新疆农业科学 ›› 2024, Vol. 61 ›› Issue (11): 2742-2749.DOI: 10.6048/j.issn.1001-4330.2024.11.015
王丽君1(), 孙蓓蓓1, 王春燕2, 夏占峰2, 马国财1(
)
收稿日期:
2024-05-27
出版日期:
2024-11-20
发布日期:
2025-01-08
通信作者:
马国财(1978-),男,辽宁朝阳人,高级实验师,研究方向为微区分析,(E-mail)18845420@qq.com作者简介:
王丽君(1981-),女,山东聊城人,高级实验师,研究方向为微生物资源,(E-mail)1489968232@qq.com
基金资助:
WANG Lijun1(), SUN Beibei1, WANG Chunyan2, XIA Zhanfeng2, MA Guocai1(
)
Received:
2024-05-27
Published:
2024-11-20
Online:
2025-01-08
Supported by:
摘要:
【目的】研究塔克拉玛干沙漠植物获取氮素营养的途径,为塔克拉玛干沙漠固氮菌资源的开发和干旱区生态环境的保护提供支持。【方法】以沙漠典型豆科植物苦豆子、柽柳科植物多枝柽柳、菊科植物花花柴和蓼子朴为研究对象,利用YMA(酵母甘露醇琼脂)和Ashby(阿须贝)无氮源培养基从植物根部分离固氮菌。【结果】从苦豆子样品分离获得19株菌,分布于11个属;从花花柴样品分离获得8株菌,分布于5个属;从蓼子朴样品分离获得5株菌,分布于5个属;从多枝柽柳样品分离获得4株菌,分布于2个属。YMA培养基分离获得28株菌,分布于15个属;Ashby无氮培养基分离获得8株菌,分布于7个属。10株菌有固氮活性,从多枝柽柳中获得的Rhizobium sp. 80417、从苦豆子中获得的Enterobacter sp.81227和Acinetobacter sp.81240、从花花柴中获得的Paenibacillus sp.80802 和Microbacterium sp.80803具有较强的固氮能力。【结论】固氮菌种类的多样化,促进了营养贫瘠环境氮元素的补充。
中图分类号:
王丽君, 孙蓓蓓, 王春燕, 夏占峰, 马国财. 4种沙漠植物固氮菌的分离与固氮活性检测[J]. 新疆农业科学, 2024, 61(11): 2742-2749.
WANG Lijun, SUN Beibei, WANG Chunyan, XIA Zhanfeng, MA Guocai. Isolation and nitrogen-fixing activity detection of bacteria from four desert plants[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2742-2749.
序号 Order number | 菌株编号 Strain number | 最相近菌株 Closest strain | 16S rRNA 基因相似度 16S rRNA Gene similarity (%) | 分离来源 Source of Separation | 分离培养基 Isolation medium | ||
---|---|---|---|---|---|---|---|
1 | 80801 | Microbacterium indicum BBH6 | 98.10 | 花花柴 | YMA | ||
2 | 80802 | Paenibacillus tundrae A10b | 99.36 | 花花柴 | Ashby | ||
3 | 80803 | Microbacterium indicum BBH6 | 98.61 | 花花柴 | Ashby | ||
4 | 80805 | Bacillus halotolerans ATCC 25096 | 99.93 | 花花柴 | YMA | ||
5 | 80806 | Bacillus zhangzhouensis DW5-4 | 99.93 | 花花柴 | YMA | ||
6 | 80807 | Paenibacillus tundra A10b | 99.29 | 花花柴 | YMA | ||
7 | 80809 | Nocardioides albus KCTC 9186 | 99.85 | 花花柴 | Ashby | ||
8 | 80811 | Pantoea alhagi LTYR-11Z | 99.57 | 花花柴 | YMA | ||
9 | 81202 | Bacillus altitudinis 41KF2b | 99.93 | 苦豆子 | YMA | ||
10 | 81203 | Arthrobacter endophyticus EGI6500322 | 99.85 | 苦豆子 | YMA | ||
11 | 81204 | Bacillus idriensis SMC 4352-2 | 99.79 | 苦豆子 | YMA | ||
12 | 81205 | Zhihengliuella halotolerans YIM 70185 | 99.78 | 苦豆子 | YMA | ||
13 | 81206 | Bacillus endolithicus JC267 | 98.78 | 苦豆子 | YMA | ||
