新疆农业科学 ›› 2023, Vol. 60 ›› Issue (2): 424-431.DOI: 10.6048/j.issn.1001-4330.2023.02.020
• 园艺特产·植物保护·微生物·土壤肥料·节水灌溉 • 上一篇 下一篇
易鸳鸯1,2,3(), 谢芳1,2, 田世英1,2, 张志东3(
), 顾美英3, 彭小武1,2(
)
出版日期:
2023-02-20
发布日期:
2023-03-31
通信作者:
张志东(1977-),男,新疆乌鲁木齐人,研究员,研究方向为特殊环境微生物,(E-mail)zhangzheedong@qq.com;作者简介:
易鸳鸯(1990-),女,新疆乌鲁木齐人,工程师,研究方向为环境微生物,(E-mail)15022970169@163.com
基金资助:
YI Yuanyang1,2,3(), XIE Fang1,2, TIAN Shiying1,2, ZHANG Zhidong3(
), GU Meiying3, PENG Xiaowu1,2(
)
Published:
2023-02-20
Online:
2023-03-31
Correspondence author:
ZHANG Zhidong(1977-),male,from Urumqi,Xinjiang,researcher. research field: Environmental microorganism, (E-mail) zhangzheedong@qq.com;Supported by:
摘要:
【目的】 研究硫红霉素菌渣有机肥施用后对大豆农田土壤中耐药菌及相关抗性基因丰度的影响,为硫红霉素菌渣有机肥施用生物安全性评价提供科学依据。【方法】 检测不同菌渣有机肥施用量下,大豆不同生长时期土壤中耐药细菌的数量和种类,并采用荧光定量PCR方法检测相关抗性基因(ARGs)污染水平,分析菌渣有机肥施用对耐药菌及相关抗性基因的影响。【结果】 大豆苗期土壤中各类细菌数量大于结果期,苗期样品中土壤细菌总数、硫红霉素抗性菌数显著高于对照组,而青霉素、头孢拉定抗性菌株数与对照组差异不显著。在结果期样品中,施加了硫红霉素药渣有机肥的土壤中各类菌落总数与对照组差异不显著。所获得14株硫红霉素耐药菌菌株分布于11个菌属,其中假节杆菌属、芽胞杆菌属、类谷氨酸杆菌属菌株数占总菌株数的比例最高,25株青霉素耐药菌菌株分布于7个菌属,其中链霉菌属菌株数最高。12株头孢拉定耐药菌分布于5个菌属,其中假单胞菌属菌株数占比例达到50.00%。施用硫红霉素菌渣有机肥对土壤中常见ARGs的绝对丰度和相对丰度有一定的影响,但影响不显著。【结论】 硫红霉素菌渣有机肥施用后对作物土壤中ARGs水平没有显著影响。
中图分类号:
易鸳鸯, 谢芳, 田世英, 张志东, 顾美英, 彭小武. 硫红霉素菌渣有机肥对大豆土壤中耐药菌及相关抗性基因的影响[J]. 新疆农业科学, 2023, 60(2): 424-431.
YI Yuanyang, XIE Fang, TIAN Shiying, ZHANG Zhidong, GU Meiying, PENG Xiaowu. Effect of Organic Fertilizer of Thioerythromycin Residue on Soybean Soil Drug-resistant Bacteria and Their Resistance Genes[J]. Xinjiang Agricultural Sciences, 2023, 60(2): 424-431.
