

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 1022-1031.DOI: 10.6048/j.issn.1001-4330.2025.04.027
马兰(
), 刘英玉(
), 祖力胡马尔·艾力, 郑百利, 豆涛, 蔡雨萱, 程雅玲
收稿日期:2024-08-11
出版日期:2025-04-20
发布日期:2025-06-20
通信作者:
刘英玉(1984-),女,重庆涪陵人,副教授,博士,硕士生导师,研究方向为畜产品质量与安全,(E-mail)xjlyy1028@163.com作者简介:马兰(2000-),女,新疆昌吉人,硕士研究生,研究方向为畜产品质量与安全,(E-mail)1904098208@qq.com
基金资助:
MA Lan(
), LIU Yingyu(
), Zulihumaer Aili, ZHENG Baili, DOU Tao, CAI Yuxuan, CHENG Yaling
Received:2024-08-11
Published:2025-04-20
Online:2025-06-20
Supported by:摘要:
【目的】分析南疆某鹅屠宰场中金黄色葡萄球菌的污染情况,并对分离株的毒力基因、耐药性及分型进行研究,为分析屠宰加工环节中污染的关键控制点、有效预防和控制食源性疾病的爆发提供参考。【方法】在新疆某鹅屠宰场共采集153份样品(包括采自刀具、工人手部、生产器具、鹅胴体的拭子和肉样),采用传统培养方法结合PCR技术进行金黄色葡萄球菌的分离鉴定,同时检测12种肠毒素基因并进行葡萄球菌蛋白A(staphylococcal protein A,SPA)分型,采用琼脂稀释法调查12种抗生素的耐药性。【结果】从该鹅屠宰场分离鉴定出49株金黄色葡萄球菌,分离率为32.0%,其中鹅胴体分离率最高为40.0%(22/55),其次为工人手部36.0%(9/25)、生产器具34.3%(12/35)、刀具20.0%(2/10)、鹅肉14.3%(4/28)。所有分离菌株共有7种克隆型(t078、t034、t502、t701、t1376、t002和t091)和3种未知分型。有7种肠毒素基因被检出,其中seb(26.5%)、seg(46.9%)、sei(32.7%)、sem(24.5%)、seu(28.6%)基因常被检出。49株金黄色葡萄球菌呈现出多重耐药性,对氨苄西林、阿奇霉素、磺胺异恶唑、环丙沙星耐药率在73.50%~49.00%,多重耐药以三重和四重耐药为主,最高可达七重耐药。【结论】鹅屠宰场金黄色葡萄球菌污染严重,不同加工环节存在交叉污染的现象,所采样品中鹅胴体污染率最高,为40.0%。分离株主要为t078和t034、t502分型,分离的金黄色葡萄球菌携带多种肠毒素,并且63.3%的分离株表现出多重耐药。
中图分类号:
马兰, 刘英玉, 祖力胡马尔·艾力, 郑百利, 豆涛, 蔡雨萱, 程雅玲. 新疆某鹅屠宰场中金黄色葡萄球菌的分子特征和耐药性分析[J]. 新疆农业科学, 2025, 62(4): 1022-1031.
MA Lan, LIU Yingyu, Zulihumaer Aili, ZHENG Baili, DOU Tao, CAI Yuxuan, CHENG Yaling. Molecular characteristics and drug resistance analysis of Staphylococcus aureus in a goose slaughterhouse in Xinjiang[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 1022-1031.
| 基因 Gene | 引物序列(5’-3’) Primer sequence (5’-3’) | Tm (℃) | 长度(bp) Length(bp) |
|---|---|---|---|
| nuc | F-ATCATTATTGTAGGTGTATTAG | 54 | 223 |
| R-CAGGCGTATTCGGTTTC | |||
| SPA | F-TAAAGACGATCCTTCGGTGAGC | 60 | 300-450 |
| R-CAGCAGTAGTGCCGTTTGCTT | |||
| sea | F-GAAAAAAGTCTGAATTGCAGGGAACA | 57 | 560 |
| R-CAAATAAATCGTAATTAACCGAAGGTTC | |||
| seb | F-ATTCTATTAAGGACACTAAGTTAGGGA | 57 | 404 |
| R-ATCCCGTTTCATAAGGCGAGT | |||
| sec | F-GTAAAGTTACAGGTGGCAAAACTTG | 56 | 297 |
| R-CATATCATACCAAAAAGTATTGCCGT | |||
| sed | F-GAGGTGTCACTCCACACGAA | 56 | 349 |
| R-TGAAGGTGCTCTGTGGATAATG | |||
| see | F-ACCGATTGACCGAAGAAAAA | 56 | 264 |
| R-ATTGCCCTTGAGCATCAAAC | |||
| seg | F-AGAATTAGCTAACAATTATAAAGATAAAAAAG | 52 | 496 |
| R-TCAGTGAGTATTAAGAAATACTTCCAT | |||
| seh | F-TGATTTAGCTCAGAAGTTTAAAAATAAAAATG | 52 | 466 |
| R-TTTCTTAGTATATAGATTTACATCAATATG | |||
| sel | F-CACCAGAATCACACCGCTTA | 54 | 205 |
| R-CTGTTTGATGCTTGCCATTG | |||
| sei | F-TGGAACAGGACAAGCTGAAA | 53 | 529 |
| R-TGTTTGCCATTAACCCAAA | |||
| sek | F-ATGAATCTTATGATTTAATTTCAGAATCAA | 51 | 545 |
| R-ATTTATATCGTTTCTTTATAAGAAATATCG | |||
| sem | F-ATGAAAAGAATACTTATCATTGTTGTTTTATTG | 53 | 720 |
| R-CTTCAACTTTCGTCCTTATAAGATATTTC | |||
| seu | F-AAACATTAAAGCCCAAGAG | 48 | 215 |
