新疆农业科学 ›› 2024, Vol. 61 ›› Issue (3): 734-741.DOI: 10.6048/j.issn.1001-4330.2024.03.024
岳成广1(), 李忠慧1,2, 刘晨曦1,2, 贺三刚1,2, 马海叶3, 刘璇3, 李婧平1, 李文蓉1,2(
)
收稿日期:
2023-07-09
出版日期:
2024-03-20
发布日期:
2024-04-19
通信作者:
李文蓉(1969-),女,江苏人,研究员,博士,硕士生/博士生导师,研究方向为动物遗传育种,(E-mail)xjlwr@126.com作者简介:
岳成广(1997-),男,河南人,硕士,研究方向为动物遗传育种,(E-mail)945372465@qq.com
基金资助:
YUE Chenggung1(), LI Zhonghui1,2, LIU Chenxi1,2, HE Sangang1,2, MA Haiye3, LIU Xuan3, LI Jingping1, LI Wenrong1,2(
)
Received:
2023-07-09
Published:
2024-03-20
Online:
2024-04-19
Supported by:
摘要:
【目的】 分析不同基因编辑类型对成纤维生长因子5 (FGF5)基因编辑细毛羊羊毛性状的影响,为开展基因编辑细毛羊的羊毛性状遗传参数评估提供理论依据。【方法】 收集181只FGF5周岁基因羊,分析编辑细毛羊羊毛自然长度、伸直长度、羊毛纤维直径和剪毛量等性状的数据。【结果】 FGF5基因编辑细毛羊羊毛自然长度平均值为10.49 cm,变异系数为11.82%。FGF5-InDel和FGF5-HDR基因编辑细毛羊羊毛自然长度和剪毛量均极显著高于野生型(P<0.01)。-28 bp或-26 bp、2 bp和置换(c.61 C>T)的羊毛自然长度和伸直长度均极显著长于wt(P<0.01),-28 bp或-26 bp的剪毛量显著高于wt(P<0.05)。-28 bp基因型的双等位基因编辑和单等位基因编辑突变的羊毛自然长度和伸直长度均极显著长于野生型(P<0.01)。【结论】 不同基因编辑类型的FGF5基因编辑细毛羊均可显著提高羊毛自然长度和剪毛量,可利用表型性状突出的后代组建核心编辑羊群体,促进FGF5基因编辑细毛羊选育扩繁。
中图分类号:
岳成广, 李忠慧, 刘晨曦, 贺三刚, 马海叶, 刘璇, 李婧平, 李文蓉. 不同基因编辑类型对FGF5基因编辑羊羊毛性状的影响[J]. 新疆农业科学, 2024, 61(3): 734-741.
YUE Chenggung, LI Zhonghui, LIU Chenxi, HE Sangang, MA Haiye, LIU Xuan, LI Jingping, LI Wenrong. Effects of different gene editing types on traits of FGF5 gene-edited sheep wool[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 734-741.
