

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (1): 234-242.DOI: 10.6048/j.issn.1001-4330.2025.01.027
袁以琳1(
), 颜安1(
), 宁松瑞2, 侯正清1, 张振飞1, 肖淑婷1, 孙哲1, 夏雯秋1
收稿日期:2024-07-19
出版日期:2025-01-20
发布日期:2025-03-11
通信作者:
颜安(1983-),男,四川安岳人,教授,博士,博士生导师,研究方向为数字农业技术、农业资源与环境,(E-mail)zryanan@163.com作者简介:袁以琳(1994-),男,河南驻马店人,硕士研究生,研究方向为农业信息化,(E-mail)171043013@qq.com
基金资助:
YUAN Yilin1(
), YAN An1(
), NING Songrui2, HOU Zhengqing1, ZHANG Zhenfei1, XIAO Shuting1, SUN Zhe1, XIA Wenqiu1
Received:2024-07-19
Published:2025-01-20
Online:2025-03-11
Supported by:摘要:
【目的】 无人机搭载数码相机具有较高的机动性、灵活性和分辨能力,在快速、准确估算草地AGB等方面优势明显。【方法】 探讨无人机搭载的数码相机在不同飞行高度的影像分辨率差对草地AGB估算精度,在新疆昭苏山地草甸设置10、30、50、70和90 m 5个飞行高度,探究不同飞行高度下获取的影像在光谱信息、纹理特征等差异下对草地AGB估算精度的影响。【结果】 在相同的飞行高度下,采用光谱信息与纹理特征相结合的方法相较于单独使用光谱信息或纹理特征,可以提高AGB估算的精度,分别提高了22.34%、13.25%、11.11%、2.18%和2.35%。仅依赖数码图像的光谱信息来估算草地AGB容易导致饱和现象。然而,与光谱信息相比,草地的纹理特征受环境影响较小,在相同的图像分辨率下,所获得的模型效果更佳,弥补单一指标估算草地AGB的不足。【结论】 影像分辨率在0.27~2.45 cm时,纹理特征与草地AGB的相关性弱于植被指数,但均达到显著水平,随着图像清晰度减低,两者之间的关联性差异变得显著;在同种图像分辨率前提下,将光谱信息与纹理特征相结合可以实现最佳的草地AGB估算效果,单一的纹理特征模型次之,单一的光谱模型效果最差;随着图像分辨率的递增,对草地AGB的估算精度受到光谱信息、纹理信息以及光谱与纹理信息的影响呈现上升趋势。
中图分类号:
袁以琳, 颜安, 宁松瑞, 侯正清, 张振飞, 肖淑婷, 孙哲, 夏雯秋. 基于可见光不同分辨率影像下的昭苏山地草甸地上生物量估算[J]. 新疆农业科学, 2025, 62(1): 234-242.
YUAN Yilin, YAN An, NING Songrui, HOU Zhengqing, ZHANG Zhenfei, XIAO Shuting, SUN Zhe, XIA Wenqiu. Aboveground biomass estimation of Zhaosu mountain meadow based on visible light images with different resolution[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 234-242.
