4 | 0.5 |
12.5~15.9 | 0 |
16.0~18.0 | -0.5 |
>18.0 | -1 |
Table 2 Transformation of temperature and chilling unit for Utah model
温度 Temperature (℃) | 冷温单位 Chilling Unit (C·U) |
---|---|
1.4 | 0 |
1.5~2.4 | 0.5 |
2.5~9.1 | 1 |
9.2~12.4 | 0.5 |
12.5~15.9 | 0 |
16.0~18.0 | -0.5 |
>18.0 | -1 |
模型 Model | 11月8日 | 11月15日 | 11月25日 | 12月5日 | 12月15日 | 12月25日 | 1月4日 | 1月14日 | 1月20日 |
---|---|---|---|---|---|---|---|---|---|
≤7.2 ℃模型 ≤7.2℃Model (h) | 0 | 11 | 90 | 271 | 445 | 639 | 805 | 1 041 | 1 162 |
0~7.2 ℃模型 0~7.2℃ Model (h) | 0 | 11 | 77 | 241 | 356 | 519 | 621 | 809 | 886 |
犹它模型 Utah Model (C·U) | -1 | 8.5 | 116 | 293.5 | 388 | 535 | 635.5 | 768 | 836 |
动力学模型 Dynamic Model (CP) | 0 | 0 | 6.4 | 14.8 | 20.3 | 28 | 34.5 | 41.4 | 46.3 |
Table 3 Chilling requirement from November 2019 to February 2020 in Zhengzhou based on four models
模型 Model | 11月8日 | 11月15日 | 11月25日 | 12月5日 | 12月15日 | 12月25日 | 1月4日 | 1月14日 | 1月20日 |
---|---|---|---|---|---|---|---|---|---|
≤7.2 ℃模型 ≤7.2℃Model (h) | 0 | 11 | 90 | 271 | 445 | 639 | 805 | 1 041 | 1 162 |
0~7.2 ℃模型 0~7.2℃ Model (h) | 0 | 11 | 77 | 241 | 356 | 519 | 621 | 809 | 886 |
犹它模型 Utah Model (C·U) | -1 | 8.5 | 116 | 293.5 | 388 | 535 | 635.5 | 768 | 836 |
动力学模型 Dynamic Model (CP) | 0 | 0 | 6.4 | 14.8 | 20.3 | 28 | 34.5 | 41.4 | 46.3 |
序号 Number | 品种 Varieties | 果实类型 Fruit type | ≤7.2℃模型 ≤7.2℃Model (h) | 0~7.2℃模型 0~7.2℃ Model (h) | 犹它模型 Utah Model (C·U) | 动力学模型 Dynamic Model (CP) |
---|---|---|---|---|---|---|
1 | 玛丽维拉(CK) | 普通桃 | 462 | 320 | 365 | 23 |
2 | 中油蟠5号 | 油蟠桃 | 631.5 | 501.5 | 525 | 27.7 |
3 | 中桃金饴 | 普通桃 | 731 | 571 | 585 | 31.4 |
4 | 中桃金阳 | 普通桃 | 731 | 571 | 585 | 31.4 |
5 | 中蟠19号 | 毛蟠桃 | 731 | 571 | 585 | 31.4 |
6 | 早黄蟠桃 | 毛蟠桃 | 731 | 571 | 585 | 31.4 |
7 | 中油金缘 | 油桃 | 731 | 571 | 585 | 31.4 |
8 | 中油丹玉 | 油桃 | 731 | 571 | 585 | 31.4 |
9 | 中油蟠9号 | 油蟠桃 | 731 | 571 | 585 | 31.4 |
10 | 南方早红(CK) | 油桃 | 815 | 573 | 542.5 | 35.2 |
11 | 中油金帅 | 油桃 | 838 | 662 | 653.8 | 36.5 |
12 | 中油金黛 | 油桃 | 838 | 662 | 653.8 | 36.5 |
13 | 中桃金甜 | 普通桃 | 945 | 753 | 722.5 | 38.9 |
14 | 中蟠7号 | 毛蟠桃 | 945 | 753 | 722.5 | 38.9 |
15 | 中蟠16号 | 毛蟠桃 | 945 | 753 | 722.5 | 38.9 |
16 | 中蟠11号 | 毛蟠桃 | 945 | 753 | 722.5 | 38.9 |
17 | 曙光(CK) | 油桃 | 945 | 753 | 722.5 | 38.9 |
18 | 中油蟠6号 | 油蟠桃 | 945 | 753 | 722.5 | 38.9 |
19 | 中蟠14号 | 毛蟠桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
20 | 中蟠10号 | 毛蟠桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
21 | 中蟠15号 | 毛蟠桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