编辑方式 Edit Mode | 编辑序列 Edit Sequence | 基因型 Genotype | 突变类型 Mutation Type |
---|---|---|---|
FGF5-InDel | GAGAAGCGCCTCGCACCCAAAGGGCAGCCCGGACCGGCTGCCACCGAGAG GAACCC | WT | FGF5+/FGF5+ |
GAGAAGCGCCTCGCACC------------GAGAGGAACCC | -28 bp/-28 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC----------------GAGAGGAACCC GAGAAGCGCCTCGCACCCAAAGGt-----GCCCGGACCGGCTGCCACCGAGAGGAACCC | -28 bp/-2 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC---------------------GAGAGGAACCC GAGAAGCGCCTCGCACCT--------------------CGAGAGGAACCC | -28 bp/-26 bp | FGF5- /FGF5- | |
FGF5-HDR | AGCCACCTGATCCTCAGCGCCTGGGCTCAAGGGGAGAAGCGCCTCGCAC | wt | FGF5+/FGF5+ |
AGCCACCTGATCCTCAGCGCCTGGGCTTAAGGGGAGAAGCGCCTCGCACC | 置换 | FGF5-/FGF5- |
表1 FGF5不同编辑基因型的序列比较
Tab.1 Sequence comparison of different editing genotypes of FGF5
编辑方式 Edit Mode | 编辑序列 Edit Sequence | 基因型 Genotype | 突变类型 Mutation Type |
---|---|---|---|
FGF5-InDel | GAGAAGCGCCTCGCACCCAAAGGGCAGCCCGGACCGGCTGCCACCGAGAG GAACCC | WT | FGF5+/FGF5+ |
GAGAAGCGCCTCGCACC------------GAGAGGAACCC | -28 bp/-28 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC----------------GAGAGGAACCC GAGAAGCGCCTCGCACCCAAAGGt-----GCCCGGACCGGCTGCCACCGAGAGGAACCC | -28 bp/-2 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC---------------------GAGAGGAACCC GAGAAGCGCCTCGCACCT--------------------CGAGAGGAACCC | -28 bp/-26 bp | FGF5- /FGF5- | |
FGF5-HDR | AGCCACCTGATCCTCAGCGCCTGGGCTCAAGGGGAGAAGCGCCTCGCAC | wt | FGF5+/FGF5+ |
AGCCACCTGATCCTCAGCGCCTGGGCTTAAGGGGAGAAGCGCCTCGCACC | 置换 | FGF5-/FGF5- |
编辑方式 Edit mode | 家系 (Family) | F0父本(基因型) F0 sire (Genotype) | F0代选配类型 F0 type | F1代羔羊 (基因型) F1 lambs (Genotype) | F1父本 (基因型) F1 sire (Genotype) | F1代 选配类型 F1 type | F2代羔羊 (基因型) F2 lambs (Genotype) |
---|---|---|---|---|---|---|---|
FGF5-InDel | 1 | GM007 (-28 bp/-2 bp、G>T, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 -2 bp杂合 | GM18090 (-28 bp,杂合) | F0♂×WT♀ | -28 bp,杂合 WT/WT |
2 | GM009 (-28 bp/-28 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 | TG127 (-28 bp,杂合) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 WT/WT 其他 | |
3 | GM022 (-28 bp/-26 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 -26 bp,杂合 | \ | \ | \ | |
FGF5-HDR | 4 | GM18042 (置换, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | C>T,杂合 | \ | \ | \ |
表2 亲代及子代基因型信息
Tab.2 Genotype information of parents and lambs
编辑方式 Edit mode | 家系 (Family) | F0父本(基因型) F0 sire (Genotype) | F0代选配类型 F0 type | F1代羔羊 (基因型) F1 lambs (Genotype) | F1父本 (基因型) F1 sire (Genotype) | F1代 选配类型 F1 type | F2代羔羊 (基因型) F2 lambs (Genotype) |
---|---|---|---|---|---|---|---|
FGF5-InDel | 1 | GM007 (-28 bp/-2 bp、G>T, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 -2 bp杂合 | GM18090 (-28 bp,杂合) | F0♂×WT♀ | -28 bp,杂合 WT/WT |
2 | GM009 (-28 bp/-28 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 | TG127 (-28 bp,杂合) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 WT/WT 其他 | |
3 | GM022 (-28 bp/-26 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 -26 bp,杂合 | \ | \ | \ | |
FGF5-HDR | 4 | GM18042 (置换, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | C>T,杂合 | \ | \ | \ |
性状 Trait | 记录数 Recode | 最小值 Minimum | 最大值 Maximum | 平均值 Average | 标准差 Standard deviation | 变异系数 Coefficient of variation |
---|---|---|---|---|---|---|
羊毛自然长度Wool length(cm) | 180 | 7.00 | 15.50 | 10.49 | 1.24 | 11.82 |
伸直长度Wool straight length(cm) | 178 | 8.24 | 17.16 | 12.69 | 1.61 | 12.69 |
羊毛纤维直径Wool fiber diameter(μm) | 181 | 14.80 | 27.84 | 18.97 | 2.02 | 10.65 |
剪毛量Greasy fleece weight(kg) | 166 | 1.90 | 8.00 | 4.51 | 1.19 | 26.21 |
表3 FGF5基因编辑羊羊毛性状的描述性统计
Tab.3 Descriptive statistics of traits in FGF5 gene-edited sheep wool