| R-ACACCGCCATACATACAC |
表1 所用引物
Tab.1 The primers used in this study
| 基因 Gene | 引物序列(5’-3’) Primer sequence (5’-3’) | Tm (℃) | 长度(bp) Length(bp) |
|---|---|---|---|
| nuc | F-ATCATTATTGTAGGTGTATTAG | 54 | 223 |
| R-CAGGCGTATTCGGTTTC | |||
| SPA | F-TAAAGACGATCCTTCGGTGAGC | 60 | 300-450 |
| R-CAGCAGTAGTGCCGTTTGCTT | |||
| sea | F-GAAAAAAGTCTGAATTGCAGGGAACA | 57 | 560 |
| R-CAAATAAATCGTAATTAACCGAAGGTTC | |||
| seb | F-ATTCTATTAAGGACACTAAGTTAGGGA | 57 | 404 |
| R-ATCCCGTTTCATAAGGCGAGT | |||
| sec | F-GTAAAGTTACAGGTGGCAAAACTTG | 56 | 297 |
| R-CATATCATACCAAAAAGTATTGCCGT | |||
| sed | F-GAGGTGTCACTCCACACGAA | 56 | 349 |
| R-TGAAGGTGCTCTGTGGATAATG | |||
| see | F-ACCGATTGACCGAAGAAAAA | 56 | 264 |
| R-ATTGCCCTTGAGCATCAAAC | |||
| seg | F-AGAATTAGCTAACAATTATAAAGATAAAAAAG | 52 | 496 |
| R-TCAGTGAGTATTAAGAAATACTTCCAT | |||
| seh | F-TGATTTAGCTCAGAAGTTTAAAAATAAAAATG | 52 | 466 |
| R-TTTCTTAGTATATAGATTTACATCAATATG | |||
| sel | F-CACCAGAATCACACCGCTTA | 54 | 205 |
| R-CTGTTTGATGCTTGCCATTG | |||
| sei | F-TGGAACAGGACAAGCTGAAA | 53 | 529 |
| R-TGTTTGCCATTAACCCAAA | |||
| sek | F-ATGAATCTTATGATTTAATTTCAGAATCAA | 51 | 545 |
| R-ATTTATATCGTTTCTTTATAAGAAATATCG | |||
| sem | F-ATGAAAAGAATACTTATCATTGTTGTTTTATTG | 53 | 720 |
| R-CTTCAACTTTCGTCCTTATAAGATATTTC | |||
| seu | F-AAACATTAAAGCCCAAGAG | 48 | 215 |
| R-ACACCGCCATACATACAC |
| 抗生素名称 Antibiotic names | 浓度范围 Concentration range | 判定标准 Criterion(mg/mL) | ||
|---|---|---|---|---|
| (mg/mL) | 敏感(S) | 中介(I) | 耐药(R) | |
| 恩诺沙星(Enrofloxacin,ENR) | 0.004~4 | 0.25 | 0.5~1 | ≥ 2 |
| 卡那霉素(Kanamycin,KAN) | 0.5~125 | ≤ 16 | 32 | ≥ 64 |
| 氯霉素(Chloramphenicol,CHL) | 1~64 | ≤ 8 | 16 | ≥ 32 |
| 头孢噻呋(Ceftiofur,CF) | 0.125~16 | ≤ 2 | 4 | ≥ 8 |
| 阿奇霉素(Azithromycin,AZM) | 0.25~64 | ≤ 2 | 4 | ≥ 8 |
| 头孢西丁钠(Cefoxitin Sodium,FOX) | 0.5~64 | ≤ 4 | - | ≥ 8 |
| 庆大霉素(Gentamicin,GEN) | 0.064~32 | ≤ 4 | 8 | ≥ 16 |
| 阿莫西林/克拉维酸钾(Amoxicillin/clavulanate acid,AMC) | 0.032~64 | ≤ 4/2 | - | ≥ 8/4 |
| 环丙沙星(Ciprofloxacin,CIP) | 0.008~8 | ≤ 1 | 2 | ≥ 4 |
| 万古霉素(Vancomycin,VAN) | 0.25~64 | ≤ 2 | 4~8 | ≥ 16 |
| 磺胺异恶唑(Sulfisoxazole,SIZ) | 1~1024 | ≤ 256 | - | ≥512 |
| 氨苄西林(Ampicillin,AMP) | 0.25~32 | ≤ 0.25 | - | ≥ 0.5 |
表2 12种抗生素的判定标准
Tab.2 Criteria for the determination of 12 antibiotics
| 抗生素名称 Antibiotic names | 浓度范围 Concentration range | 判定标准 Criterion(mg/mL) | ||
|---|---|---|---|---|
| (mg/mL) | 敏感(S) | 中介(I) | 耐药(R) | |
| 恩诺沙星(Enrofloxacin,ENR) | 0.004~4 | 0.25 | 0.5~1 | ≥ 2 |
| 卡那霉素(Kanamycin,KAN) | 0.5~125 | ≤ 16 | 32 | ≥ 64 |
| 氯霉素(Chloramphenicol,CHL) | 1~64 | ≤ 8 | 16 | ≥ 32 |
| 头孢噻呋(Ceftiofur,CF) | 0.125~16 | ≤ 2 | 4 | ≥ 8 |
| 阿奇霉素(Azithromycin,AZM) | 0.25~64 | ≤ 2 | 4 | ≥ 8 |
| 头孢西丁钠(Cefoxitin Sodium,FOX) | 0.5~64 | ≤ 4 | - | ≥ 8 |
| 庆大霉素(Gentamicin,GEN) | 0.064~32 | ≤ 4 | 8 | ≥ 16 |
| 阿莫西林/克拉维酸钾(Amoxicillin/clavulanate acid,AMC) | 0.032~64 | ≤ 4/2 | - | ≥ 8/4 |