| 主要参数 Main parameters | 参数值 Parameter value |
|---|---|
| 最大起飞重量 Maximum takeoff weight(g) | 1367 |
| 续航时间 Endurance(min) | 24~27 |
| 横、纵向重叠率 Horizontal and vertical overlap rates(%) | 80 |
| 最大起飞海拔 Maximum takeoff altitude/m | 6000 |
| 最大分辨率/(像素×像素) Maximum resolution (pixels × pixels) | 4000×3000 |
| 波段类型 Band type | R、G、B |
表1 无人机遥感影像采集系统主要参数
Tab.1 Main parameters of the UAV remote sensing image acquisition system
| 主要参数 Main parameters | 参数值 Parameter value |
|---|---|
| 最大起飞重量 Maximum takeoff weight(g) | 1367 |
| 续航时间 Endurance(min) | 24~27 |
| 横、纵向重叠率 Horizontal and vertical overlap rates(%) | 80 |
| 最大起飞海拔 Maximum takeoff altitude/m | 6000 |
| 最大分辨率/(像素×像素) Maximum resolution (pixels × pixels) | 4000×3000 |
| 波段类型 Band type | R、G、B |
| 植被指数 Vegetation indexes | 计算公式 Calculation formula |
|---|---|
| EXG GRVI MGRVI RXR RGBVI NDI VARI EXGR | 2G-R-B[ (G-R)/(G+R)[ (G2-R2)/(G2+R2)[ 1.4×R-G[ (G2-B×R)/(G2+B×R)[ (R-G)/(R+G+0.01)[ (G-R)/(G+R-B)[ 3G=2.4R-B[ |
表2 可见光植被指数及计算公式
Tab.2 Visible light vegetation index and calculation formula
| 植被指数 Vegetation indexes | 计算公式 Calculation formula |
|---|---|
| EXG GRVI MGRVI RXR RGBVI NDI VARI EXGR | 2G-R-B[ (G-R)/(G+R)[ (G2-R2)/(G2+R2)[ 1.4×R-G[ (G2-B×R)/(G2+B×R)[ (R-G)/(R+G+0.01)[ (G-R)/(G+R-B)[ 3G=2.4R-B[ |
| 序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
| 1 | VARI | 0.53 | EXG | 0.623 | EXG | 0.644 | EXG | 0.561 | EXG | 0.560 |
| 2 | EXGR | 0.48 | VARI | 0.605 | EXGR | 0.603 | VARI | 0.494 | VARI | 0.532 |
| 3 | GRVI | 0.47 | EXGR | 0.555 | VARI | 0.582 | MGRVI | 0.487 | EXGR | 0.428 |
| 4 | NDI | 0.35 | GRVI | 0.491 | EXR | 0.314 | EXGR | 0.442 | GRVI | 0.386 |
| 5 | EXR | 0.34 | NDI | 0.410 | MGRVI | 0.202 | EXR | 0.158 | MGRVI | 0.342 |
| 6 | MGRVI | 0.30 | MGRVI | 0.392 | NDI | 0.180 | RGBVI | 0.104 | RGBVI | 0.226 |
| 7 | RGBVI | 0.29 | EXR | 0.288 | RGBVI | 0.097 | GRVI | 0.104 | NDI | 0.215 |
| 8 | EXG | 0.25 | RGBVI | 0.162 | GRVI | 0.097 | NDI | 0.087 | EXR | 0.147 |
表3 不同高度下影像指数和草地AGB的相关性
Tab.3 Correlation between image index and grassland AGB at different heights
| 序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
| 1 | VARI | 0.53 | EXG | 0.623 | EXG | 0.644 | EXG | 0.561 | EXG | 0.560 |
| 2 | EXGR | 0.48 | VARI | 0.605 | EXGR | 0.603 | VARI | 0.494 | VARI | 0.532 |
| 3 | GRVI | 0.47 | EXGR | 0.555 | VARI | 0.582 | MGRVI | 0.487 | EXGR | 0.428 |
| 4 | NDI | 0.35 | GRVI | 0.491 | EXR | 0.314 | EXGR | 0.442 | GRVI | 0.386 |
| 5 | EXR | 0.34 | NDI | 0.410 | MGRVI | 0.202 | EXR | 0.158 | MGRVI | 0.342 |
| 6 | MGRVI | 0.30 | MGRVI | 0.392 | NDI | 0.180 | RGBVI | 0.104 | RGBVI | 0.226 |
| 7 | RGBVI | 0.29 | EXR | 0.288 | RGBVI | 0.097 | GRVI | 0.104 | NDI | 0.215 |
| 8 | EXG | 0.25 | RGBVI | 0.162 | GRVI | 0.097 | NDI | 0.087 | EXR | 0.147 |
| 序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
| 1 | mea_G | 0.496 | mea_B | 0.493 | mea_B | 0.466 | ang_B | 0.401 | ent_B | 0.421 |
| 2 | mea_B | 0.490 | ang_B | 0.460 | con_G | 0.360 | ang_R | 0.348 | dis_G | 0.352 |
| 3 | cor_B | 0.440 | ent_G | 0.455 | ang_G | 0.345 | hom_R | 0.353 | ang_G | 0.370 |
| 4 | hom_G | 0.434 | hom_R | 0.454 | ent_B | 0.312 | hom_G | 0.305 | ent_G | 0.339 |