性状 Trait | 记录数 Recode | 最小值 Minimum | 最大值 Maximum | 平均值 Average | 标准差 Standard deviation | 变异系数 Coefficient of variation |
---|---|---|---|---|---|---|
羊毛自然长度Wool length(cm) | 180 | 7.00 | 15.50 | 10.49 | 1.24 | 11.82 |
伸直长度Wool straight length(cm) | 178 | 8.24 | 17.16 | 12.69 | 1.61 | 12.69 |
羊毛纤维直径Wool fiber diameter(μm) | 181 | 14.80 | 27.84 | 18.97 | 2.02 | 10.65 |
剪毛量Greasy fleece weight(kg) | 166 | 1.90 | 8.00 | 4.51 | 1.19 | 26.21 |
性状Trait | 编辑方式Edit Mode | ||
---|---|---|---|
FGF5-InDel | FGF5-HDR | WT | |
羊毛自然长度Wool length(cm) | 10.44±1.31A(147) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.57±1.62a(145) | 13.23±1.43bB(33) | 11.04±1.09cC(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.07±1.98(148) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.43±1.27A(133) | 4.86±0.74A(33) | 3.82±1.16B(29) |
表4 不同基因编辑方式下羊毛性状变化
Tab.4 Effect of different gene editing modes on wool traits
性状Trait | 编辑方式Edit Mode | ||
---|---|---|---|
FGF5-InDel | FGF5-HDR | WT | |
羊毛自然长度Wool length(cm) | 10.44±1.31A(147) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.57±1.62a(145) | 13.23±1.43bB(33) | 11.04±1.09cC(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.07±1.98(148) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.43±1.27A(133) | 4.86±0.74A(33) | 3.82±1.16B(29) |
性状 Trait | 基因型Genotype | |||
---|---|---|---|---|
-28 bp或-26 bp | -2 bp | 替换(C>T,61) | WT | |
羊毛自然长度Wool length(cm) | 10.50±1.22A(89) | 10.57±1.50A(30) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.73±1.55A(89) | 12.51±1.91A(30) | 13.29±1.43A(33) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.21±2.10(91) | 18.67±1.22(30) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.39±1.28a(86) | 4.75±1.34aB(29) | 4.86±0.74aB(33) | 3.82±1.16bC(29) |
表5 不同编辑基因型下羊毛性状变化
Tab.5 Effect of different editing genotypes on wool traits
性状 Trait | 基因型Genotype | |||
---|---|---|---|---|
-28 bp或-26 bp | -2 bp | 替换(C>T,61) | WT | |
羊毛自然长度Wool length(cm) | 10.50±1.22A(89) | 10.57±1.50A(30) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.73±1.55A(89) | 12.51±1.91A(30) | 13.29±1.43A(33) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.21±2.10(91) | 18.67±1.22(30) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.39±1.28a(86) | 4.75±1.34aB(29) | 4.86±0.74aB(33) | 3.82±1.16bC(29) |
性状 Trait | 突变类型Mutation type | ||
---|---|---|---|
-/- | -/+ | +/+ | |
羊毛自然长度Wool length(cm) | 10.50±1.54A(12) | 10.50±1.17A(77) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.21±1.83A(12) | 12.81±1.50A(77) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 18.97±1.90(13) | 19.25±2.14(78) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 3.97±1.49ab(12) | 4.47±1.24a(71) | 3.82±1.16b(29) |
表6 不同突变类型下羊毛性状变化
Tab.6 Effect of different mutation types on wool traits
性状 Trait | 突变类型Mutation type | ||
---|---|---|---|
-/- | -/+ | +/+ | |
羊毛自然长度Wool length(cm) | 10.50±1.54A(12) | 10.50±1.17A(77) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.21±1.83A(12) | 12.81±1.50A(77) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 18.97±1.90(13) | 19.25±2.14(78) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 3.97±1.49ab(12) | 4.47±1.24a(71) | 3.82±1.16b(29) |
[1] | 李忠慧. CRISPR/cas9基因编辑技术在羊毛品质改良中的应用[J]. 饲料博览, 2020,(11):32-34. |
LI Zhonghui. Application of CRISPR/cas9 gene editing technology in wool quality improvement[J]. Feed Review, 2020,(11):32-34. | |
[2] |
Zhao H Y, Hu R X, Li F D, et al. Five SNPs Within the FGF5 Gene Significantly Affect Both Wool Traits and Growth Performance in Fine-Wool Sheep(Ovis aries)[J]. Front Genet, 2021, 12:732097.