| 环丙沙星(Ciprofloxacin,CIP) | 0.008~8 | ≤ 1 | 2 | ≥ 4 |
| 万古霉素(Vancomycin,VAN) | 0.25~64 | ≤ 2 | 4~8 | ≥ 16 |
| 磺胺异恶唑(Sulfisoxazole,SIZ) | 1~1024 | ≤ 256 | - | ≥512 |
| 氨苄西林(Ampicillin,AMP) | 0.25~32 | ≤ 0.25 | - | ≥ 0.5 |
| 来源 Source | 样本量 (份) Sample size (no) | 阳性样 本数(份) Number of positive samples (no) | 阳性分离率 Positive separation rate (%) |
|---|---|---|---|
| D | 10 | 2 | 20.0 |
| G | 25 | 9 | 36.0 |
| S | 35 | 12 | 34.3 |
| T | 55 | 22 | 40.0 |
| R | 28 | 4 | 14.3 |
| 总计 Total | 153 | 49 | 32.0 |
表3 不同屠宰环节中金黄色葡萄球菌的流行情况
Tab.3 Prevalence of S.aureus in different slaughtering stages
| 来源 Source | 样本量 (份) Sample size (no) | 阳性样 本数(份) Number of positive samples (no) | 阳性分离率 Positive separation rate (%) |
|---|---|---|---|
| D | 10 | 2 | 20.0 |
| G | 25 | 9 | 36.0 |
| S | 35 | 12 | 34.3 |
| T | 55 | 22 | 40.0 |
| R | 28 | 4 | 14.3 |
| 总计 Total | 153 | 49 | 32.0 |
| 编号 Number | SPA型 SPA type | 样本来源 Sample source | 耐药谱 Drug resistance spectrum | 肠毒素基因谱 Gene profile of enterotoxin |
|---|---|---|---|---|
| CZT-5 | t034 | S | CHL-AZM-CIP-SIZ | / |
| CZT-9 | t034 | S | AZM-CIP-SIZ-AMP | / |
| DZC-3 | t034 | S | AZM-AMP | / |
| JXG-4 | t034 | G | AZM-CIP | / |
| JXG-8 | t034 | G | AZM-CIP-SIZ-AMP | / |
| JXG-9 | t034 | G | ENR-CHL-AZM-CIP-SIZ | / |
| TTG-11 | t034 | G | ENR-AZM-CIP-SIZ-AMP | seb-seg |
| KTD-2 | t034 | D | ENR-AZM-CIP-SIZ-AMP | / |
| JTT-15 | t034 | T | CHL-CIP | / |
| TMT-1 | t034 | T | CHL-CIP | / |
| TMT-11 | t034 | T | KAN-AZM-CIP-AMP | / |
| TMT13 | t034 | T | ENR-AZM-CIP-SIZ-AMP | / |
| TMT-2 | t034 | T | CHL-AZM-CIP-SIZ-AMP | / |
| YLT-8 | t034 | T | AZM-CIP-SIZ-AMP | / |
| R-25 | t034 | R | CHL-AZM-CIP-VAN-SIZ-AMP | seg |
| BZB-5 | t078 | S | AZM-AMP | seb-seg-sei-sem-seu |
| BZB-8 | t078 | S | AZM-SIZ-AMP | seb-seg-seu |
| BZB-7 | t078 | S | ENR-CIP-AMP | / |
| TGR | t078 | G | AZM-VAN-SIZ-AMP | seb-seg-sei-seu |
| TGR-1 | t078 | G | AZM-CIP-SIZ-AMP | seb-seg-sei-sem |
| TGR-5 | t078 | G | KAN-AZM-CIP-AMP | / |
| KTD-5 | t078 | D | AZM-CIP-SIZ-AMP | seb-seg-sei-sem-seu |
| JTT-1 | t078 | T | AZM-SIZ-AMP | seg-sei |
| JTT-11 | t078 | T | AZM | seb-seg-sei-seu |
| JTT-12 | t078 | T | CHL-AZM-SIZ | seg |
| TMT3 | t078 | T | AZM-CIP-SIZ-AMP | seb |
| JTT-2 | t078 | T | AZM-SIZ-AMP | seb |
| YLT-13 | t078 | T | AZM-SIZ-AMP | seb-seg |
| YLT-14 | t078 | T | AZM-AMP | seb-sei-seu |
| YLT-4 | t078 | T | AZM-CIP-SIZ-AMP | / |
| YLT-5 | t078 | T | AZM-SIZ-AMP | seb-seg-sei-sem |
| R-10 | t078 | R | AZM-SIZ-AMP | seb-seg-sei-seu |
| R-23 | t078 | R | AZM-AMP | seg-sei-seu |
| DZC-2 | t502 | S | AMP | seg-sei-sem-seu |
| JMT-5 | t502 | T | ENR-CF-FOX-CIP-VAN-SIZ-AMP | seg-seh-sei-seu |
| JMT-9 | t502 | T | CIP-VAN-SIZ-AMP | seg-sei-sem-seu |
| TMT-7 | t502 | T | AZM-SIZ-AMP | seg-sei-sem-seu |