22 | 中农金辉 | 油桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
23 | 中蟠18号 | 毛蟠桃 | 1162 | 886 | 836 | 46.3 |
24 | 中桃金蜜 | 普通桃 | 1162 | 886 | 836 | 46.3 |
25 | 中油金铭 | 油桃 | 1162 | 886 | 836 | 46.3 |
26 | 中油金瑞 | 油桃 | 1162 | 886 | 836 | 46.3 |
Table 4 The chilling requirement of 4 models for the different cultivars
序号 Number | 品种 Varieties | 果实类型 Fruit type | ≤7.2℃模型 ≤7.2℃Model (h) | 0~7.2℃模型 0~7.2℃ Model (h) | 犹它模型 Utah Model (C·U) | 动力学模型 Dynamic Model (CP) |
---|---|---|---|---|---|---|
1 | 玛丽维拉(CK) | 普通桃 | 462 | 320 | 365 | 23 |
2 | 中油蟠5号 | 油蟠桃 | 631.5 | 501.5 | 525 | 27.7 |
3 | 中桃金饴 | 普通桃 | 731 | 571 | 585 | 31.4 |
4 | 中桃金阳 | 普通桃 | 731 | 571 | 585 | 31.4 |
5 | 中蟠19号 | 毛蟠桃 | 731 | 571 | 585 | 31.4 |
6 | 早黄蟠桃 | 毛蟠桃 | 731 | 571 | 585 | 31.4 |
7 | 中油金缘 | 油桃 | 731 | 571 | 585 | 31.4 |
8 | 中油丹玉 | 油桃 | 731 | 571 | 585 | 31.4 |
9 | 中油蟠9号 | 油蟠桃 | 731 | 571 | 585 | 31.4 |
10 | 南方早红(CK) | 油桃 | 815 | 573 | 542.5 | 35.2 |
11 | 中油金帅 | 油桃 | 838 | 662 | 653.8 | 36.5 |
12 | 中油金黛 | 油桃 | 838 | 662 | 653.8 | 36.5 |
13 | 中桃金甜 | 普通桃 | 945 | 753 | 722.5 | 38.9 |
14 | 中蟠7号 | 毛蟠桃 | 945 | 753 | 722.5 | 38.9 |
15 | 中蟠16号 | 毛蟠桃 | 945 | 753 | 722.5 | 38.9 |
16 | 中蟠11号 | 毛蟠桃 | 945 | 753 | 722.5 | 38.9 |
17 | 曙光(CK) | 油桃 | 945 | 753 | 722.5 | 38.9 |
18 | 中油蟠6号 | 油蟠桃 | 945 | 753 | 722.5 | 38.9 |
19 | 中蟠14号 | 毛蟠桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
20 | 中蟠10号 | 毛蟠桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
21 | 中蟠15号 | 毛蟠桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
22 | 中农金辉 | 油桃 | 1053.5 | 819.5 | 779.3 | 42.6 |
23 | 中蟠18号 | 毛蟠桃 | 1162 | 886 | 836 | 46.3 |
24 | 中桃金蜜 | 普通桃 | 1162 | 886 | 836 | 46.3 |
25 | 中油金铭 | 油桃 | 1162 | 886 | 836 | 46.3 |
26 | 中油金瑞 | 油桃 | 1162 | 886 | 836 | 46.3 |
序号 Number | 品种 Varieties | 生长度时模型 Growing degree hours model (GDH℃) | 有效积温模型 Effective accumulated temperature model (D℃) | 序号 Number | 品种 Varieties | 生长度时模型 Growing degree hours model (GDH℃) | 有效积温模型 Effective accumulated temperature model (D℃) |
---|---|---|---|---|---|---|---|
1 | 玛丽维拉(CK) | 5 879 | 155.9 | 14 | 中蟠7号 | 6 478.7 | 208.8 |
2 | 中油蟠5号 | 6 389.5 | 183.1 | 15 | 中蟠16号 | 6 478.7 | 208.8 |
3 | 中桃金饴 | 6 091.2 | 169.9 | 16 | 中蟠11号 | 6 289.3 | 194.8 |
4 | 中桃金阳 | 6 582.7 | 197.2 | 17 | 曙光(CK) | 6 898 | 257.3 |
5 | 中蟠19号 | 6 582.7 | 197.2 | 18 | 中油蟠6号 | 6 289.3 | 194.8 |
6 | 早黄蟠桃 | 6 289.3 | 194.8 | 19 | 中蟠14号 | 6 318.7 | 229.5 |
7 | 中油金缘 | 6 389.5 | 183.1 | 20 | 中蟠10号 | 6 318.7 | 229.5 |
8 | 中油丹玉 | 6 389.5 | 183.1 | 21 | 中蟠15号 | 6 898 | 257.3 |