DOI URL |
[3] |
徐鑫, 刘明军. CRISPR/Cas9基因编辑技术在绵羊中的应用研究进展[J]. 中国畜牧兽医, 2022, 49(11):4129-4138.
DOI |
XU Xin, LIU Mingjun. Research progress on application of CRISPR/Cas9 genome editing systems in sheep[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(11):4129-4138. | |
[4] | 史玉洁, 李芳, 王昕. CRISPR技术应用于山羊和绵羊育种的研究进展[J]. 中国畜牧杂志, 2022, 58(4):16-21. |
SHI Yujie, LI Fang, WANG Xin. Research progress on application of CRISPR in goat and sheep breeding[J]. Chinese Journal of Animal Science, 2022, 58(4):16-21. | |
[5] | 曹俊霞, 王友亮, 王征旭. 精准调控CRISPR/Cas9基因编辑技术研究进展[J]. 遗传, 2020, 42(12):1168-1177. |
CAO Junxia, WANG Youliang, WANG Zhengxu. Advances in precise regulation of CRISPR/Cas9 gene editing technology[J]. Hereditas (Beijing), 2020, 42(12):1168-1177. | |
[6] | 王欢, 邹惠影, 朱化彬, 等. CRISPR/Cas9基因编辑技术在家畜育种新材料创制中的研究进展[J]. 畜牧兽医学报, 2021, 52(4):851-861. |
WANG Huan, ZOU Huiying, ZHU Huabin, et al. Advances in evaluation of livestock breeding new materials by using the CRISPR/Cas9 gene editing technology[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4):851-861. | |
[7] |
Fan Z Q, Perisse I V, Cotton C U, et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene[J]. JCI Insight, 2018, 3(19):e123529.
DOI URL |
[8] |
Yoshizawa Y, Wada K, Shiomi G, et al. A 1-bp deletion in Fgf5 causes male-dominant long hair in the Syrian hamster[J]. Mammalian Genome, 2015, 26(11):630-637.
DOI URL |
[9] |
Mizuno S, Iijima S, Okano T, et al. Retrotransposon-mediated Fgf5(go-Utr) mutant mice with long pelage hair[J]. Experimental Animals, 2011, 60(2):161-167.
PMID |
[10] |
Ota Y, Saitoh Y, Suzuki S, et al. Fibroblast Growth Factor 5 Inhibits Hair Growth by Blocking Dermal Papilla Cell Activation[J]. Biochemical and Biophysical Research Communications, 2002, 290(1):169-176.
DOI URL |
[11] |
Rosenquist T A, Martin G R. Fibroblast growth factor signalling in the hair growth cycle:expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle[J]. Developmental Dynamics:an Official Publication of the American Association of Anatomists, 1996, 205(4):379-386.
PMID |
[12] |
Li W R, Liu C X, Zhang X M, et al. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J]. The FEBS Journal, 2017, 284(17):2764-2773.