| TMT-8 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| TMT-9 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| YLT-15 | t502 | T | AMP | seg-seu |
| R-17 | t502 | R | AZM-AMP | seg-sem-seu |
| CZT-10 | t701 | S | / | / |
| JXG-3 | t701 | G | / | sea-sem |
| JXG-6 | t1376 | G | AMP | / |
| YLT-1 | t002 | T | / | / |
| CZT-8 | t091 | S | FOX-SIZ-AMP | / |
| BZB-2 | unknown | S | FOX-AMP | / |
| BZB-6 | unknown | S | AZM-CIP-SIZ-AMP | / |
| CSD-4 | unknown | S | ENR-CHL-CIP-VAN-SIZ | / |
表4 49株金黄色葡萄球菌SPA分型、毒力基因谱和耐药谱汇总
Tab.4 Summary of SPA typing, virulence gene profiles and antimicrobial resistance profiles of 49 S.aureus isolates
| 编号 Number | SPA型 SPA type | 样本来源 Sample source | 耐药谱 Drug resistance spectrum | 肠毒素基因谱 Gene profile of enterotoxin |
|---|---|---|---|---|
| CZT-5 | t034 | S | CHL-AZM-CIP-SIZ | / |
| CZT-9 | t034 | S | AZM-CIP-SIZ-AMP | / |
| DZC-3 | t034 | S | AZM-AMP | / |
| JXG-4 | t034 | G | AZM-CIP | / |
| JXG-8 | t034 | G | AZM-CIP-SIZ-AMP | / |
| JXG-9 | t034 | G | ENR-CHL-AZM-CIP-SIZ | / |
| TTG-11 | t034 | G | ENR-AZM-CIP-SIZ-AMP | seb-seg |
| KTD-2 | t034 | D | ENR-AZM-CIP-SIZ-AMP | / |
| JTT-15 | t034 | T | CHL-CIP | / |
| TMT-1 | t034 | T | CHL-CIP | / |
| TMT-11 | t034 | T | KAN-AZM-CIP-AMP | / |
| TMT13 | t034 | T | ENR-AZM-CIP-SIZ-AMP | / |
| TMT-2 | t034 | T | CHL-AZM-CIP-SIZ-AMP | / |
| YLT-8 | t034 | T | AZM-CIP-SIZ-AMP | / |
| R-25 | t034 | R | CHL-AZM-CIP-VAN-SIZ-AMP | seg |
| BZB-5 | t078 | S | AZM-AMP | seb-seg-sei-sem-seu |
| BZB-8 | t078 | S | AZM-SIZ-AMP | seb-seg-seu |
| BZB-7 | t078 | S | ENR-CIP-AMP | / |
| TGR | t078 | G | AZM-VAN-SIZ-AMP | seb-seg-sei-seu |
| TGR-1 | t078 | G | AZM-CIP-SIZ-AMP | seb-seg-sei-sem |
| TGR-5 | t078 | G | KAN-AZM-CIP-AMP | / |
| KTD-5 | t078 | D | AZM-CIP-SIZ-AMP | seb-seg-sei-sem-seu |
| JTT-1 | t078 | T | AZM-SIZ-AMP | seg-sei |
| JTT-11 | t078 | T | AZM | seb-seg-sei-seu |
| JTT-12 | t078 | T | CHL-AZM-SIZ | seg |
| TMT3 | t078 | T | AZM-CIP-SIZ-AMP | seb |
| JTT-2 | t078 | T | AZM-SIZ-AMP | seb |
| YLT-13 | t078 | T | AZM-SIZ-AMP | seb-seg |
| YLT-14 | t078 | T | AZM-AMP | seb-sei-seu |
| YLT-4 | t078 | T | AZM-CIP-SIZ-AMP | / |
| YLT-5 | t078 | T | AZM-SIZ-AMP | seb-seg-sei-sem |
| R-10 | t078 | R | AZM-SIZ-AMP | seb-seg-sei-seu |
| R-23 | t078 | R | AZM-AMP | seg-sei-seu |
| DZC-2 | t502 | S | AMP | seg-sei-sem-seu |
| JMT-5 | t502 | T | ENR-CF-FOX-CIP-VAN-SIZ-AMP | seg-seh-sei-seu |
| JMT-9 | t502 | T | CIP-VAN-SIZ-AMP | seg-sei-sem-seu |
| TMT-7 | t502 | T | AZM-SIZ-AMP | seg-sei-sem-seu |
| TMT-8 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| TMT-9 | t502 | T | SIZ | seb-seg-sei-sem-seu |
| YLT-15 | t502 | T | AMP | seg-seu |
| R-17 | t502 | R | AZM-AMP | seg-sem-seu |
| CZT-10 | t701 | S | / | / |
| JXG-3 | t701 | G | / | sea-sem |
| JXG-6 | t1376 | G | AMP | / |
| YLT-1 | t002 | T | / | / |
| CZT-8 | t091 | S | FOX-SIZ-AMP | / |