| 5 | con_B | 0.425 | ent_G | 0.445 | ent_G | 0.305 | dis_B | 0.301 | cor_R | 0.316 |
| 6 | dis_R | 0.419 | ang_R | 0.361 | hom_B | 0.332 | var_B | 0.299 | dis_B | 0.279 |
| 7 | ang_R | 0.407 | ent_R | 0.263 | ang_R | 0.331 | var_G | 0.267 | ang_R | 0.254 |
| 8 | ent_B | 0.406 | dis_B | 0.257 | ent_R | 0.215 | con_B | 0.264 | ent_R | 0.169 |
表4 不同高度下纹理特征和草地AGB的相关性
Tab.4 Correlation between texture characteristics and grassland AGB at different heights
| 序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
| 1 | mea_G | 0.496 | mea_B | 0.493 | mea_B | 0.466 | ang_B | 0.401 | ent_B | 0.421 |
| 2 | mea_B | 0.490 | ang_B | 0.460 | con_G | 0.360 | ang_R | 0.348 | dis_G | 0.352 |
| 3 | cor_B | 0.440 | ent_G | 0.455 | ang_G | 0.345 | hom_R | 0.353 | ang_G | 0.370 |
| 4 | hom_G | 0.434 | hom_R | 0.454 | ent_B | 0.312 | hom_G | 0.305 | ent_G | 0.339 |
| 5 | con_B | 0.425 | ent_G | 0.445 | ent_G | 0.305 | dis_B | 0.301 | cor_R | 0.316 |
| 6 | dis_R | 0.419 | ang_R | 0.361 | hom_B | 0.332 | var_B | 0.299 | dis_B | 0.279 |
| 7 | ang_R | 0.407 | ent_R | 0.263 | ang_R | 0.331 | var_G | 0.267 | ang_R | 0.254 |
| 8 | ent_B | 0.406 | dis_B | 0.257 | ent_R | 0.215 | con_B | 0.264 | ent_R | 0.169 |
| 飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
| 10 | 0.27 | 0.725 | 21.988 | 14.326 | 0.775 | 28.861 | 39.564 |
| 30 | 0.82 | 0.717 | 22.310 | 15.183 | 0.767 | 31.774 | 42.197 |
| 50 | 1.36 | 0.702 | 22.857 | 16.046 | 0.732 | 34.738 | 43.184 |
| 70 | 1.91 | 0.687 | 23.455 | 15.770 | 0.713 | 36.737 | 44.537 |
| 90 | 2.45 | 0.638 | 25.206 | 18.700 | 0.658 | 37.664 | 46.753 |
表5 不同高度下影像光谱信息的草地AGB估算结果
Tab.5 Grassland AGB estimation results of image spectral information at different altitudes
| 飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
| 10 | 0.27 | 0.725 | 21.988 | 14.326 | 0.775 | 28.861 | 39.564 |
| 30 | 0.82 | 0.717 | 22.310 | 15.183 | 0.767 | 31.774 | 42.197 |
| 50 | 1.36 | 0.702 | 22.857 | 16.046 | 0.732 | 34.738 | 43.184 |
| 70 | 1.91 | 0.687 | 23.455 | 15.770 | 0.713 | 36.737 | 44.537 |
| 90 | 2.45 | 0.638 | 25.206 | 18.700 | 0.658 | 37.664 | 46.753 |
| 飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
| 10 | 0.27 | 0.770 | 15.128 | 11.481 | 0.864 | 53.173 | 34.239 |
| 30 | 0.82 | 0.759 | 15.713 | 11.569 | 0.685 | 68.558 | 40.446 |
| 50 | 1.36 | 0.744 | 16.325 | 13.265 | 0.785 | 52.034 | 37.692 |
| 70 | 1.91 | 0.730 | 16.966 | 13.531 | 0.649 | 66.944 | 59.994 |
| 90 | 2.45 | 0.652 | 18.264 | 15.603 | 0.636 | 67.881 | 61.365 |
表6 不同高度下影像纹理特征对草地AGB的反演结果
Tab.6 Inversion results of image texture features on biomass at different heights
| 飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
| 10 | 0.27 | 0.770 | 15.128 | 11.481 | 0.864 | 53.173 | 34.239 |
| 30 | 0.82 | 0.759 | 15.713 | 11.569 | 0.685 | 68.558 | 40.446 |
| 50 | 1.36 | 0.744 | 16.325 | 13.265 | 0.785 | 52.034 | 37.692 |
| 70 | 1.91 | 0.730 | 16.966 | 13.531 | 0.649 | 66.944 | 59.994 |
| 90 | 2.45 | 0.652 | 18.264 | 15.603 | 0.636 | 67.881 | 61.365 |
| 飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
| 10 | 0.27 | 0.887 | 14.060 | 10.281 | 0.851 | 48.446 | 37.805 |