处理 Treat ments | 红霉素残留 Erythromycin residue (mg/kg) | pH | 有机质 OM (%) | 全磷 Total P (mg/kg) | 速效磷 Available P (mg/kg) | 全钾 Total K (mg/kg) | 速效钾 Available K (mg/kg) | 全氮 Total N (mg/kg) |
---|---|---|---|---|---|---|---|---|
A1 | ND | 8.37 | 14 400 | 221.0 | 4.89 | 4 110 | 235 | 140 |
A2 | ND | 8.60 | 12 400 | 139.0 | 3.32 | 1 810 | 198 | 200 |
CK | ND | 8.34 | 11 600 | 188.0 | 3.35 | 3 990 | 231 | 180 |
表1 土壤中硫红霉素残留与土壤理化性质
Table 1 Residue thioerythromycin and physical-chemical properties of different treatments soil
处理 Treat ments | 红霉素残留 Erythromycin residue (mg/kg) | pH | 有机质 OM (%) | 全磷 Total P (mg/kg) | 速效磷 Available P (mg/kg) | 全钾 Total K (mg/kg) | 速效钾 Available K (mg/kg) | 全氮 Total N (mg/kg) |
---|---|---|---|---|---|---|---|---|
A1 | ND | 8.37 | 14 400 | 221.0 | 4.89 | 4 110 | 235 | 140 |
A2 | ND | 8.60 | 12 400 | 139.0 | 3.32 | 1 810 | 198 | 200 |
CK | ND | 8.34 | 11 600 | 188.0 | 3.35 | 3 990 | 231 | 180 |
引物名称 Primer name | 序列(5'-3') Suquence |
---|---|
ermB-F | GGATATTCACCGAACACTAGGG |
ermB-R | TGGAACATCTGTGGTATGGC |
ermF-F | CGACACAGCTTTGGTTGAAC |
ermF-R | GGACCTACCTCATAGACAAG |
blaTEM-F | TCGCCGCATACACTATTCTCAGAATGA |
blaTEM-R | ACGCTCACCGGCTCCAGATTTAT |
sul1-F | GCCGATGAGATCAGACGTATTG |
sul1-R | GAAGCTGTCGATTGAAACACG |
sul2-F | AACCGCCTTGTCCTTGATC |
sul2-R | CAGCCGCAATTCATCGAAC |
表2 ARGs引物序列
Table 2 Primer sequences of antibiotic resitance genes
引物名称 Primer name | 序列(5'-3') Suquence |
---|---|
ermB-F | GGATATTCACCGAACACTAGGG |
ermB-R | TGGAACATCTGTGGTATGGC |
ermF-F | CGACACAGCTTTGGTTGAAC |
ermF-R | GGACCTACCTCATAGACAAG |
blaTEM-F | TCGCCGCATACACTATTCTCAGAATGA |
blaTEM-R | ACGCTCACCGGCTCCAGATTTAT |
sul1-F | GCCGATGAGATCAGACGTATTG |
sul1-R | GAAGCTGTCGATTGAAACACG |
sul2-F | AACCGCCTTGTCCTTGATC |
sul2-R | CAGCCGCAATTCATCGAAC |
生育期 Growth period | 处理 Treat ments | 总细菌数 Total bacterias (107CFU/g) | 硫红霉素耐药菌 Thioerythromycin resistant bacteria (103CFU/g) | 青霉素耐药菌 Penicillin resistant bacteria(103CFU/g) | 头孢拉定耐药菌 Cefradine resistant bacteria(105CFU/g) |
---|---|---|---|---|---|
苗期 Seedling stage | A1 | 2.43±0.35a | 4.90±0.42a | 5.24±0.54a | 2.55±0.75a |
A2 | 2.52±0.23a | 5.50±0.16a | 5.30±0.36a | 2.57±0.57a | |
CK | 1.8 7±0.13b | 4.33±0.25b | 6.00±0.33a | 2.70±0.54a | |
结果期 Result period | A1 | 1.76±0.82a | 3.67±0.82a | 4.00±0.38a | 0.80±1.65a |
A2 | 1.53±0.43a | 4.53±0.14a | 4.30±0.25a | 1.02±0.45a | |
CK | 1.82±0.23a | 3.51±0.81a | 40.6±0.11a | 1.00±0.64a |
表3 不同处理下大豆不同生长期土壤中耐药菌数量
Table 3 Drug resistant bacteria in soil at different treatments and growth stages of soybean
生育期 Growth period | 处理 Treat ments | 总细菌数 Total bacterias (107CFU/g) | 硫红霉素耐药菌 Thioerythromycin resistant bacteria (103CFU/g) | 青霉素耐药菌 Penicillin resistant bacteria(103CFU/g) | 头孢拉定耐药菌 Cefradine resistant bacteria(105CFU/g) |
