新疆农业科学 ›› 2021, Vol. 58 ›› Issue (12): 2320-2326.DOI: 10.6048/j.issn.1001-4330.2021.12.019
• 植物保护·园艺特产·土壤肥料·节水灌溉·农业生态环境·农业装备工程与机械化 • 上一篇 下一篇
收稿日期:
2020-10-01
出版日期:
2021-12-20
发布日期:
2021-12-31
通信作者:
林敏娟(1979-),女,教授,硕士,研究方向为果树种质资源与遗传育种,(E-mail)lmjzky@163.com作者简介:
杨植(1995-),男,硕士研究生,研究方向为,(E-mail) 1256007929@qq.com
基金资助:
YANG Zhi(), WANG Zhenlei, LIN Minjuan(
)
Received:
2020-10-01
Published:
2021-12-20
Online:
2021-12-31
Correspondence author:
LIN Minjuan(1979-),male,professor,(E-mail)lmjzky@163.comSupported by:
摘要: 目的 基于近红外光谱技术的红枣水分无损检测,为红枣水分含量模型建立提供科学依据。方法 以塔里木大学园艺试验站红枣资源圃中的脆熟期馒馒枣和保德油枣的果实为试材,采用传统烘干法测定枣果实水分含量,并通过近红外光谱分析仪进行枣水分无损检测。对2个品种样本光谱进行样本集划分并使用预处理的方法Savitzky-Golay平滑法和偏最小二乘回归分析法(PLS)。结果 建立了含水量定量检测分析模型。共获得212个样本,馒馒枣和保德油枣分别为100和112个,2个品种随机校正模型为75和84个,验证模型分别为25和28个,用外部证实法建立样品校正模型和验证模型。建立光谱模型将试验组分别分为红枣含水量校正模型和验证模型。所建2种红枣水分检测模型中SEC(校正集标准偏差)值分别为1.01%和1.29%;SEP(预测标准偏差)值为1.65%和1.41%,2种红枣的校正集与验证集交互相关系数分别为0.878和0.883。结论 以S-G平滑法对光谱数据预处理,以偏最小二乘进行回归分析(PLS)。建立含水量定量检测分析模型对红枣进行水分检测,水分真实值和预测值的交互相关系数均高于0.850。2个品种校正模型和验证模型差异较小均在0.5%左右,建立了红枣近红外光谱和水分含量之间的对应关系。
中图分类号:
杨植, 王振磊, 林敏娟. 基于近红外光谱技术的红枣水分无损检测[J]. 新疆农业科学, 2021, 58(12): 2320-2326.
YANG Zhi, WANG Zhenlei, LIN Minjuan. Nondestructive Testing of Jujube Water Based on the NTRS[J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2320-2326.
品种 Varie ties | 样品集 Sample set | 样品数 Number of samples | 均值 Mean (%) | 最大值 Max (%) | 最小值 Min (%) | 标准差 Standard deviation (%) |
---|---|---|---|---|---|---|
馒馒枣 Manm anzao | 正集 | 75 | 72.14 | 76.23 | 66.06 | 2.11 |
验证集 | 25 | 71.79 | 75.08 | 66.51 | 2.16 | |
保德油枣 Baode youzao | 校正集 | 84 | 65.26 | 72.10 | 58.74 | 2.73 |
验证集 | 28 | 64.92 | 71.72 | 59.81 | 2.96 |
表1 不同品种红枣水分样本
Table 1 Water samples of different jujube varieties situation
品种 Varie ties | 样品集 Sample set | 样品数 Number of samples | 均值 Mean (%) | 最大值 Max (%) | 最小值 Min (%) | 标准差 Standard deviation (%) |
---|---|---|---|---|---|---|
馒馒枣 Manm anzao | 正集 | 75 | 72.14 | 76.23 | 66.06 | 2.11 |
验证集 | 25 | 71.79 | 75.08 | 66.51 | 2.16 | |
保德油枣 Baode youzao | 校正集 | 84 | 65.26 | 72.10 | 58.74 | 2.73 |
验证集 | 28 | 64.92 | 71.72 | 59.81 | 2.96 |
馒馒枣 Manmanzao | 保德油枣 Baodeyouzao | ||||||
---|---|---|---|---|---|---|---|
编号 No | 预测值 Predicted value (%) | 真实值 True value (%) | 偏差 Deviation | 编号 No | 预测值 Predicted value (%) | 真实值 True value (%) | 偏差 Deviation |
1A | 72.94 | 73.14 | -0.20 | 1A | 65.74 | 69.05 | -3.31 |
2A | 72.79 | 74.67 | -1.88 | 2A | 68.89 | 66.96 | 1.93 |
3A | 73.82 | 72.59 | 1.23 | 3A | 66.92 | 68.00 | -1.08 |
4A | 69.78 | 71.88 | -2.10 | 4A | 68.55 | 71.72 | -3.17 |
5A | 70.69 | 71.22 | -0.53 | 5A | 65.78 | 65.44 | 0.34 |
6A | 71.44 | 68.78 | 2.66 | 6A | 64.28 | 64.75 | -0.47 |
7A | 70.51 | 66.51 | 4.00 | 7A | 67.90 | 70.97 | -3.07 |