9 | 中油蟠9号 | 6 873.6 | 202.7 | 22 | 中农金辉 | 6 318.7 | 229.5 |
10 | 南方早红(CK) | 6 289.3 | 194.8 | 23 | 中蟠18号 | 6 609.6 | 245 |
11 | 中油金帅 | 6 289.3 | 194.8 | 24 | 中桃金蜜 | 6 898 | 257.3 |
12 | 中油金黛 | 6 769.6 | 224.3 | 25 | 中油金铭 | 6 318.7 | 229.5 |
13 | 中桃金甜 | 6 289.3 | 194.8 | 26 | 中油金瑞 | 6 318.7 | 229.5 |
Table 5 The heat requirement of 2 models for the different cultivars
序号 Number | 品种 Varieties | 生长度时模型 Growing degree hours model (GDH℃) | 有效积温模型 Effective accumulated temperature model (D℃) | 序号 Number | 品种 Varieties | 生长度时模型 Growing degree hours model (GDH℃) | 有效积温模型 Effective accumulated temperature model (D℃) |
---|---|---|---|---|---|---|---|
1 | 玛丽维拉(CK) | 5 879 | 155.9 | 14 | 中蟠7号 | 6 478.7 | 208.8 |
2 | 中油蟠5号 | 6 389.5 | 183.1 | 15 | 中蟠16号 | 6 478.7 | 208.8 |
3 | 中桃金饴 | 6 091.2 | 169.9 | 16 | 中蟠11号 | 6 289.3 | 194.8 |
4 | 中桃金阳 | 6 582.7 | 197.2 | 17 | 曙光(CK) | 6 898 | 257.3 |
5 | 中蟠19号 | 6 582.7 | 197.2 | 18 | 中油蟠6号 | 6 289.3 | 194.8 |
6 | 早黄蟠桃 | 6 289.3 | 194.8 | 19 | 中蟠14号 | 6 318.7 | 229.5 |
7 | 中油金缘 | 6 389.5 | 183.1 | 20 | 中蟠10号 | 6 318.7 | 229.5 |
8 | 中油丹玉 | 6 389.5 | 183.1 | 21 | 中蟠15号 | 6 898 | 257.3 |
9 | 中油蟠9号 | 6 873.6 | 202.7 | 22 | 中农金辉 | 6 318.7 | 229.5 |
10 | 南方早红(CK) | 6 289.3 | 194.8 | 23 | 中蟠18号 | 6 609.6 | 245 |
11 | 中油金帅 | 6 289.3 | 194.8 | 24 | 中桃金蜜 | 6 898 | 257.3 |
12 | 中油金黛 | 6 769.6 | 224.3 | 25 | 中油金铭 | 6 318.7 | 229.5 |
13 | 中桃金甜 | 6 289.3 | 194.8 | 26 | 中油金瑞 | 6 318.7 | 229.5 |
需冷量估算模型 Chilling requirement model (x) | 需热量估算模型 Heat requirement models (y) | |
---|---|---|
生长度小时模型 Growing degree hours model | 有效积温模型 Effective accumulated temperature model | |
≤7.2℃模型 ≤7.2℃Model (h) | y=-0.046x+6 470.822,0.002 | y=0.626x+117.471,0.392 |
0~7.2℃模型 0~7.2℃ Model (h) | y=-0.019x+6 410.548,0.000 | y=0.634x+115.065,0.401 |
犹它模型 Utah Model (C·U) | y=-0.016x+6 411.456,0.000 | y=0.630x+97.404,0.397 |
动力学模型 Dynamic Model (CP) | y=-0.050x+6 501.851,0.003 | y=0.624x+98.966,0.389 |
Table 6 Chilling and heat requirements and relationship between different models
需冷量估算模型 Chilling requirement model (x) | 需热量估算模型 Heat requirement models (y) | |
---|---|---|
生长度小时模型 Growing degree hours model | 有效积温模型 Effective accumulated temperature model | |
≤7.2℃模型 ≤7.2℃Model (h) | y=-0.046x+6 470.822,0.002 | y=0.626x+117.471,0.392 |
0~7.2℃模型 0~7.2℃ Model (h) | y=-0.019x+6 410.548,0.000 | y=0.634x+115.065,0.401 |
犹它模型 Utah Model (C·U) | y=-0.016x+6 411.456,0.000 | y=0.630x+97.404,0.397 |