| 30 | 0.82 | 0.812 | 15.870 | 12.652 | 0.845 | 51.138 | 43.215 |
| 50 | 1.36 | 0.780 | 16.726 | 14.426 | 0.771 | 57.256 | 49.459 |
| 70 | 1.91 | 0.702 | 17.465 | 15.993 | 0.746 | 64.572 | 52.257 |
| 90 | 2.45 | 0.653 | 19.016 | 17.315 | 0.713 | 68.310 | 55.183 |
表7 不同高度下影像光谱信息+纹理特征对草地AGB的估算
Tab.7 Grassland AGB estimation results of image spectral information+texture features at different heights
| 飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
| 10 | 0.27 | 0.887 | 14.060 | 10.281 | 0.851 | 48.446 | 37.805 |
| 30 | 0.82 | 0.812 | 15.870 | 12.652 | 0.845 | 51.138 | 43.215 |
| 50 | 1.36 | 0.780 | 16.726 | 14.426 | 0.771 | 57.256 | 49.459 |
| 70 | 1.91 | 0.702 | 17.465 | 15.993 | 0.746 | 64.572 | 52.257 |
| 90 | 2.45 | 0.653 | 19.016 | 17.315 | 0.713 | 68.310 | 55.183 |
| [1] | 刘伟, 周华坤, 周立. 不同程度退化草地生物量的分布模式[J]. 中国草地, 2005, 27(2): 9-15. |
| LIU Wei, ZHOU Huakun, ZHOU Li. Biomass distribution pattern of degraded grassland in alpine meadow[J]. Grassland of China, 2005, 27(2): 9-15. | |
| [2] |
赖炽敏, 赖日文, 薛娴, 等. 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算[J]. 中国沙漠, 2019, 39(5): 127-134.
DOI |
|
LAI Chimin, LAI Riwen, XUE Xian, et al. Estimation of aboveground biomass of different degraded alpine grassland based on vegetation coverage and height[J]. Journal of Desert Research, 2019, 39(5): 127-134.
DOI |
|
| [3] | 李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19): 207-213. |
| LI Zongnan, CHEN Zhongxin, WANG Limin, et al. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 207-213. | |
| [4] |
陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13): 2220-2229.
DOI |
|
CHEN Pengfei, LIANG Fei. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229.
DOI |
|
| [5] |
干友民, 成平, 周纯兵, 等. 若尔盖亚高山草甸地上生物量与植被指数关系研究[J]. 自然资源学报, 2009, 24(11): 1963-1972.
DOI |
|
GAN Youmin, CHENG Ping, ZHOU Chunbing, et al. Study on pertinence between the vegetation indexes and the aboveground biomass of sub-alpine meadow of zoige county[J]. Journal of Natural Resources, 2009, 24(11): 1963-1972.
DOI |
|
| [6] |
李淑贞, 徐大伟, 范凯凯, 等. 基于无人机与卫星遥感的草原地上生物量反演研究[J]. 遥感技术与应用, 2022, 37(1): 272-278.
DOI |
| LI Shuzhen, XU Dawei, FAN Kaikai, et al. Research of grassland aboveground biomass inversion based on UAV and satellite remoting sensing[J]. Remote Sensing Technology and Application, 2022, 37(1): 272-278. | |
| [7] | 张正健, 李爱农, 边金虎, 等. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62. |
| ZHANG Zhengjian, LI Ainong, BIAN Jinhu, et al. Estimating aboveground biomass of grassland in zoige by visible vegetation index derived from unmanned aerial vehicle image[J]. Remote Sensing Technology and Application, 2016, 31(1): 51-62. | |
| [8] | 杨琦, 叶豪, 黄凯, 等. 利用无人机影像构建作物表面模型估测甘蔗LAI[J]. 农业工程学报, 2017, 33(8): 104-111. |
| YANG Qi, YE Hao, HUANG Kai, et al. Estimation of leaf area index of sugarcane using crop surface model based on UAV image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 104-111. | |
| [9] | Yue J B, Feng H K, Jin X L, et al. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera[J]. Remote Sensing, 2018, 10(7): 1138. |
| [10] |
卜灵心, 来全, 刘心怡. 不同机器学习算法在草原草地生物量估算上的适应性研究[J]. 草地学报, 2022, 30(11): 3156-3164.