| BZB-2 | unknown | S | FOX-AMP | / |
| BZB-6 | unknown | S | AZM-CIP-SIZ-AMP | / |
| CSD-4 | unknown | S | ENR-CHL-CIP-VAN-SIZ | / |
| 毒力基因 Virulence gene | 不同屠宰环节中菌株毒素编码基因携带率(菌株数) The carrying rate of strain toxin coding gene in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| sea | / | 11.1(1) | / | / | / | 2.0(1) |
| seb | 50.0(1) | 33.3(3) | 16.7(2) | 27.3(6) | 25.0(1) | 26.5(13) |
| seg | 50.0(1) | 33.3(3) | 33.3(4) | 50.0(11) | 100.0(4) | 46.9(23) |
| seh | / | / | / | 4.5(1) | / | 2.0(1) |
| sei | 50.0(1) | 22.2(2) | 16.7(2) | 40.9(9) | 50.0(2) | 32.7(16) |
| sem | 50.0(1) | 22.2(2) | 16.7(2) | 27.3(6) | 25.0(1) | 24.5(12) |
| seu | / | 11.1(1) | 25.0(3) | 31.8(7) | 75.0(3) | 28.6(14) |
表5 不同屠宰加工环节中菌株毒力基因检出率
Tab.5 Detection rate of virulence genes in different slaughtering and processing stages(%)
| 毒力基因 Virulence gene | 不同屠宰环节中菌株毒素编码基因携带率(菌株数) The carrying rate of strain toxin coding gene in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| sea | / | 11.1(1) | / | / | / | 2.0(1) |
| seb | 50.0(1) | 33.3(3) | 16.7(2) | 27.3(6) | 25.0(1) | 26.5(13) |
| seg | 50.0(1) | 33.3(3) | 33.3(4) | 50.0(11) | 100.0(4) | 46.9(23) |
| seh | / | / | / | 4.5(1) | / | 2.0(1) |
| sei | 50.0(1) | 22.2(2) | 16.7(2) | 40.9(9) | 50.0(2) | 32.7(16) |
| sem | 50.0(1) | 22.2(2) | 16.7(2) | 27.3(6) | 25.0(1) | 24.5(12) |
| seu | / | 11.1(1) | 25.0(3) | 31.8(7) | 75.0(3) | 28.6(14) |
| 抗生素 Antibiotic | 不同屠宰环节中菌株耐药率(菌株数) Drug resistance rate in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| ENR | 100.0(2) | 11.1(1) | 16.7(2) | 9.1(2) | / | 14.3(7) |
| KAN | / | / | / | 9.1(2) | / | 4.1(2) |
| CHL | 50.0(1) | / | 16.7(2) | 18.2(4) | 25.0(1) | 16.3(8) |
| CF | / | / | / | 4.5(1) | / | 2.0(1) |
| AZM | 100.0(2) | 77.8(7) | 50.0(6) | 63.6(14) | 100.0(4) | 67.3(33) |
| FOX | / | / | 16.7(2) | 4.5(1) | / | 6.1(3) |
| GEN | / | / | / | / | / | 0.0(0) |
| AMC | / | / | / | / | / | 0.0(0) |
| CIP | 100.0(2) | 66.7(6) | 41.7(5) | 45.5(10) | 25.0(1) | 49.0(24) |
| VAN | / | 11.1(1) | 8.3(1) | 9.1(2) | 25.0(1) | 10.2(5) |
| SIZ | 100.0(2) | 55.6(5) | 50.0(6) | 68.2(15) | 50.0(2) | 61.2(30) |
| AMP | 100.0(2) | 66.7(6) | 75.0(9) | 68.2(15) | 100.0(4) | 73.5(36) |
表6 不同屠宰加工环节中菌株耐药率
Tab.6 Detecti on rate of virulence genes in different slaughtering and processing stages(%)
| 抗生素 Antibiotic | 不同屠宰环节中菌株耐药率(菌株数) Drug resistance rate in different slaughtering stages (number of strains) | |||||
|---|---|---|---|---|---|---|
| D(n=2) | G(n=9) | S(n=12) | T(n=22) | R(n=4) | 总计Total(n=49) | |
| ENR | 100.0(2) | 11.1(1) | 16.7(2) | 9.1(2) | / | 14.3(7) |
| KAN | / | / | / | 9.1(2) | / | 4.1(2) |
| CHL | 50.0(1) | / | 16.7(2) | 18.2(4) | 25.0(1) | 16.3(8) |
| CF | / | / | / | 4.5(1) | / | 2.0(1) |
| AZM | 100.0(2) | 77.8(7) | 50.0(6) | 63.6(14) | 100.0(4) | 67.3(33) |