8A | 72.40 | 70.85 | 1.55 | 8A | 64.98 | 64.65 | 0.33 |
9A | 69.65 | 68.46 | 1.19 | 9A | 63.58 | 63.38 | 0.20 |
10A | 73.33 | 72.71 | 0.62 | 10A | 64.04 | 63.93 | 0.11 |
11A | 76.09 | 72.88 | 3.21 | 11A | 65.38 | 65.19 | 0.19 |
12A | 70.00 | 70.00 | 0.00 | 12A | 59.62 | 60.25 | -0.63 |
13A | 73.73 | 74.82 | -1.09 | 13A | 62.93 | 65.32 | -2.39 |
14A | 73.09 | 72.15 | 0.94 | 14A | 63.93 | 64.79 | -0.86 |
15A | 71.71 | 70.64 | 1.07 | 15A | 64.61 | 63.85 | 0.76 |
16A | 73.4 | 73.51 | -0.11 | 16A | 66.72 | 67.47 | -0.75 |
17A | 72.24 | 73.74 | -1.50 | 17A | 61.33 | 61.29 | 0.04 |
18A | 74.76 | 73.39 | 1.37 | 18A | 63.23 | 62.35 | 0.88 |
19A | 71.3 | 70.16 | 1.14 | 19A | 60.62 | 59.81 | 0.81 |
20A | 69.94 | 67.97 | 1.97 | 20A | 67.28 | 67.97 | -0.69 |
21A | 75.89 | 75.08 | 0.81 | 21A | 61.53 | 62.42 | -0.89 |
22A | 71.37 | 70.65 | 0.72 | 22A | 65.22 | 64.71 | 0.51 |
23A | 73.03 | 74.19 | -1.16 | 23A | 66.65 | 63.85 | 2.80 |
24A | 71.06 | 72.25 | -1.19 | 24A | 67.69 | 70.59 | -2.9 |
25A | 72.96 | 72.3 | 0.66 | 25A | 63.97 | 64.29 | -0.32 |
26A | 61.42 | 62.50 | -1.08 | ||||
27A | 64.42 | 65.63 | -1.21 | ||||
28A | 67.71 | 65.33 | 2.38 |
表2 馒馒枣和保德油枣的数据偏差
Table 2 Data deviation of Manmanzao and Baodeyouzao
馒馒枣 Manmanzao | 保德油枣 Baodeyouzao | ||||||
---|---|---|---|---|---|---|---|
编号 No | 预测值 Predicted value (%) | 真实值 True value (%) | 偏差 Deviation | 编号 No | 预测值 Predicted value (%) | 真实值 True value (%) | 偏差 Deviation |
1A | 72.94 | 73.14 | -0.20 | 1A | 65.74 | 69.05 | -3.31 |
2A | 72.79 | 74.67 | -1.88 | 2A | 68.89 | 66.96 | 1.93 |
3A | 73.82 | 72.59 | 1.23 | 3A | 66.92 | 68.00 | -1.08 |
4A | 69.78 | 71.88 | -2.10 | 4A | 68.55 | 71.72 | -3.17 |
5A | 70.69 | 71.22 | -0.53 | 5A | 65.78 | 65.44 | 0.34 |
6A | 71.44 | 68.78 | 2.66 | 6A | 64.28 | 64.75 | -0.47 |
7A | 70.51 | 66.51 | 4.00 | 7A | 67.90 | 70.97 | -3.07 |
8A | 72.40 | 70.85 | 1.55 | 8A | 64.98 | 64.65 | 0.33 |
9A | 69.65 | 68.46 | 1.19 | 9A | 63.58 | 63.38 | 0.20 |
10A | 73.33 | 72.71 | 0.62 | 10A | 64.04 | 63.93 | 0.11 |
11A | 76.09 | 72.88 | 3.21 | 11A | 65.38 | 65.19 | 0.19 |
12A | 70.00 | 70.00 | 0.00 | 12A | 59.62 | 60.25 | -0.63 |
13A | 73.73 | 74.82 | -1.09 | 13A | 62.93 | 65.32 | -2.39 |
14A | 73.09 | 72.15 | 0.94 | 14A | 63.93 | 64.79 | -0.86 |
15A | 71.71 | 70.64 | 1.07 | 15A | 64.61 | 63.85 | 0.76 |
16A | 73.4 | 73.51 | -0.11 | 16A | 66.72 | 67.47 | -0.75 |
17A | 72.24 | 73.74 | -1.50 | 17A | 61.33 | 61.29 | 0.04 |
18A | 74.76 | 73.39 | 1.37 | 18A | 63.23 | 62.35 | 0.88 |
19A | 71.3 | 70.16 | 1.14 | 19A | 60.62 | 59.81 | 0.81 |
20A | 69.94 | 67.97 | 1.97 | 20A | 67.28 | 67.97 | -0.69 |
21A | 75.89 | 75.08 | 0.81 | 21A | 61.53 | 62.42 | -0.89 |
22A | 71.37 | 70.65 | 0.72 | 22A | 65.22 | 64.71 | 0.51 |