DOI |
|
BU Lingxin, LAI Quan, LIU Xinyi. Adaptation of different machine learning algorithms for grassland biomass estimation[J]. Acta Agrestia Sinica, 2022, 30(11): 3156-3164.
DOI |
|
| [11] | 刘武超, 罗研, 马瞳宇, 等. 高分辨率遥感影像多特征灌丛提取方法研究[J]. 测绘与空间地理信息, 2022, 45(S1): 111-113. |
| LIU Wuchao, LUO Yan, MA Tongyu, et al. Study on extraction method of multi-feature shrub from high-resolution remote sensing image[J]. Geomatics & Spatial Information Technology, 2022, 45(S1): 111-113. | |
| [12] | 李健, 江洪, 罗文彬, 等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南农业大学学报, 2023, 44(1): 93-101. |
| LI Jian, JIANG Hong, LUO Wenbin, et al. Potato LAI estimation by fusing UAV multi-spectral and texture features[J]. Journal of South China Agricultural University, 2023, 44(1): 93-101. | |
| [13] | 杨福芹, 冯海宽, 肖天豪, 等. 融合无人机影像光谱与纹理特征的冬小麦氮营养指数估算[J]. 农业现代化研究, 2020, 41(4): 718-726. |
| YANG Fuqin, FENG Haikuan, XIAO Tianhao, et al. Nitrogen nutrition index estimation in winter wheat by UAV spectral information and texture feature fusion[J]. Research of Agricultural Modernization, 2020, 41(4): 718-726. | |
| [14] |
刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测[J]. 中国农业科学, 2018, 51(16): 3060-3073.
DOI |
|
LIU Chang, YANG Guijun, LI Zhenhai, et al. Biomass estimation in winter wheat by UAV spectral information and texture information fusion[J]. Scientia Agricultura Sinica, 2018, 51(16): 3060-3073.
DOI |
|
| [15] | 朱永基, 殷飞笺, 王晗, 等. 随机森林方法支持下Sentinel-2A MSI多种特征的冬小麦识别分析[J]. 安徽科技学院学报, 2022, 36(1): 25-31. |
| ZHU Yongji, YIN Feijian, WANG Han, et al. Winter wheat identification based on multiple features of sentinel-2AMSI data and random forest method[J]. Journal of Anhui Science and Technology University, 2022, 36(1): 25-31. | |
| [16] | 黎松松, 王宁欣, 郑伟, 等. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
| LI Songsong, WANG Ningxin, ZHENG Wei, et al. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 23-37. | |
| [17] | 杨婷婷. 荒漠草原生物量动态及碳储量空间分布研究——以苏尼特右旗为例[D]. 呼和浩特: 内蒙古农业大学, 2013. |
| YANG Tingting. Study on biomass dynamics and spatial distribution of carbon storage in desert grassland— a case study of sunite right banner[D]. Hohhot: Inner Mongolia Agricultural University, 2013. | |
| [18] | 郭涛, 颜安, 耿洪伟. 基于无人机影像的小麦株高与LAI预测研究[J]. 麦类作物学报, 2020, 40(9): 1129-1140. |
| GUO Tao, YAN An, GENG Hongwei. Prediction of wheat plant height and leaf area index based on UAV image[J]. Journal of Triticeae Crops, 2020, 40(9): 1129-1140. | |
| [19] | 刘杨, 冯海宽, 孙乾, 等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究[J]. 光谱学与光谱分析, 2021, 41(5): 1470-1476. |