| FOX | / | / | 16.7(2) | 4.5(1) | / | 6.1(3) |
| GEN | / | / | / | / | / | 0.0(0) |
| AMC | / | / | / | / | / | 0.0(0) |
| CIP | 100.0(2) | 66.7(6) | 41.7(5) | 45.5(10) | 25.0(1) | 49.0(24) |
| VAN | / | 11.1(1) | 8.3(1) | 9.1(2) | 25.0(1) | 10.2(5) |
| SIZ | 100.0(2) | 55.6(5) | 50.0(6) | 68.2(15) | 50.0(2) | 61.2(30) |
| AMP | 100.0(2) | 66.7(6) | 75.0(9) | 68.2(15) | 100.0(4) | 73.5(36) |
| [1] | 江涛. 鹅葡萄球菌病的流行病学、临床特点、诊断和防治[J]. 现代畜牧科技, 2020,(12): 150-151. |
| JIANG Tao. Epidemiology, clinical characteristics, diagnosis and control of goose staphylococcosis[J]. Modern Animal Husbandry Science & Technology, 2020,(12): 150-151. | |
| [2] | Köck R, Schaumburg F, Mellmann A, et al. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany[J]. PLoS One, 2013, 8(2): e55040. |
| [3] | 张婧, 张易, 施春雷. 食源性金黄色葡萄球菌肠毒素基因及其表达检测[J]. 中国食品学报, 2020, 20(1): 246-251. |
| ZHANG Jing, ZHANG Yi, SHI Chunlei. The detection of enterotoxin gene and its expression of foodborne Staphylococcus aureus[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 246-251. | |
| [4] | Wang X Z, Lin D Z, Huang Z Q, et al. Clonality, virulence genes, and antibiotic resistance of Staphylococcus aureus isolated from blood in Shandong, China[J]. BMC Microbiology, 2021, 21(1): 281. |
| [5] | Lopes G V, Bastos C P, da Silva W P. The effect of sodium chloride and temperature on the levels of transcriptional expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolates from broiler carcasses[J]. Brazilian Journal of Microbiology, 2021, 52(4): 2343-2350. |
| [6] | 吴任之, 张翼, 刘柳, 等. 生鲜猪肉中金黄色葡萄球菌的耐药特征、毒力基因及agr分型[J]. 微生物学杂志, 2022, 42(1): 34-42. |
| WU Renzhi, ZHANG Yi, LIU Liu, et al. Resistance characteristics, virulence genes and agr typing of Staphylococcus aureus in fresh pork[J]. Journal of Microbiology, 2022, 42(1): 34-42. | |
| [7] | Abolghait S K, Fathi A G, Youssef F M, et al. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers[J]. International Journal of Food Microbiology, 2020, 328: 108669. |
| [8] |
Strommenger B, Kettlitz C, Weniger T, et al. Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing[J]. Journal of Clinical Microbiology, 2006, 44(7): 2533-2540.
DOI PMID |
| [9] | 马鑫, 苏静, 孟卫卫, 等. 新疆食源性金黄色葡萄球菌分离株的分子分型与耐药性分析[J]. 疾病预防控制通报, 2018, 33(6): 74-78. |
| MA Xin, SU Jing, MENG Weiwei, et al. Molecular typing and antimicrobial resistance of food-borne Staphylococcus aureus isolated in Xinjiang[J]. Bulletin of Disease Control & Prevention (China), 2018, 33(6): 74-78. | |
| [10] | GB 4789.10-2016.食品安全国家标准食品微生物学检验金黄色葡萄球菌检验[S]. |
| GB 4789.10-2016.National standard for Food safety Microbiology test for food Staphylococcus aureus test[S]. | |
| [11] |
Varshney A K, Mediavilla J R, Robiou N, et al. Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York[J]. Applied and Environmental Microbiology, 2009, 75(21): 6839-6849.