14 | 81208 | Streptomyces albidoflavus DSM 40455 | 99.71 | 苦豆子 | YMA | ||
15 | 81211 | Bacillus litoralis SW-211 | 98.55 | 苦豆子 | YMA | ||
16 | 81213 | Bacillus megaterium NBRC 15308 | 99.93 | 苦豆子 | YMA | ||
17 | 81217 | Bacillus zhangzhouensis DW5-4 | 99.85 | 苦豆子 | YMA | ||
18 | 81218 | Brevibacterium frigoritolerans DSM 8801 | 100.00 | 苦豆子 | YMA | ||
19 | 81221 | Paenibacillus peoriae DSM 8320 | 99.57 | 苦豆子 | YMA | ||
20 | 81222 | Bacillus endophyticus 2DT | 99.79 | 苦豆子 | YMA | ||
21 | 81225 | Bacillus safensis FO-36b | 99.93 | 苦豆子 | YMA | ||
22 | 81227 | Enterobacter xiangfangensis LMG 27195 | 99.71 | 苦豆子 | Ashby | ||
23 | 81228 | Pantoea vagans LMG 24199 | 99.56 | 苦豆子 | Ashby | ||
24 | 81233 | Sphingobium yanoikuyae ATCC 51230 | 99.63 | 苦豆子 | YMA | ||
25 | 81235 | Blastomonas natatoria DSM 3183 | 99.85 | 苦豆子 | YMA | ||
26 | 81237 | Pantoea vagans LMG 24199 | 99.26 | 苦豆子 | YMA | ||
27 | 81240 | Acinetobacter johnsonii CIP 64.6 | 99.42 | 苦豆子 | YMA | ||
28 | 80402 | Rhizobium tarimense PL-41 | 98.93 | 多枝柽柳 | YMA | ||
29 | 80405 | Caulobacter vibrioides CB51 | 99.93 | 多枝柽柳 | Ashby | ||
30 | 80408 | Rhizobium radiobacter ATCC 19358 | 99.25 | 多枝柽柳 | Ashby | ||
31 | 80417 | Rhizobium arenae MIM27 | 99.85 | 多枝柽柳 | YMA | ||
32 | 80604 | Promicromonospora iranensis HM 792 | 99.49 | 蓼子朴 | YMA | ||
33 | 80611 | Massilia timonae CCUG 45783 | 98.12 | 蓼子朴 | YMA | ||
34 | 80612 | Rhizobium pusense LMG 25623 | 100.00 | 蓼子朴 | Ashby | ||
35 | 80613 | Serratia plymuthica DSM 4540 | 99.86 | 蓼子朴 | YMA | ||
36 | 80614 | Pantoea agglomerans DSM 3493 | 99.86 | 蓼子朴 | YMA |
表1 4种沙漠植物分离获得菌株信息及固氮能力
Tab.1 Strains information and nitrogen fixation capacity of four desert plants
序号 Order number | 菌株编号 Strain number | 最相近菌株 Closest strain | 16S rRNA 基因相似度 16S rRNA Gene similarity (%) | 分离来源 Source of Separation | 分离培养基 Isolation medium | ||
---|---|---|---|---|---|---|---|
1 | 80801 | Microbacterium indicum BBH6 | 98.10 | 花花柴 | YMA | ||
2 | 80802 | Paenibacillus tundrae A10b | 99.36 | 花花柴 | Ashby | ||
3 | 80803 | Microbacterium indicum BBH6 | 98.61 | 花花柴 | Ashby | ||
4 | 80805 | Bacillus halotolerans ATCC 25096 | 99.93 | 花花柴 | YMA | ||
5 | 80806 | Bacillus zhangzhouensis DW5-4 | 99.93 | 花花柴 | YMA | ||
6 | 80807 | Paenibacillus tundra A10b | 99.29 | 花花柴 | YMA | ||
7 | 80809 | Nocardioides albus KCTC 9186 | 99.85 | 花花柴 | Ashby | ||