动力学模型 Dynamic Model (CP) | y=-0.050x+6 501.851,0.003 | y=0.624x+98.966,0.389 |
模型 Model | 优点 Advantage | 缺点 Disadvantage | 应用前景 Application | 参考文献 References |
---|---|---|---|---|
≤7.2℃模型 ≤7.2℃ Model/h | 无法体现不同温度对低温累积的贡献大小 | 逐渐淘汰 | ||
0~7.2℃模型 0~7.2℃ Model/h | 改进了≤7.2℃模型,相比前者,考虑到零度以下低温对需冷量的影响,计算简便。 | 不同年份昼夜温差越大时,由于温差的抵消作用,就会出现差异[ | 广泛使用 | 王力荣等,1992;Darbyshire et al.2011 |
犹它模型 Utah model (C·U) | 相比低温小时模型,对低温转换的范围分的较细,结果相对更符合自然规律[ | 虽然考虑到高温对需冷量的负作用,但不能解释中温对其影响以及不同温度循环长度对需冷量的影响,且不适合于较温暖地区[ | 广泛使用 | 王力荣等,1992;庄维兵等,2012 |
动力学模型 Dynamic model (CP) | 考虑因素全面,无论在寒冷地区还是温暖地区重演性均比较好[ | 计算较为繁琐,理论复杂。 | 尚未被广泛采用 | Tapio et al.,2008;Fishman et al.,1987;Ruiz et al.,2007 |
Table 7 Comparison of four evaluation models of chilling requirement
模型 Model | 优点 Advantage | 缺点 Disadvantage | 应用前景 Application | 参考文献 References |
---|---|---|---|---|
≤7.2℃模型 ≤7.2℃ Model/h | 无法体现不同温度对低温累积的贡献大小 | 逐渐淘汰 | ||
0~7.2℃模型 0~7.2℃ Model/h | 改进了≤7.2℃模型,相比前者,考虑到零度以下低温对需冷量的影响,计算简便。 | 不同年份昼夜温差越大时,由于温差的抵消作用,就会出现差异[ | 广泛使用 | 王力荣等,1992;Darbyshire et al.2011 |
犹它模型 Utah model (C·U) | 相比低温小时模型,对低温转换的范围分的较细,结果相对更符合自然规律[ | 虽然考虑到高温对需冷量的负作用,但不能解释中温对其影响以及不同温度循环长度对需冷量的影响,且不适合于较温暖地区[ | 广泛使用 | 王力荣等,1992;庄维兵等,2012 |
动力学模型 Dynamic model (CP) | 考虑因素全面,无论在寒冷地区还是温暖地区重演性均比较好[ | 计算较为繁琐,理论复杂。 | 尚未被广泛采用 | Tapio et al.,2008;Fishman et al.,1987;Ruiz et al.,2007 |
[1] | 陈茂铨, 叶伟其, 刘卓香, 等. 12个桃品种的花芽休眠需冷量和开花需热量[J]. 林业科学, 2012, 48(1):86-90. |
CHEN Maoquan, YE Weiqi, LIU Zhuoxiang, et al. The Requirements of Chilling for Bud Dormancy and Caloric for Blooming for 12 Peach Varieties[J]. Scientia Silvae, 2012, 48(1):86-90. | |
[2] | Erez A. Chemical control of budbreak[J]. HortScience, 1987, 22(6):1240-1243. |
[3] | Erez A. Means to compensate for insufficient chilling to improve bloom and leafing[J]. Acta Horticultural, 1995,(395):81-96. |
[4] | 杨庆仙. 设施桃栽培中存在的问题及解决措施[J]. 河北林业科技, 2005, (6):36-43. |
YANG Qingxian. Problems and solutions of peach cultivation in Greenhouse[J]. The Journal of Hebei Forestry Science and Technology, 2005, (6):36-43. | |
[5] | 刘芸, 姜新, 陆玉英, 等. 桃树需冷量研究进展[J]. 中国农学通报, 2018, 35(21):61-65. |
LIU Yun, JIANG Xin, LU Yuying, et al. Advances in Chilling Requirement of Peach[J]. Chinese Agricultural Science Bulletin, 2018, 35(21):61-65. | |
[6] | Weinberger J H. Chilling requirements of peach varieties[J]. proc.amer.soc.hort.sci, 1950,(56):122-128. |
[7] |
Barlow S. Winter chilling trends for deciduous fruit trees in Australia[J]. Agricultural and Forest Meteorology, 2011, 151(8):1074-1085.