DOI PMID |
| [12] | Liu Y Y, Zheng X F, Xu L, et al. Prevalence, antimicrobial resistance, and molecular characterization of Staphylococcus aureus isolated from animals, meats, and market environments in Xinjiang, China[J]. Foodborne Pathogens and Disease, 2021, 18(10): 718-726. |
| [13] | Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement: M100-S23[S]. 2019. |
| [14] | 邵莉萍, 张继瑜, 马志永. 临床常用几种抗菌药物对HPS抗菌活性研究[J]. 安徽农业科学, 2017, 45(33): 113-114, 117. |
| SHAO Liping, ZHANG Jiyu, MA Zhiyong. Study on antibacterial activity of several commonly used antibacterial drugs on HPS[J]. Journal of Anhui Agricultural Sciences, 2017, 45(33): 113-114,117. | |
| [15] | Ou Q T, Peng Y, Lin D X, et al. A meta-analysis of the global prevalence rates of Staphylococcus aureus and methicillin-resistant S. aureus contamination of different raw meat products[J]. Journal of Food Protection, 2017, 80(5): 763-774. |
| [16] |
Althaus D, Zweifel C, Stephan R. Analysis of a poultry slaughter process: Influence of process stages on the microbiological contamination of broiler carcasses[J]. Italian Journal of Food Safety, 2017, 6(4): 7097.
DOI PMID |
| [17] | Vossenkuhl B, Brandt J, Fetsch A, et al. Comparison of spa types, SCCmec types and antimicrobial resistance profiles of MRSA isolated from turkeys at farm, slaughter and from retail meat indicates transmission along the production chain[J]. PLoS One, 2014, 9(5): e96308. |
| [18] | 王琳, 赵格, 赵建梅, 等. 肉鸡屠宰环节金黄色葡萄球菌污染定量评估研究[J]. 中国食品卫生杂志, 2020, 32(3): 300-306. |
| WANG Lin, ZHAO Ge, ZHAO Jianmei, et al. Study on the quantitative assessment of Staphylococcus aureus in the broiler chicken slaughtering line[J]. Chinese Journal of Food Hygiene, 2020, 32(3): 300-306. | |
| [19] |
Yan X, Wang B, Tao X, et al. Characterization of Staphylococcus aureus strains associated with food poisoning in Shenzhen, China[J]. Applied and environmental microbiology, 2012, 78(18): 6637-6642.
DOI PMID |
| [20] | Li G H, Wu S Z, Luo W, et al. Staphylococcus aureus ST6-t701 isolates from food-poisoning outbreaks (2006-2013) in Xi’an, China[J]. Foodborne Pathogens and Disease, 2015, 12(3): 203-206. |
| [21] | Liao F, Gu W P, Yang Z S, et al. Molecular characteristics of Staphylococcus aureus isolates from food surveillance in southwest China[J]. BMC Microbiology, 2018, 18(1): 91. |
| [22] | 李方, 苏静, 孟卫卫, 等. 新疆食品中金黄色葡萄球菌肠毒素特征及耐药性分析[J]. 中国国境卫生检疫杂志, 2022, 45(6): 466-469. |
| LI Fang, SU Jing, MENG Weiwei, et al. Distribution of Staphylococcus aureus Enterotoxin and drug resistance in Xinjiang Food[J]. Chinese Journal of Frontier Health and Quarantine, 2022, 45(6): 466-469. | |
| [23] | 任强. 新疆南疆地区奶牛乳源金黄色葡萄球菌分子特性研究[D]. 阿拉尔: 塔里木大学, 2020. |
| REN Qiang. Study on molecular characteristics of Staphylococcus aureus from dairy cows in southern Xinjiang[D]. Aral: Tarim University, 2020. | |
| [24] | 张鹏飞, 王婷, 钟楠, 等. 食源性耐甲氧西林金黄色葡萄球菌生物被膜的形成及相关基因的检测[J]. 现代食品科技, 2020, 36(10): 41-49. |
| ZHANG Pengfei, WANG Ting, ZHONG Nan, et al. Detection of biofilm formation and biofilm-related genes of food-borne methicillin-resistant Staphylococcus aureus[J]. Modern Food Science and Technology, 2020, 36(10): 41-49. | |
| [25] |
Umeda K, Nakamura H, Yamamoto K, et al. Molecular and epidemiological characterization of staphylococcal foodborne outbreak of Staphylococcus aureus harboring seg, sei, sem, sen, seo, and selu genes without production of classical enterotoxins[J]. International Journal of Food Microbiology, 2017, 256: 30-35.