8 | 80811 | Pantoea alhagi LTYR-11Z | 99.57 | 花花柴 | YMA | ||
9 | 81202 | Bacillus altitudinis 41KF2b | 99.93 | 苦豆子 | YMA | ||
10 | 81203 | Arthrobacter endophyticus EGI6500322 | 99.85 | 苦豆子 | YMA | ||
11 | 81204 | Bacillus idriensis SMC 4352-2 | 99.79 | 苦豆子 | YMA | ||
12 | 81205 | Zhihengliuella halotolerans YIM 70185 | 99.78 | 苦豆子 | YMA | ||
13 | 81206 | Bacillus endolithicus JC267 | 98.78 | 苦豆子 | YMA | ||
14 | 81208 | Streptomyces albidoflavus DSM 40455 | 99.71 | 苦豆子 | YMA | ||
15 | 81211 | Bacillus litoralis SW-211 | 98.55 | 苦豆子 | YMA | ||
16 | 81213 | Bacillus megaterium NBRC 15308 | 99.93 | 苦豆子 | YMA | ||
17 | 81217 | Bacillus zhangzhouensis DW5-4 | 99.85 | 苦豆子 | YMA | ||
18 | 81218 | Brevibacterium frigoritolerans DSM 8801 | 100.00 | 苦豆子 | YMA | ||
19 | 81221 | Paenibacillus peoriae DSM 8320 | 99.57 | 苦豆子 | YMA | ||
20 | 81222 | Bacillus endophyticus 2DT | 99.79 | 苦豆子 | YMA | ||
21 | 81225 | Bacillus safensis FO-36b | 99.93 | 苦豆子 | YMA | ||
22 | 81227 | Enterobacter xiangfangensis LMG 27195 | 99.71 | 苦豆子 | Ashby | ||
23 | 81228 | Pantoea vagans LMG 24199 | 99.56 | 苦豆子 | Ashby | ||
24 | 81233 | Sphingobium yanoikuyae ATCC 51230 | 99.63 | 苦豆子 | YMA | ||
25 | 81235 | Blastomonas natatoria DSM 3183 | 99.85 | 苦豆子 | YMA | ||
26 | 81237 | Pantoea vagans LMG 24199 | 99.26 | 苦豆子 | YMA | ||
27 | 81240 | Acinetobacter johnsonii CIP 64.6 | 99.42 | 苦豆子 | YMA | ||
28 | 80402 | Rhizobium tarimense PL-41 | 98.93 | 多枝柽柳 | YMA | ||
29 | 80405 | Caulobacter vibrioides CB51 | 99.93 | 多枝柽柳 | Ashby | ||
30 | 80408 | Rhizobium radiobacter ATCC 19358 | 99.25 | 多枝柽柳 | Ashby | ||
31 | 80417 | Rhizobium arenae MIM27 | 99.85 | 多枝柽柳 | YMA | ||
32 | 80604 | Promicromonospora iranensis HM 792 | 99.49 | 蓼子朴 | YMA | ||
33 | 80611 | Massilia timonae CCUG 45783 | 98.12 | 蓼子朴 | YMA | ||
34 | 80612 | Rhizobium pusense LMG 25623 | 100.00 | 蓼子朴 | Ashby | ||
35 | 80613 | Serratia plymuthica DSM 4540 | 99.86 | 蓼子朴 | YMA | ||
36 | 80614 | Pantoea agglomerans DSM 3493 | 99.86 | 蓼子朴 | YMA |
图6 菌株80801固氮活性峰 注:左图为菌株固氮活性检测,右图为乙炔标准峰
Fig.6 Peak diagram of nitrogen fixation activity of strain 80801 Notes:The left figure shows the nitrogen-fixing activity of the strain,the right figure shows the standard peak of acetylene
[1] |
陈雨晴, 席海洋, 程文举, 等. 荒漠河岸林区3种典型植物群落下土壤碳氮含量特征[J]. 中国沙漠, 2023, 43(1): 150-159.