DOI URL |
[8] | Sanders C G. Comments on a model for estimating the completion of rest for redhaven and Elberta peach trees[J]. Horticultural Science, 1975,(10):560-561. |
[9] | Erez A, Fishman S, Linsley-Noakes G C, et al. The dynamic model for rest completion in peach buds[J]. Acta Horticultural Science, 1990,(276):165-174. |
[10] | Tapio L, Lappalainen H K, Pertti H . A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations[J]. Tree Physiology, 2008,(12):12. |
[11] | Pérez Correa F, Ormeño N, Reynaert B, et al. Use of the dynamic model for the assessment of winter chilling in a temperate and a subtropical climatic zone of Chile[J]. Chilean Journal of Agricultural Research, 2008,(68):198-206. |
[12] |
Alburquerque N, García-Montiel F, Carrillo A, et al. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements[J]. Environmental and Experimental Botany, 2008, 64(2):162-170.
DOI URL |
[13] | 王力荣, 胡霓云. 桃品种的低温需求量[J]. 果树科学, 1992, 9(1):39-42. |
WANG Lirong, HU Niyun. The chilling requirements of peach cultivars[J]. Journal of Fruit Science, 1992, 9(1):39-42. | |
[14] | 王力荣, 朱更瑞, 方伟超. 桃种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2005. |
WANG Lirong, ZHU Gengrui, FANG Weichao. Description Specification and Data Standard of Peach Germplasm Resources[M]. Beijing: China Agriculture Press, 2005. | |
[15] | Anderson J L, Seeley S D. Modelling strategy in pomology development of the Utah models[J]. Acta Horticultural Science, 1992, 313(36):297-306. |
[16] | 胡瑞兰, 贾永祥. 影响温室桃成熟期的因子研究[J]. 山西果树, 2002,(3):4-5. |
HU Ruilan, JIA Yongxiang. Study on the Factors Affecting the Mature Period of Greenhouse Peach[J]. Shanxi Fruit Tress, 2002,(3):4-5. | |
[17] | 汪祖华, 庄恩及. 中国果树志-桃卷[M]. 北京: 中国林业出版社, 2001. |
WANG Zuhua, ZHUANG Enji. Chinese Fruit Tree - Peach [M]. Beijing: China Forestry Publishing House, 2001. | |
[18] |
Darbyshire R, Webb L, Goodwin L, et al. Winter chilling trends for deciduous fruit trees in Australia[J]. Agricultural and Forest Meteorology, 2011, 151:1074-1085.
DOI URL |
[19] | 庄维兵, 章镇, 侍婷, 等. 落叶果树需冷量及其估算模型研究进展[J]. 果树学报, 2012, 29(3):447-453. |
ZHUANG Weibing, ZHANG Zhen, SHI Ting, et al. Advance on chilling requirement and its chilling models in deciduous fruit crops[J]. Journal of Fruit Science, 2012, 29(3):447-453. | |
[20] |
Fishman S, Erez A, Couvillon G A. The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition[J]. J Theor Biol, 1987, 124(4):473-483.
DOI URL |
[21] |
Ruiz D, Campoy J A, Egea J. Chilling and heat requirements of apricot cultivars for flowering[J]. Environ Exp Bot, 2007, 61:254-263.