---|---|---|---|---|---|
苗期 Seedling stage | A1 | 2.43±0.35a | 4.90±0.42a | 5.24±0.54a | 2.55±0.75a |
A2 | 2.52±0.23a | 5.50±0.16a | 5.30±0.36a | 2.57±0.57a | |
CK | 1.8 7±0.13b | 4.33±0.25b | 6.00±0.33a | 2.70±0.54a | |
结果期 Result period | A1 | 1.76±0.82a | 3.67±0.82a | 4.00±0.38a | 0.80±1.65a |
A2 | 1.53±0.43a | 4.53±0.14a | 4.30±0.25a | 1.02±0.45a | |
CK | 1.82±0.23a | 3.51±0.81a | 40.6±0.11a | 1.00±0.64a |
耐药菌 类型 Type of resistant bacteria | 菌属 Genus | 菌株数 Number of bacteria | 所占 比例 Propo rtion (%) |
---|---|---|---|
硫红霉素 耐药菌 Thioery thromycin resistant bacteria | Paenibacillus lautus | 1 | 7.14 |
Lysinibacillus macroides | 1 | 7.14 | |
Pseudarthrobacter siccitolerans | 2 | 14.29 | |
Bacillus idriensis | 2 | 14.29 | |
Alcaligenes faecalis | 1 | 7.14 | |
Sinorhizobium meliloti | 1 | 7.14 | |
Paeniglutamicibacter sulfureus | 2 | 14.29 | |
Planomicrobium glaciei | 1 | 7.14 | |
Microbacterium profundi | 1 | 7.14 | |
Arthrobacter pascens | 1 | 7.14 | |
Brevibacillus halotolerans | 1 | 7.14 | |
青霉素 耐药菌 Penicillin resistant bacteria | Streptomyces ramulosus | 18 | 72.00 |
Amycolatopsis roodepoortensis | 1 | 4.00 | |
Proteus | 1 | 4.00 | |
Bacillus idriensis | 2 | 8.00 | |
Rhodococcus jostii | 1 | 4.00 | |
Chitinophaga lutea | 1 | 4.00 | |
Parapedobacter pyrenivorans | 1 | 4.00 | |
头孢拉定 耐药菌 Cefradine resistant bacteria | Streptomyces ramulosus | 2 | 16.67 |
Pseudomonas laurentiana | 6 | 50.00 | |
Microbacterium shaanxiense | 1 | 8.33 | |
Bacillus idriensis | 2 | 16.67 | |
[Brevibacterium] frigoritolerans | 1 | 8.33 |
表4 大豆土壤中筛选获得耐药菌菌属分布
Table 4 Genus distribution of drug resistant bacteria isolated from soybean soil
耐药菌 类型 Type of resistant bacteria | 菌属 Genus | 菌株数 Number of bacteria | 所占 比例 Propo rtion (%) |
---|---|---|---|
硫红霉素 耐药菌 Thioery thromycin resistant bacteria | Paenibacillus lautus | 1 | 7.14 |
Lysinibacillus macroides | 1 | 7.14 | |
Pseudarthrobacter siccitolerans | 2 | 14.29 | |
Bacillus idriensis | 2 | 14.29 | |
Alcaligenes faecalis | 1 | 7.14 | |
Sinorhizobium meliloti | 1 | 7.14 | |
Paeniglutamicibacter sulfureus | 2 | 14.29 | |
Planomicrobium glaciei | 1 | 7.14 | |
Microbacterium profundi | 1 | 7.14 | |
Arthrobacter pascens | 1 | 7.14 | |
Brevibacillus halotolerans | 1 | 7.14 | |
青霉素 耐药菌 Penicillin resistant bacteria | Streptomyces ramulosus | 18 | 72.00 |
Amycolatopsis roodepoortensis | 1 | 4.00 | |
Proteus | 1 | 4.00 | |
Bacillus idriensis | 2 | 8.00 | |
Rhodococcus jostii | 1 | 4.00 | |
Chitinophaga lutea | 1 | 4.00 | |
Parapedobacter pyrenivorans | 1 | 4.00 | |
头孢拉定 耐药菌 Cefradine resistant bacteria | Streptomyces ramulosus | 2 | 16.67 |
Pseudomonas laurentiana | 6 | 50.00 | |