23A | 73.03 | 74.19 | -1.16 | 23A | 66.65 | 63.85 | 2.80 |
24A | 71.06 | 72.25 | -1.19 | 24A | 67.69 | 70.59 | -2.9 |
25A | 72.96 | 72.3 | 0.66 | 25A | 63.97 | 64.29 | -0.32 |
26A | 61.42 | 62.50 | -1.08 | ||||
27A | 64.42 | 65.63 | -1.21 | ||||
28A | 67.71 | 65.33 | 2.38 |
[1] | 柳维扬, 蒋学玮, 曹琦, 等. 盐胁迫对南疆滴灌枣园红枣生长的影响[J]. 北方园艺, 2018,(1):67-71. |
LIU Weiyang, JIANG Xuewei, CAO Qi, et al. Effects of Salt Stress on Jujube Growth in Drip Irrigation Yard in Southern Xinjiang[J]. Northern Horticulture, 2018,(1):67-71. | |
[2] | 刘孟军. 枣属植物分类学研究进展-文献综述[J]. 园艺学报, 1999,(5):302-308. |
LIU Mengjun. Advances in Taxonomy Study on the Genus Ziziphus[J]. Acta Horticulturae Sinica, 1999,26(5):302-308. | |
[3] | 彭云发, 彭海根, 詹映, 等. 近红外光谱对南疆红枣水分无损检测的研究[J]. 食品科技, 2013,38(11):260-263. |
PENG Yunfa, PENG Haigeng, ZHAN Ying, et al. Nondestructive testing of jujube water in south Xinjiang by NIRS[J]. Food Science and Technology, 2013,38(11):260-263. | |
[4] | 褚小立, 史云颖, 陈瀑, 等. 近五年我国近红外光谱分析技术研究与应用进展[J]. 分析测试学报, 2019,38(5):603-611. |
CHU Xiaoli, SHI Yunying, CHEN Pu, et al. Research and Application Progresses of Near Infrared Spectroscopy Analytical Technique in China in Past Five Years[J]. Journal of Instrumental Analysis, 2019,38(5):603-611. | |
[5] | 李江波, 饶秀勤, 应义斌. 农产品外部品质无损检测中高光谱成像技术的应用研究进展[J]. 光谱学与光谱分析, 2011,31(8):2021-2026. |
LI Jiangbo, RAO Xiuqin, YING Yibin. Advance on Application of Hyperspectral Imaging to Nondestructive Detection of Agricultural Products External Quality[J]. Spectroscopy and Spectral Analysis, 2011,31(8):2021-2026. | |
[6] | 李金梦, 叶旭君, 王巧男, 等. 高光谱成像技术的柑橘植株叶片含氮量预测模型[J]. 光谱学与光谱分析, 2014,34(1):212-216. |
LI Jinmeng, YE Xujun, WANG Qiaonan, et al. Development of Prediction Models for Determining N Content in Citrus Leaves Based on Hyperspectral Imaging Technology[J]. Spectroscopy and Spectral Analysis, 2014,34(1):212-216. | |
[7] | 庄新港. 近红外光谱分析应用研究及新型光谱感知节点入射光学系统设计[D]. 济南:山东大学, 2017. |
ZHUANG Xingang. Applied study of near-infrared Spectroscopy and Indidence Optical System Design of New SPectral Sensing Node[D]. Jinan: Shangdong University, 2017. | |
[8] | 彭海根, 彭云发, 詹映, 等. 近红外光谱技术结合联合区间间隔偏最小二乘法对南疆红枣糖度的测定[J]. 食品科技, 2014,39(6):276-280. |
PENG Haigeng, PENG Yunfa, ZHAN Yin, et al. Determination of the sugar content of jujube in south Xinjiang by near infrared spectroscopy combined with siPLS methods[J]. Food Science and Technology, 2014,39(6):276-280. | |
[9] | 罗华平, 卢启鹏. 近红外拓扑方法在南疆红枣品质分析中的应用[J]. 光谱学与光谱分析, 2012,32(3):655-659. |
LUO Huaping, LU Qipeng. Application of Near-Infrared Topology Method in the Quality Analysis of Jujube of Southern Xinjiang[J]. Spectroscopy and Spectral Analysis, 2012,32(3):655-659. | |
[10] | 李光君. 热成像技术与近红外光谱技术结合无损检测西拉葡萄叶片水分含量[J]. 山西农业科学, 2016,44(10):1467-1475. |