| LIU Yang, FENG Haikuan, SUN Qian, et al. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1470-1476. | |
| [20] | 李天驰, 冯海宽, 田坤云, 等. 基于PROSAIL模型和无人机高光谱数据的冬小麦LAI反演[J]. 麦类作物学报, 2022, 42(11): 1408-1418. |
| LI Tianchi, FENG Haikuan, TIAN Kunyun, et al. Retrieval of winter wheat leaf area index by PROSAIL model and hyperspectral data[J]. Journal of Triticeae Crops, 2022, 42(11): 1408-1418. | |
| [21] | 甘甜, 李雷, 李红叶, 等. 基于多源遥感数据和机器学习算法的冬小麦产量预测研究[J]. 麦类作物学报, 2022, 42(11): 1419-1428. |
| GAN Tian, LI Lei, LI Hongye, et al. Winter wheat yield prediction based on multi-source remote sensing data and machine learning algorithms[J]. Journal of Triticeae Crops, 2022, 42(11): 1419-1428. | |
| [22] | 钟滨, 廖永皓, 蔡海生. 基于光谱与纹理特征的高分二号竹林信息提取——以庐山自然保护区为例[J]. 测绘与空间地理信息, 2020, 43(12): 8-13. |
| ZHONG Bin, LIAO Yonghao, CAI Haisheng. Extraction bamboo forest from GF-2 satellite based on spectral and texture features: taking Lushan nature reserve as an example[J]. Geomatics & Spatial Information Technology, 2020, 43(12): 8-13. |
| [1] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于植被指数融合天山假狼毒地上生物量的估测[J]. 新疆农业科学, 2024, 61(11): 2787-2796. |
| [2] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于多特征融合的无人机天山假狼毒地上生物量估算[J]. 新疆农业科学, 2024, 61(10): 2527-2536. |
| [3] | 刘亮, 彭建, 李刚勇, 韩万强, 刘玉佳, 关靖云, 刘程才, 郑江华. 2010~2021年新疆库鲁斯台草原动态遥感监测变化分析[J]. 新疆农业科学, 2024, 61(1): 230-240. |
| [4] | 夏停停, 苏比努尔·吾麦尔江, 于昭文, 李宏, 吕文钧, 吐尔逊娜依·热依木. 不同利用方式对天山北坡中段山地草甸草地植物生物量分布的影响[J]. 新疆农业科学, 2023, 60(4): 974-981. |
| [5] | 侯志雄, 井长青, 陈宸, 王公鑫, 郭文章, 赵苇康. 近20 a新疆北疆天然草地植被覆盖度时空变化及其与气象因子的关系[J]. 新疆农业科学, 2023, 60(2): 464-471. |
| [6] | 张鲜花, 李江艳, 吴咏梅, 朱进忠. 天山北坡中段山地紫花鸢尾草甸植物群落动态分析[J]. 新疆农业科学, 2022, 59(6): 1522-1529. |
| [7] | 吕文钧, 吐尔逊娜依·热依木, 雪热提江·麦提努日, 张青青. 游牧与定居放牧下山地草甸草地植物群落特征分析[J]. 新疆农业科学, 2022, 59(1): 231-241. |
| [8] | 王君杰, 李俊, 乔治军. 生物菌肥对谷子长势指标及产量的影响[J]. 新疆农业科学, 2021, 58(6): 1042-1047. |
| [9] | 雪热提江·麦提努日, 杨晶晶, 吐尔逊娜依·热依木, 张青青. 放牧对山地草甸草地植物多样性与生产力关系的影响[J]. 新疆农业科学, 2019, 56(11): 2123-2132. |
| [10] | 张凡凡, 杨开虎, 于磊, 鲁为华, 杨国林, 和海秀. 新疆沙尔套山主要草地类型可食牧草产量动态变化规律[J]. 新疆农业科学, 2018, 55(9): 1737-1746. |
| [11] | 杨晶晶,吐尔逊娜依·热依木,张青青,阿马努拉·依明尼亚孜,雪热提江·麦提努日. 放牧强度对伊犁绢蒿荒漠草地植物群落特征的影响[J]. 新疆农业科学, 2018, 55(8): 1542-1550. |
| [12] | 阿孜古丽·阿布力孜,艾比拜木·依明,萨吉达木·艾则孜, 王干成,牙森·沙力. 主要气象因子对哈巴河县草地螟种群数量变动的影响[J]. 新疆农业科学, 2018, 55(3): 509-517. |
| [13] | 罗秀芝, 马本学, 李小霞, 胡洋洋, 王文霞, 雷声渊. 基于卷积神经网络干制哈密大枣纹理分级[J]. 新疆农业科学, 2018, 55(12): 2220-2227. |
| [14] | 查向浩,王泽,刘耘华,李瑞霞,盛建东,易海艳. 新疆西部天然草地生物量与根冠比特征[J]. 新疆农业科学, 2018, 55(10): 1943-1951. |
| [15] | 杨娇;安沙舟;张爱宁;阿依敏·波拉提;张晶晶. 天山高寒草原不同退化梯度紫花针茅群落结构特征研究[J]. , 2017, 54(6): 1137-1144. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||