Microbacterium shaanxiense | 1 | 8.33 | |
Bacillus idriensis | 2 | 16.67 | |
[Brevibacterium] frigoritolerans | 1 | 8.33 |
序号 NO. | 抗性基因 ARGs | 线性方程 linear algebraic equations | 相关系数 R2 correlation coefficient |
---|---|---|---|
1 | ermB | Y=-2.985 4x+35.026 | 0.990 5 |
2 | ermF | Y=-2.757 1x+31.918 | 0.993 9 |
3 | blaTEM | Y=-2.945 7x+31.698 | 0.994 2 |
4 | sul1 | Y=-3.006 1x+34.948 | 0.994 7 |
5 | sul2 | Y=-2.337 2x+35.547 | 0.991 8 |
6 | 16s rDNA V4 | Y=-2.881 9x+36.494 | 0.992 1 |
表5 抗性基因和16S rDNA标准曲线方程
Table 5 Standard curve equation of ARGs and 16S rDNA
序号 NO. | 抗性基因 ARGs | 线性方程 linear algebraic equations | 相关系数 R2 correlation coefficient |
---|---|---|---|
1 | ermB | Y=-2.985 4x+35.026 | 0.990 5 |
2 | ermF | Y=-2.757 1x+31.918 | 0.993 9 |
3 | blaTEM | Y=-2.945 7x+31.698 | 0.994 2 |
4 | sul1 | Y=-3.006 1x+34.948 | 0.994 7 |
5 | sul2 | Y=-2.337 2x+35.547 | 0.991 8 |
6 | 16s rDNA V4 | Y=-2.881 9x+36.494 | 0.992 1 |
处理 Treat ments | 生育期 Growth period | ErmB (103) | ErmF (103) | BlaTEM (104) | sul1 (103) | sul2 (103) | 16S rDNA (107) |
---|---|---|---|---|---|---|---|
出苗期 Seedling stage | A1 | 4.06±1.85a | 4.08±2.11a | 4.13±1.71a | 3.12±3.01a | 3.89±2.27a | 2.79±1.27a |
A2 | 5.60±0.85a | 5.36±0.61a | 4.57±0.75a | 5.75±0.31a | 5.61±0.56a | 3.71±0.33a | |
CK | 3.35±2.95a | 3.31±3.01a | 5.46±0.53a | 4.86±1.09a | 4.85±1.37a | 1.63±1.47a | |
结果期 Result period | A1 | 1.27±0.95a | 2.28±0.21a | 2.35±0.31a | 2.53±1.15a | 2.66±1.51a | 1.72±0.45a |
A2 | 1.34±0.75a | 2.18±0.42a | 2.52±0.23a | 3.65±0.17a | 3.81±0.43a | 1.64±0.51a | |
CK | 1.29±1.03a | 2.01±0.57a | 2.41±0.32a | 2.92±0.87a | 2.71±1.45a | 1.84±0.44a |
表6 施用硫红霉素菌渣大豆土壤中ARGs的拷贝数变化
Table 6 Copy number of ARGs in soybean soil with thioerythromycin residue
处理 Treat ments | 生育期 Growth period | ErmB (103) | ErmF (103) | BlaTEM (104) | sul1 (103) | sul2 (103) | 16S rDNA (107) |
---|---|---|---|---|---|---|---|
出苗期 Seedling stage | A1 | 4.06±1.85a | 4.08±2.11a | 4.13±1.71a | 3.12±3.01a | 3.89±2.27a | 2.79±1.27a |
A2 | 5.60±0.85a | 5.36±0.61a | 4.57±0.75a | 5.75±0.31a | 5.61±0.56a | 3.71±0.33a | |
CK | 3.35±2.95a | 3.31±3.01a | 5.46±0.53a | 4.86±1.09a | 4.85±1.37a | 1.63±1.47a | |
结果期 Result period | A1 | 1.27±0.95a | 2.28±0.21a | 2.35±0.31a | 2.53±1.15a | 2.66±1.51a | 1.72±0.45a |
A2 | 1.34±0.75a | 2.18±0.42a | 2.52±0.23a | 3.65±0.17a | 3.81±0.43a | 1.64±0.51a | |
CK | 1.29±1.03a | 2.01±0.57a | 2.41±0.32a | 2.92±0.87a | 2.71±1.45a | 1.84±0.44a |
[1] | 张倩倩. 抗生素菌渣的堆肥处理研究[D]. 郑州: 郑州大学, 2019. |
ZHANG Qianqian. Research on the composting treatment for antibiotic fermentation drugs[D]. Zhengzhou: Zhengzhou University, 2019. | |
[2] |
陈立文, 方森海, 王明兹. 抗生素发酵废菌渣的无害化及资源再利用研究进展[J]. 生物技术通报, 2015, 31(5):13-19.