DOI |
CHEN Yuqing, XI Haiyang, CHENG Wenju, et al. Characteristics of soil carbon and nitrogen change in three typical plant communities in desert riparian forest area[J]. Journal of Desert Research, 2023, 43(1): 150-159.
DOI |
|
[2] | 曲航飞, 许疆维, 王彦芹. 花花柴蜡质合成相关基因KcFAD2的克隆及转基因烟草耐高温性鉴定[J]. 塔里木大学学报, 2022, 34(3): 1-7. |
QU Hangfei, XU Jiangwei, WANG Yanqin. Cloning of KcFAD2 gene related to wax synthesis and identification of high temperature tolerance in transgenic tobacco[J]. Journal of Tarim University, 2022, 34(3): 1-7. | |
[3] |
唐钢梁, 李向义, 林丽莎, 等. 表皮环割对花花柴(Karelinia caspica)水势及光合参数的短期影响[J]. 中国沙漠, 2014, 34(6): 1527-1536.
DOI |
TANG Gangliang, LI Xiangyi, LIN Lisha, et al. Short-term effect of phloem girdling on water potential and photosynthetic characteristics in Karelinia caspica[J]. Journal of Desert Research, 2014, 34(6): 1527-1536.
DOI |
|
[4] | 刘家书, 周永萍, 施翔, 等. 多枝柽柳春夏两季开花物候特征与生殖特性[J]. 西北植物学报, 2017, 37(9): 1839-1846. |
LIU Jiashu, ZHOU Yongping, SHI Xiang, et al. Bi-seasonal flowering phenology and reproductive features of Tamarix ramosissima[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1839-1846. | |
[5] |
黄雅茹, 马迎宾, 李永华, 等. 不同时间尺度土壤因子与柽柳液流速率关系的差异[J]. 新疆农业科学, 2022, 59(7): 1697-1707.
DOI |
HUANG Yaru, MA Yingbin, LI Yonghua, et al. Relationships between soil factors and sap flow of Tamarix chinensis lour.at different time scales[J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1697-1707.
DOI |
|
[6] | 徐玲花. 塔克拉玛干沙漠微生物固氮酶基因多样性及其活性的研究[D]. 武汉: 中国地质大学, 2014. |
XU Linghua. Study on Nitrogenase Gene Diversity and Activity of Microorganism in the Taklamakan Desert[D]. Wuhan: China University of Geosciences, 2014. | |
[7] | 张雨, 苏丹丹, 王亚男, 等. 旱生植物苦豆子研究综述[J]. 中国野生植物资源, 2021, 40(9): 55-58. |
ZHANG Yu, SU Dandan, WANG Yanan, et al. The review of xerophyte plant Sophora alopecuroides[J]. Chinese Wild Plant Resources, 2021, 40(9): 55-58. | |
[8] | 杨瑞红, 赵成义, 王新军, 等. 梭梭和柽柳土壤微生物多样性初步分析[J]. 土壤, 2016, 48(6): 1120-1130. |
YANG Ruihong, ZHAO Chengyi, WANG Xinjun, et al. Phylogenetic diversity preliminary analysis of Haloxylon ammnodendron and Tamarix ramosissima soil bacteria[J]. Soils, 2016, 48(6): 1120-1130. | |
[9] | 章振亚. 崇明东滩湿地互花米草与芦苇、海三棱藨草根际固氮微生物多样性研究[D]. 上海: 上海师范大学, 2012. |
ZHANG Zhenya. Diversity Survey in Rhizasphere of Diazotroph in the Exotic Invasive Species Spartina Alterniflora and Two Native Species(Phragmites australis and Scirpus mariqueter) in the Wetlands at Chongming Dongtan in the Yangtze River Estuary[D]. Shanghai: Shanghai Normal University, 2012. | |
[10] | 唐凯, 高晓丹, 贾丽娟, 等. 浑善达克沙地生物土壤结皮及其下层土壤中固氮细菌群落结构和多样性[J]. 微生物学通报, 2018, 45(2): 293-301. |
TANG Kai, GAO Xiaodan, JIA Lijuan, et al. Community structure and diversity of diazotrophs in biological soil crusts and soil underneath crust of Hunshandake Deserts[J]. Microbiology China, 2018, 45(2): 293-301. | |