DOI URL |
[13] |
Ito C, Saitoh Y, Fujita Y, et al. Decapeptide with fibroblast growth factor(FGF)-5 partial sequence inhibits hair growth suppressing activity of FGF-5[J]. Journal of Cellular Physiology, 2003, 197(2):272-283.
DOI URL |
[14] |
He X L, Chao Y, Zhou G X, et al. Fibroblast growth factor 5-short(FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of Cashmere goats[J]. Gene, 2016, 575(2):393-398.
DOI URL |
[15] |
Zhang L H, He S G, Liu M J, et al. Molecular cloning,characterization,and expression of sheep FGF5 gene[J]. Gene, 2015, 555(2):95-100.
DOI URL |
[16] | 高原, 阿力玛, 李璐, 等. 靶除内蒙古白绒山羊FGF5基因对其毛被性状的影响[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(1):61-65. |
GAO Yuan, A Lima, LI Lu, et al. Effecs of knockout FGF5 in Inner Mongolian white Cashmere goats on fleece traits[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2016, 37(1):61-65. | |
[17] |
Hu R, Fan Z Y, Wang B Y, et al. RAPID COMMUNICATION:Generation of FGF5 knockout sheep via the CRISPR/Cas9 system[J]. J Anim Sci, 2017, 95(5):2019-2024.
DOI PMID |
[18] | 毛林军. FGF5基因编辑绵羊精液冷冻及体外胚胎的制备与分析[D]. 乌鲁木齐: 新疆农业大学, 2022. |
MAO Linjun. Preparation and analysis of frozen semen and in vitro embryos of FGF5 gene-edited sheep[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[19] | 胡慧宇. FGF5基因编辑细毛羊的遗传稳定性和自身健康评估[D]. 乌鲁木齐: 新疆农业大学, 2021. |
HU Huiyu. Evaluation of genetic stability and self-health safety by FGF5 gene edited fine-wool sheep[D]. Urumqi: Xinjiang Agricultural University, 2021. | |
[20] | 关鸣轩, 魏趁, 佀博学, 等. 苏博美利奴羊主要经济性状的遗传参数估计[J]. 中国畜牧杂志, 2022, 58(1):97-101. |
GUAN Mingxuan, WEI Chen, SI Boxue, et al. Estimation of genetic parameters of main economic traits of Subo Merino sheep[J]. Chinese Journal of Animal Science, 2022, 58(1):97-101. | |
[21] | 魏趁, 关鸣轩, 付雪峰, 等. 运用贝叶斯方法估计中国美利奴羊(新疆型)毛用性状及繁殖性状的遗传参数[J]. 畜牧兽医学报, 2020, 51(7):1537-1547. |
WEI Chen, GUAN Mingxuan, FU Xuefeng, et al. Estimates of genetic parameters for wool and reproductive traits in Chinese Merino sheep(Xinjiang type) by bayesian method[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7):1537-1547. | |
[22] | 乔国艳, 袁超, 李文辉, 等. 高山美利奴羊重要经济性状遗传参数估计[J]. 中国畜牧杂志, 2019, 55(10):58-62. |
QIAO Guoyan, YUAN Chao, LI Wenhui, et al. Estimation of genetic parameter for important economic traits of Alpine Merino sheep[J]. Chinese Journal of Animal Science, 2019, 55(10):58-62. | |
[23] |
Wang X, Niu Y, Zhou J, et al. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Animal Genetics, 2018, 49(1):43-51.
DOI PMID |
[24] | 尚利青, 宋绍征, 张婷, 等. MSTN基因突变纯合子兔的繁育和表型分析[J]. 生物工程学报, 2022, 38(5):1847-1858. |
SHANG Liqing, SONG Shaozheng, ZHANG Ting, et al. Propagation and phenotypic analysis of mutant rabbits with MSTN homozygous mutation[J]. Chinese Journal of Biotechnology, 2022, 38(5):1847-1858
DOI PMID |
|
[25] |
Xu Y X, Liu H M, Pan H L, et al. CRISPR/Cas9-mediated Disruption of Fibroblast Growth Factor 5 in Rabbits Results in a Systemic Long Hair Phenotype by Prolonging Anagen[J]. Genes, 2020, 11(3):297.