DOI |
CHEN Liwen, FANG Senhai, WANG Mingzi. Research progress on the harmless treatment and resource reuse of antibiotic bacteria residues[J]. Biotechnology Bulletin, 2015, 31(5):13-19.
DOI |
|
[3] | 吴树洁. 典型抗生素菌渣残留效价检测方法及其利用的初步研究[D]. 哈尔滨: 哈尔滨工业大学. |
WU Shujie. Residual titer detection of representative antibiotics bacterial residues and preliminary research of biopharmaceutical residue resources utilization[D]. Harbin: Harbin Institute of Technology, 2016. | |
[4] | 陈冠益, 刘环博, 李健, 等. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, 40(2):459-473. |
CHEN Guanyi, LIU Huanbo, LI Jian, et al. Treatment of antibiotic mycelial fermentation residue: the critical review[J]. Environmental Chemistry, 2021, 40(2):459-473. | |
[5] | 公丕成, 蔡辰, 张博, 等. 我国抗生素菌渣资源化研究新进展[J]. 环境工程, 2017, 35(5):107-111. |
GONG Peicheng, CAI Chen, ZHANG Bo, et al. New progress of reseach on resource of antibiotic bacterial residue in China[J]. Environmental Engineering, 2017, 35(5):107-111. | |
[6] |
陈立文, 方森海, 王明兹. 抗生素发酵废菌渣的无害化及资源再利用研究进展[J]. 生物技术通报, 2015, 31(5):13-19.
DOI |
CHEN Liwen, FANG Senhai, WANG Mingzi. Research progress on the harmless treatment and resource reuse of antibiotic bacteria residues[J]. Biotechnology Bulletin, 2015, 31(5):13-19.
DOI |
|
[7] | 段子恒. 青霉素菌渣肥对土壤环境和西红柿生长的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
DUAN Ziheng. Effect of Penilillin mycelial drug fertilizer on soil environment and growth of tomato[D]. Harbin: Harbin Institute of Technology, 2016. | |
[8] | 高嘉岐. 泰乐菌素菌渣理化性质分析及其菌渣肥资源化无害化[D]. 哈尔滨: 哈尔滨师范大学, 2019. |
GAO Jiaqi. Analysis of physical and chemical properties of tylosin slag and its harmless utilization of slag fertilizer[D]. Harbin: Harbin Normal University, 2019. | |
[9] | 朱莹. 土霉素菌渣利用和处置过程环境风险评价体系的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHU Yin. Research for environmental risk evaluation system of the use and disposal process of oxytetracycline residue[D]. Harbin: Harbin Institute of Technology, 2013. | |
[10] | 彭小武, 易鸳鸯, 丁丽, 等. 抗生素菌渣有机肥对大豆土壤真菌特性的影响研究[J]. 中国资源综合利用, 2021, 39(8):51-60. |
PENG Xiaowu1 YI Yuanyang, DING Li, et al. Study on the effect of antibiotic residue organic fertilizer on the characteristics of soybean soil fungi[J]. China Resources Comprehensive Utilization, 2021, 39(8):51-60. | |
[11] | 王佳佳. 北京地区蔬菜土壤抗生素抗性基因分布特征的研究[D]. 长春: 东北电力大学, 2016. |
WANG Jiajia. Research on distribution of antibiotic of antibiotic resistance genes in vegetable soils in Beijing[D]. Changchun: Northeast Electric Power University, 2016. | |
[12] | 朱玥晗. 不同施肥措施下黑土农田土壤抗生素抗性基因的研究[D]. 牡丹江: 牡丹江师范学院, 2019. |
ZHU Yuehan. Study on antibiotic resistance genes in black soil farmland under different fertilization measures[D]. Mudanjiang: Mudanjiang Normal College, 2019. | |
[13] | 刘宇, 直俊强, 石奥, 等. 畜禽粪便中典型抗生素抗性基因的检测和分析[J]. 四川环境, 2021, 40(3):12-18. |
LIU Yu, ZHI Junqiang, SHI Ao, et al. Detection and analysis of typical antibiotic resistance genes in animal manure[J]. Sichuan Environment, 2012, 40(3):12-18. | |
