[1] |
王爱芳, 张运, 黄静, 等. 作物遥感分类研究进展[J]. 测绘与空间地理信息, 2021, 44(10): 80-83, 88.
|
|
WANG Aifang, ZHANG Yun, HUANG Jing, et al. Recent progresses in research of crop classification by using remote sensing[J]. Geomatics & Spatial Information Technology, 2021, 44(10): 80-83, 88.
|
[2] |
赵红伟, 陈仲新, 刘佳. 深度学习方法在作物遥感分类中的应用和挑战[J]. 中国农业资源与区划, 2020, 41(2): 35-49.
|
|
ZHAO Hongwei, CHEN Zhongxin, LIU Jia. Deep learning for crop classification of remote sensing data: applications and challenges[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(2): 35-49.
|
[3] |
Onojeghuo A O, Blackburn G A, Wang Q M, et al. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data[J]. International Journal of Remote Sensing, 2018, 39(4): 1042-1067.
|
[4] |
Lin Z X, Zhong R H, Xiong X G, et al. Large-scale rice mapping using multi-task spatiotemporal deep learning and sentinel-1 SAR time series[J]. Remote Sensing, 2022, 14(3): 699.
|
[5] |
张乾坤, 蒙继华, 任超. 构建地块二维表征及CNN模型的作物遥感分类[J]. 遥感学报, 2022, 26(7): 1437-1449.
|
|
ZHANG Qiankun, MENG Jihua, REN Chao. Crop classification based on two-dimensional representation and CNN model from remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(7): 1437-1449.
|
[6] |
黄翀, 侯相君. 基于Bi-LSTM模型的时间序列遥感作物分类研究[J]. 中国农业科学, 2022, 55(21): 4144-4157.
DOI
|
|
HUANG Chong, HOU Xiangjun. Crop classification with time series remote sensing based on Bi-LSTM model[J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
DOI
|
[7] |
Zhong L H, Gong P, Biging G S. Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 1-13.
|
[8] |
Luo C, Liu H J, Lu L, et al. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine[J]. Journal of Integrative Agriculture, 2021, 20(7): 1944-1957.
DOI
|
[9] |
Wang D, Liu C A, Zeng Y, et al. Dryland crop classification combining multitype features and multitemporal quad-polarimetric RADARSAT-2 imagery in Hebei Plain, China[J]. Sensors, 2021, 21(2): 332.
|
[10] |
Kang Y P, Meng Q Y, Liu M, et al. Crop classification based on red edge features analysis of GF-6 WFV data[J]. Sensors, 2021, 21(13): 4328.
|
[11] |
常布辉, 王军涛, 罗玉丽, 等. 河套灌区沈乌灌域GF-1/WFV遥感耕地提取[J]. 农业工程学报, 2017, 33(23): 188-195.
|
|
CHANG Buhui, WANG Juntao, LUO Yuli, et al. Cultivated land extraction based on GF-1/WFV remote sensing in Shenwu irrigation area of Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 188-195.
|
[12] |
马凯, 罗泽. 基于卷积神经网络的青海湖区域遥感影像分类[J]. 计算机系统应用, 2018, 27(9): 137-142.
|
|
MA Kai, LUO Ze. Classification of remote sensing images in Qinghai Lake based on convolutional neural network[J]. Computer Systems & Applications, 2018, 27(9): 137-142.
|
[13] |
杨泽航, 王文, 鲍健雄. 融合多源遥感数据的黑河中游地区生长季早期作物识别[J]. 地球信息科学学报, 2022, 24(5): 996-1008.
DOI
|
|
YANG Zehang, WANG Wen, BAO Jianxiong. Identifying crop types in early growing season in the middle reaches of Heihe River by fusing multi-source remote sensing data[J]. Journal of Geo-Information Science, 2022, 24(5): 996-1008.
|
[14] |
Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 325-340.
|
[15] |
李前景, 刘珺, 米晓飞, 等. 面向对象与卷积神经网络模型的GF-6 WFV影像作物分类[J]. 遥感学报, 2021, 25(2): 549-558.
|
|
LI Qianjing, LIU Jun, MI Xiaofei, et al. Object-oriented crop classification for GF-6 WFV remote sensing images based on Convolutional Neural Network[J]. National Remote Sensing Bulletin, 2021, 25(2): 549-558.
|
[16] |
杨庆振, 郭敏, 范新成. 基于随机森林算法的高光谱遥感作物分类[J]. 测绘与空间地理信息, 2023, 46(4): 149-151, 154.
|
|
YANG Qingzhen, GUO Min, FAN Xincheng. Hyper-spectral remote sensing crop classification based on random forest algorithm[J]. Geomatics & Spatial Information Technology, 2023, 46(4): 149-151, 154.
|
[17] |
王利军, 郭燕, 贺佳, 等. 基于决策树和SVM的Sentinel-2A影像作物提取方法[J]. 农业机械学报, 2018, 49(9): 146-153.
|
|
WANG Lijun, GUO Yan, HE Jia, et al. Classification method by fusion of decision tree and SVM based on sentinel-2A image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 146-153.
|
[18] |
Yao J X, Wu J, Xiao C Z, et al. The classification method study of crops remote sensing with deep learning, machine learning, and google earth engine[J]. Remote Sensing, 2022, 14(12): 2758.
|
[19] |
薛乃丹. 基于高分卫星遥感影像的农作物分类方法研究[D]. 沈阳: 沈阳农业大学, 2022.
|
|
XUE Naidan. Study on Crop Classification Method Based on GF Satellite Remote Sensing Image[D]. Shenyang: Shenyang Agricultural University, 2022.
|
[20] |
张国顺. 基于高分辨率影像的北疆农作物分类研究[D]. 石河子: 石河子大学, 2020.
|
|
ZHANG Guoshun. Crop Classification of Northern Xinjiang Based on High Resolution Imagery[D]. Shihezi: Shihezi University, 2020.
|
[21] |
杨舒婷. 基于深度学习的高分辨率遥感影像农作物分类算法研究[D]. 长春: 吉林大学, 2021.
|
|
YANG Shuting. Research on Crop Classification Algorithms Based on Deep Learning Using High-resolution Remote Sensing Imagery[D]. Changchun: Jilin University, 2021.
|
[22] |
马永建. 基于CNN的高分辨率遥感影像典型农作物分类方法研究[D]. 石河子: 石河子大学, 2020.
|
|
MA Yongjian. Study on Typical Crops Classification with High-resolution Remote Sensing Images Based on CNN[D]. Shihezi: Shihezi University, 2020.
|