DOI URL |
[1] | 王春生, 李剑峰, 张跃强, 樊哲儒, 王重, 高新, 时佳, 张宏芝, 王立红, 夏建强, 王芳平, 赵奇. 新疆主栽春小麦品种花药培养力基因型差异分析[J]. 新疆农业科学, 2024, 61(9): 2081-2086. |
[2] | 周广威, 韩登旭, 朱琦, 张少民. 耐低磷新疆春玉米基因型筛选及其磷效率[J]. 新疆农业科学, 2023, 60(4): 847-856. |
[3] | 刘鹏鹏, 桑伟, 徐红军, 崔凤娟, 韩新年, 聂迎彬, 孔德真, 邹波, 穆培源. 基因型、环境对新疆冬小麦品种蛋白质品质的影响[J]. 新疆农业科学, 2022, 59(1): 45-54. |
[4] | 闫鹏, 朱燕飞, 梅闯, 冯贝贝, 韩立群, 艾沙江·买买提, 马凯, 王继勋. 新疆红肉苹果果实性状及MYB10启动子基因型鉴定分析[J]. 新疆农业科学, 2020, 57(12): 2213-2220. |
[5] | 张大伟,魏鑫,徐海江,刘忠山,李春平,马清倩,徐建辉. 不同棉花品种对脱叶剂的响应[J]. 新疆农业科学, 2019, 56(1): 146-153. |
[6] | 刘晓婷,罗燕,陈洁,连科讯,刘钢,马昭,朱晓庆,谷新利. 中药复方多糖对不同MHC B-LβⅡ基因型蛋鸡育雏育成期免疫功能的影响[J]. 新疆农业科学, 2018, 55(4): 763-773. |
[7] | 张校立,徐叶挺,艾沙江·买买提,许娟,邓莉,王继勋. 新疆地方梨品种S基因型的鉴定[J]. 新疆农业科学, 2018, 55(2): 246-252. |
[8] | 王重;樊哲儒;张跃强;李剑峰;高新;王子霞. 春小麦单倍体胚得胚率的影响因素研究[J]. , 2016, 53(8): 1404-1408. |
[9] | 张艳花;于丽娟;蒋晓梅;玛尔孜亚·亚森;阿米尼古丽·阿不来孜;吴伟伟;古丽努尔·马哈提;玛依肯·沙力;拉扎提·艾尼瓦尔. 利用平均信息最大似然法估计中国美利奴羊羊毛性状遗传参数[J]. , 2016, 53(12): 2344-2352. |
[10] | 曹俊梅;周安定;刘联正;张新忠;黄天荣;高永红;芦静;吴新元. 基因型与环境对三种筋型小麦品质性状的影响[J]. , 2015, 52(8): 1382-1387. |
[11] | 曾斌;高启明;田嘉;李疆. 新疆扁桃品种自交不亲和S-Rnases基因型的分析鉴定[J]. , 2014, 51(8): 1400-1408. |
[12] | 底丽娜;南海辰;夏利宁. 新疆某猪场猪源耐药大肠杆菌β-内酰胺酶及16S rRNA甲基化酶检测及分析[J]. , 2014, 51(7): 1335-1341. |
[13] | 李智军;刘武军;祁居中;孟军;刘佳;耿明;姚新奎. 利用微卫星多态性鉴别不同马品种试验[J]. , 2013, 50(9): 1692-1703. |
[14] | 王祥军;齐军仓;王仙;曹连莆. 基于AMMI模型分析大麦籽粒酚酸含量的基因型与环境效应[J]. , 2013, 50(3): 422-427. |
[15] | 甘尚权;张伟;沈敏;李欢;梁耀伟;杨井泉;高磊;刘守仁;王新华. 绵羊X染色体59578440位点多态分析及其与尾(臀)脂性状相关性研究[J]. , 2013, 50(12): 2311-2316. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||