[14] | Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[C]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440. |
[15] | 王晓红. 微生物制药菌渣处理处置技术风险评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
WANG Xiaohong. Study on the risk assent and disposal technologies[D] Harbin: Harbin Institute of Technology, 2012. | |
[16] | 曹志会. 典型抗生素菌渣无害化堆肥及生物安全评价研究[D]. 石家庄: 河北科技大学, 2016. |
CAO Zhihui. Innocuous compost and biological security evaluation of typical antibiotics residue[D]. Shijiazhuang: Hebei University of Science and Technology, 2016. | |
[17] | 朱莹. 土霉素菌渣利用和处置过程环境风险评价体系的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHU Ying. Research for environmental risk evaluation system of the use and disposal process of oxytetracycline residue[D]. Harbin: Harbin Institute of Technology, 2013. | |
[18] | 周睫雅. 头孢菌素菌渣肥料化利用对土壤-植物系统的影响研究[D]. 石家庄: 河北科技大学, 2020. |
ZHOU Jieya. Study on the effect of land application with cephalosporin fermentation residue in soil-plant system[D]. Shijiazhuang: Hebei University of Science and Technology, 2020. | |
[19] | 平然. 硫酸新霉素菌渣肥料化利用可行性研究[D]. 石家庄: 河北科技大学, 2019. |
PING Ran. Feasibility study on fertilizer utilization of neomycin sulfate bacterial residue[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. | |
[20] | 肖祖飞. 制药污泥的堆肥化对抗生素降解及ARGs转移的影响机制研究[D]. 苏州: 苏州科技大学, 2019. |
XIAO Zufei. Mechanisms on effects of pharmaceutical sewage sludge composting on antibiotic degradation and ARGs transfer[D]. Suzhou: Suzhou University of Science and Technology, 2019. | |
[21] | 方丹. 溶剂萃取法分离硫氰酸红霉素结晶母液废水中硫氰酸的研究[D]. 上海: 华东理工大学, 2016. |
FANG Dan. Separation of thiocyanic acid from erythromycin thiocyanate crystallization mother liquor by solvent extraction[D]. Shanghai: East China University of Science and Technology, 2016. | |
[22] | Wang B, Li G,. Cai C, et al. Assessing the safety of thermally processed penicillin mycelial dreg following the soil application: organic matter's maturation and antibiotic resistance genes[J]. Science of the Total Environment, 2018:1463-1469. |
[23] |
Muurinen J, Stedtfeld R, Karkman A, et al. Influence of manure application on the environmental resistome under finnish agricultural practice with restricted antibiotic use[J]. Environmental Science & Technology, 2017, 51(11):5989-5999.
DOI URL |
[24] |
Marti R, Tien Y C, Murray R, et al. Safely coupling livestock andc rop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure[J]. Applied and Environmental Microbiology, 2014, 80(10):3258-3265
DOI URL |
[1] | 刘婉琴, 易鸳鸯, 彭小武, 谢芳, 顾美英, 张志东. 头孢菌素菌渣有机肥对玉米土壤中耐药菌及相关抗性基因的影响[J]. 新疆农业科学, 2024, 61(4): 1003-1010. |
[2] | 贺腾飞, 刘英玉, 张柳青, 陈旺, 李泽亚, 胡芸, 蒋金豆, 祖力胡马尔·艾力. 新疆牛羊源金黄色葡萄球菌D353质粒pD353序列分析[J]. 新疆农业科学, 2023, 60(7): 1806-1812. |
[3] | 何晓辉;王立霞;方琴;王俊刚;申红. 黄粉虫抗菌肽对耐药粪肠球菌抑菌效果的研究[J]. , 2016, 53(2): 317-323. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1017
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||