DOI PMID |
| [26] | Sallam K I, Abd-Elghany S M, Elhadidy M, et al. Molecular characterization and antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus in retail chicken[J]. Journal of Food Protection, 2015, 78(10): 1879-1884. |
| [27] | Igbinosa E O, Beshiru A, Igbinosa I H, et al. Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria[J]. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1122059. |
| [28] | Wu S, Huang J H, Wu Q P, et al. Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity[J]. Frontiers in Microbiology, 2018, 9: 2767. |
| [29] | Gan T, Shu G, Fu H L, et al. Antimicrobial resistance and genotyping of Staphylococcus aureus obtained from food animals in Sichuan Province, China[J]. BMC Veterinary Research, 2021, 17(1): 177. |
| [30] | Ning K M, Zhou R S, Li M X. Antimicrobial resistance and molecular typing of Staphylococcus aureus isolates from raw milk in Hunan Province[J]. PeerJ, 2023, 11: e15847. |
| [31] | Lin Q, Sun H H, Yao K, et al. The prevalence, antibiotic resistance and biofilm formation of Staphylococcus aureus in bulk ready-to-eat foods[J]. Biomolecules, 2019, 9(10): 524. |
| [1] | 贺腾飞, 刘英玉, 张柳青, 陈旺, 李泽亚, 胡芸, 蒋金豆, 祖力胡马尔·艾力. 新疆牛羊源金黄色葡萄球菌D353质粒pD353序列分析[J]. 新疆农业科学, 2023, 60(7): 1806-1812. |
| [2] | 刘江娜, 张西英, 李荣霞, 张小伟, 白云凤, 张爱萍. 番茄SlLCY-B2及其启动子的分子特征和sgRNA分析[J]. 新疆农业科学, 2023, 60(6): 1460-1465. |
| [3] | 唐碧徽, 张俐华, 李海英, 张冲, 蒋廷浩, 赵晓钰, 蒋腾, 丁雅文, 吴盈萍, 赵全庄. 伊犁鹅和霍尔多巴吉鹅在繁殖性能、血清激素水平和基因表达量的比较[J]. 新疆农业科学, 2023, 60(5): 1271-1280. |
| [4] | 王东, 易海波, 李宏博, 秦蕾, 徐琦琦, 吴慧敏, 夏利宁. 新疆阿克苏地区猪源粪肠球菌耐药性分析及相关耐药基因的检测[J]. 新疆农业科学, 2023, 60(12): 3113-3120. |
| [5] | 范雪, 邵伟, 赵艳坤, 杜晓慧, 陈贺, 王富兰, 王帅. 牛源无乳链球菌耐药性与毒力基因的表达量差异分析[J]. 新疆农业科学, 2022, 59(9): 2310-2317. |
| [6] | 吴盈萍, 杨奕凡, 李海英, 赵晓钰, 马彦涵, 陶美妮. 高、低产蛋量伊犁鹅血清激素与生化指标及卵巢发育差异比较[J]. 新疆农业科学, 2022, 59(2): 512-520. |
| [7] | 谭慧林, 吴忠红, 金永生, 牛贵洋, 包东东, 陈海元, 张志东. 食品中金黄色葡萄球菌的快速检测及其评估[J]. 新疆农业科学, 2022, 59(2): 410-416. |
| [8] | 胥兰, 刘英玉, 麦多, 朱明月, 蒋金豆, 卢炜, 朱梦含, 郑晓风, 彭斌. 新疆牛羊产业链中金黄色葡萄球菌的污染调查与毒力基因检测[J]. 新疆农业科学, 2021, 58(1): 182-189. |
| [9] | 王登峰, 李建军, 刘志强, 翁业斌, 葛建军, 杨学云, 吴建勇. 乳样中金黄色葡萄球菌的靶向分离及其致临床型乳腺炎的风险分析[J]. 新疆农业科学, 2020, 57(5): 974-980. |
| [10] | 张凌, 佟盼盼, 张毅, 马晓玉, 张萌萌, 刘璐瑶, 姚刚, 陈童锦悦, 苏战强. 羔羊STEC的耐药性、毒力基因和血清型分析[J]. 新疆农业科学, 2020, 57(10): 1921-1930. |
| [11] | 陈月月,王凯,王舒丰,姚晓慧,轩慧勇,马木尔,夏利宁. 新疆伊犁地区不同动物源大肠杆菌耐药性调查[J]. 新疆农业科学, 2018, 55(8): 1560-1568. |
| [12] | 韩猛立, 张星星, 吴桐忠, 郭强强, 黄新, 钟发刚. 兔源巴氏杆菌分离与鉴定[J]. 新疆农业科学, 2018, 55(7): 1333-1342. |
| [13] | 马木尔·阿克木汉,库尔班乃木·卡地尔,姚晓慧,王舒丰,王凯,夏利宁. 新疆焉耆县不同生长期猪不同部位携带葡萄球菌的耐药性比较[J]. 新疆农业科学, 2018, 55(2): 379-382. |
| [14] | 代婧, 彭斌, 雷程红, 阿热阿依·海依拉提. 新疆部分地区牛源空肠弯曲菌分离鉴定及耐药性分析[J]. 新疆农业科学, 2017, 54(9): 1730-1736. |
| [15] | 李亚东;贺双;田笑明;董雪;杨德松. 啶磺草胺对不同品种小麦生长发育的影响[J]. , 2017, 54(4): 682-693. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||