[11] | 刘璐, 何寻阳, 杜虎, 等. 喀斯特土壤固氮微生物群落与植被、土壤的关系[J]. 生态学报, 2017, 37(12): 4037-4044. |
LIU Lu, HE Xunyang, DU Hu, et al. The relationships among nitrogen-fixing microbial communities, plant communities, and soil properties in Karst regions[J]. Acta Ecologica Sinica, 2017, 37(12): 4037-4044. | |
[12] | 杨鸿儒, 袁博, 赵霞, 等. 三种荒漠灌木根际可培养固氮细菌类群及其固氮和产铁载体能力[J]. 微生物学通报, 2016, 43(11): 2366-2373. |
YANG Hongru, YUAN Bo, ZHAO Xia, et al. Cultivable diazotrophic community in the rhizosphere of three desert shrubs and their nitrogen-fixation and siderophore-producing capabilities[J]. Microbiology China, 2016, 43(11): 2366-2373. | |
[13] | 张颖, 杨清松, 张燕英, 等. 造礁石珊瑚共附生固氮微生物的固氮活性[J]. 生态学杂志, 2018, 37(7): 2122-2129. |
ZHANG Ying, YANG Qingsong, ZHANG Yanying, et al. Nitrogen-fixation activity of the hermatypic corals associated diazotrophs[J]. Chinese Journal of Ecology, 2018, 37(7): 2122-2129. | |
[14] | 郭平林, 刘波, 张志浩, 等. 疏叶骆驼刺与花花柴互作对氮素固定和根际微生物的影响[J]. 生态学报, 2020, 40(18): 6632-6643. |
GUO Pinglin, LIU Bo, ZHANG Zhihao, et al. Effects of interaction between Alhagi sparsifolia and Karelinia caspia on nitrogen fixation and rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2020, 40(18): 6632-6643. | |
[15] | 饶德, 刘王锁. 蓼子朴及其利用价值的研究进展[J]. 青海农林科技, 2021,(2): 58-60. |
RAO De,LIU Wangsuo. Research progress on Inula salsoloides ostenf and its utilization value[J]. Science and Technology of Qinghai Agriculture and Forestry, 2021,(2): 58-60. | |
[16] |
桑钰, 高文礼, 再努尔·吐尔逊, 等. 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021, 38(1): 247-256.
DOI |
SANG Yu, GAO Wenli, Zainuer Tuerxun, et al. Effects of drought stress and arbuscular-mycorrhizal fungi on root growth, nitrogen absorption, and distribution of two desert riparian plant seedlings[J]. Arid Zone Research, 2021, 38(1): 247-256.
DOI |
|
[17] | Grady E N, MacDonald J, Liu L D, et al. Current knowledge and perspectives of Paenibacillus: a review[J]. Microbial Cell Factories, 2016, 15(1): 203. |
[18] |
Gtari M, Ghodhbane-Gtari F, Nouioui I, et al. Phylogenetic perspectives of nitrogen-fixing Actinobacteria[J]. Archives of Microbiology, 2012, 194(1): 3-11.
DOI PMID |
[19] | 幸翀, 王淑珍, 王龙, 等. 辣椒叶际固氮菌分离筛选及抑菌活性[J]. 黑龙江农业科学, 2023,(5): 62-66. |
XING Chong, WANG Shuzhen, WANG Long, et al. Isolation and screening of nitrogen-fixing bacteria from leaves of pepper and antifungal activity[J]. Heilongjiang Agricultural Sciences, 2023,(5): 62-66. | |
[20] | 马瑞萍, 戴相林, 刘国一, 等. 拉萨长期不同施肥青稞田土壤固氮菌分离鉴定[J]. 麦类作物学报, 2023, 43(4): 505-512. |
MA Ruiping, DAI Xianglin, LIU Guoyi, et al. Isolation and identification of soil nitrogen-fixing bacteria in highland barley land with different long-term fertilization in Lhasa[J]. Journal of Triticeae Crops, 2023, 43(4): 505-512. | |
[21] |
刘爽, 姚佳妮, 沈聪, 等. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析[J]. 生物技术通报, 2022, 38(12): 252-262.