DOI URL |
[22] | Allan P, Rufus G, Matthee G W, et al. Winter chill models in a mild subtropical area and effects of constant 6 C chilling on peach budbreak[C]//IV International Symposium on Growing Temperate Zone Fruits in the Tropics and in the Subtropics, 1993, 409:9-18. |
[23] | 王力荣, 朱更瑞, 方伟超, 等. 桃品种需冷量评价模式的探讨[J]. 园艺学报, 2003, 30(4):379-383. |
WANG Lirong, ZHU Gengrui, FANG Weichao. Estimating models of the chilling requirement for peach[J]. Acta Horticulturae Sinica, 2003, 30(4):379-383. | |
[24] | 赵婷婷, 韩飞, 陈美艳, 等. 基于3种模型的猕猴桃重要栽培品种需冷量研究[J]. 中国果树, 2018,(6):36-39. |
ZHAO Tingting, HAN Fei, CHEN Meiyan, et al. Study on the cold requirement of important cultivars of kiwifruit based on three models[J]. China Fruits, 2018,(6):36-39. | |
[25] | Maulión E, Valentini G H, Kovalevski L, et al. Comparison of methods for estimation of chilling and heat requirements of nectarine and peach genotypes for flowering[J]. Science Horticultural, 2014,(177):112-117. |
[26] | 王力荣, 朱更瑞, 左覃元. 中国桃品种需冷量的研究[J]. 园艺学报, 1997, 24(2):91-93. |
WANG Lirong, ZHU Gengrui, ZUO Qinyuan. Studies on the chilling requirement of peach varieties[J]. Acta Horticulturae Sinica, 1997, 24(2):91-93. |
[1] | YANG Mingfeng, HUANGFU Zhaoqing, Guo Huijing, Pan Yanfang, SONG Fangyuan. Study on the influence of different fresh-keeping packages on the shelf life quality of flat peach at room temperature after logistics transportation [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1955-1962. |
[2] | FAN Shaoli, CHENG Ping, ZHANG Zhigang, LI Hong, YANG Lu. Optimization of fermentation technology and quality evaluation of Xinjiang peach wine [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1423-1431. |
[3] | LI Ziqin, LI Wenqi, Chen Ya, ZHANG Zhenghong, DANG Fumin, ZHAO Zhiyong, LEI Yongdong. Effects of delayed precooling combined with hydrogen peroxide fumigation on storage quality and physiological characteristics of flat peach [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 908-915. |
[4] | XIE Xiaoyan, GUO Huijing, ZHAO Zhiyong, LI Ziqin, SONG Fangyuan. Effects of different packaging treatments combined with cold storage agent on shelf life quality of flat peach after storage [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 908-915. |
[5] | HAN Yi, ZHAO Baolong, SUN Junli, ZHAO Shucheng. Study on Leaf Characters and Diurnal Variation of Photosynthesis of Excellent Single Plant of Xinjiang Peach [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2170-2178. |
[6] | GUO Huijing, LI Jixin, SONG Fangyuan, ZHAO Zhiyong. Effects of Special Package in Simulated Transportation of Flat Peaches [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1284-1291. |
[7] | Alinuer Abudureyimu, ZHANG Zhenzhen, HUANG Yadong, Abuduwarisi Tuerxunjiang, CHEN Kai, LI Huanrong. Construction of Dynamic Model of Soluble Sugar Content in Dried Jujube [J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1342-1354. |
[8] | HU Shan, YE Zhi-heng, FENG Jian-rong, ZHU Shu-hua, . Effects of Nitric Oxide on Mitochondrial Oxidative Damage in Peaches Stored at Low Temperature [J]. Xinjiang Agricultural Sciences, 2018, 55(12): 2157-2165. |
[9] | Kelimu Yiming;HAN Li-qun;Maerhaba Wusiman;Aisikaer Aihemaiti;Ghunqam Abdurxit;Abulimiti Musa;WANG Xin-wei;MA Kai;WANG Ji-xun. Investigation of the Fruit Characters and Preliminary Evaluation of Different Xinjiang Peach Germplasms [J]. , 2017, 54(6): 1041-1046. |
[10] | WU Jiu-yun;GUO Feng;CHEN Lin;Anwar;Hurxida;HAO Qing. Effects of Different Dormancy Time on Grape Bud [J]. , 2015, 52(4): 643-647. |
[11] | XING Hong-liang;ZHANG Wang-bin;WEN Shan-ju;XIE Xin;LI Chun-yan;GOU Qiao;ZHANG Wen-jie. Biological Characteristics and Pathogenicity of Valsa Canker Pathogen of Peach Tree in Southern Xinjiang [J]. , 2015, 52(12): 2286-2293. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||