DOI |
LIU Shuang, YAO Jiani, SHEN Cong, et al. Fluorescent quantitative PCR of nifH gene and diversity analysis of nitrogen-fixing bacteria in the rhizosphere soil of Caragana spp.of desert grassland[J]. Biotechnology Bulletin, 2022, 38(12): 252-262.
DOI |
|
[22] | Turdahon M, Osman G, Hamdun M, et al. Rhizobium tarimense sp.nov., isolated from soil in the ancient Khiyik River[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_7): 2424-2429. |
[1] | 田超, 李玉姗, 马越, 宋羽. 不同浓度苦豆子浸提液对连作番茄生长及土壤肥力的影响[J]. 新疆农业科学, 2024, 61(9): 2203-2210. |
[2] | 罗延亮,李雪玲,李辉,谢欣,刘永建,王佩玲,陆宴辉. 苦豆子条带对棉田捕食性天敌发生的影响[J]. 新疆农业科学, 2019, 56(1): 74-83. |
[3] | 赵红琼;张丹;李凤鸣;王雷刚. 秋季苦豆子植株不同部位主要营养成分分析[J]. , 2016, 53(10): 1894-1899. |
[4] | 陈加利;姜喜;周禧琳;庞新安. 塔里木河上游多枝柽柳地上部分生物量模型研究[J]. , 2014, 51(10): 1893-1899. |
[5] | 刘斌;王吉;蒋静;赵维奇;王丹丹;张霞. 不同盐碱荒漠花花柴植株Na+、K+离子分布规律研究[J]. , 2013, 50(9): 1632-1641. |
[6] | 白雪;史应武;董秀黄;薛娟;李萍;娄恺. 塔克拉玛干沙漠西缘春季沙尘天气空气可培养真菌多样性[J]. , 2013, 50(7): 1314-1321. |
[7] | 王燕;李婷婷;李阳;吴婷;王梦竹;刘东亮;孙素荣. 苦豆子凝集素基因植物表达载体的构建及其对烟草的转化[J]. , 2013, 50(2): 300-306. |
[8] | 祖丽胡玛尔·赛买提;艾克拜尔·伊拉洪;艾则孜·艾沙. 秸秆腐熟剂对苦豆子沤肥氮、磷、钾含量及动态变化的影响[J]. , 2013, 50(10): 1865-1871. |
[9] | 李成亮;都业娟;刘娟娟;石宝萍;向本春. 苦豆子丛枝病植原体的分子检测与鉴定[J]. , 2013, 50(10): 1850-1857. |
[10] | 吕笃康;巴音山;刘影;赵玉. 苦豆子浸出液对高羊茅种子萌发及幼苗生长的影响[J]. , 2012, 49(8): 1477-1482. |
[11] | 吕笃康;欧阳艳;邓燕霞;刘彬;赵玉. 伊犁苦豆子地上生物量及生殖分配特性研究[J]. , 2011, 48(7): 1333-1338. |
[12] | 段魏魏;娄恺;曾军;胡蓉;史应武;何清;刘新春;孙建;晁群芳. 新疆沙尘暴源区塔克拉玛干空气真菌群落的T-RFLP分析[J]. , 2011, 48(4): 769-775. |
[13] | 陈金星;尹林克. 不同生境的多枝柽柳种群空间分布点格局分析[J]. , 2010, 47(1): 115-120. |
[14] | 龚明福;林世利;马玉红;李超;郑贺云. 拮抗棉花枯萎病菌的苦豆子内生细菌资源[J]. , 2009, 46(3): 531-535. |
[15] | 唐海淑;朱凯;安冉;孙素荣. 苦豆子蛋白粗提物抗菌活性的初步研究[J]. , 2009, 46(2): 425-429. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 12
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||