LI Guangjun. Combination of Thermal Imaging and NIR Spectroscopy Technology to Test Water Content in Shiraz Leaves[J]. Journal of Shanxi Agricultural Sciences, 2016,44(10):1467-1475. | |
[11] | Nicolaï B M, Beullens K, Bobelyn E. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review[J]. Postharvest Biology & Technology, 2007,46(2):99-118. |
[12] | Barnes R J, Dhanoa S M, Lister J S. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Applied Spectroscopy, 2016,43(5):772-777. |
[13] | Gorry A P. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method[J]. Analytical Chemistry, 1990,62(6):570-573. |
[14] | Delwiche S R, Mekwatanakarn W, Wang Y C. Soluble solids and simple measurement in intact mango using near infrared spectroscopy[J]. Horttechnology, 2008,(18). |
[15] | Nicolaï B M, Verlinden B E, Desmet M. Time-resolve and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear[J]. Postharvest Biology & Technology, 2008,47(1):68-74. |
[16] | Travers S, Bertelsen M G, Petersen K K. Predicting pear (cv. Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy[J]. Lebensmittel-Wissenschaft und-Technologie, 2014,59(2):1107-1113. |
[17] | Ito S, Ootake Y, Yoshimura Y E A. Nondestructive determination of sugar content in watermelon by near infrared spectroscopy[J]. Research Bulletin of the Aichi-ken Agricultural Research Center, 1993,31:153-158. |
[18] | Ito H, Fukino-Ito N, Horie H E A. Non-destructive detection of physiological disorders in melons using near infrared spectroscopy[J]. Acta Horticulture, 2003,645:229-234. |
[19] | Guthrie J, Wedding B. Robustness of NIR calibrations for soluble solids in intact melon and pineapple[J]. Journal of Near Infrared Spectroscopy, 1998,6:259-265. |
[20] | Guthrie J A, Liebenberg C J, Walsh K B. NIR model development and robustness in prediction of melon fruit total soluble solids[J]. Australian Journal of Agricultural Research, 2006,57(4):207-213. |
[21] | Jha S N, R G. Non-destructive prediction of quality of intact apple using near infrared spectroscopy[J]. Journal of Food Science & Technology, 2010,47(2):207-213. |
[22] | 李桂峰, 赵国建, 刘兴华, 等. 苹果硬度的傅里叶变换近红外光谱无损检测[J]. 农业机械学报, 2009,40(1):120-123. |
LI Guifeng, ZHAO Guojian, LIU Xinghua, et al. Using FT-NIR Spectra in Non-invasive Measurements of Apple Firmness[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009,40(1):120-123. | |
[23] | 屠振华, 籍保平, 孟超英, 等. 基于遗传算法和间隔偏最小二乘的苹果硬度特征波长分析研究[J]. 光谱学与光谱分析, 2009,29(10):2760-2764. |
TU Zhenghua, JI Baoping, MENG Chaoying, et al. Analysis of NIR Characteristic Wavelengths for Apple Flesh Firmness Based on GA and iPLS[J]. Spectroscopy and Spectral Analysis, 2009,29(10):2760-2764. | |
[24] | 王加华, 汤智辉, 韩东海. 多年份苹果糖度近红外预测模型建立[J]. 食品安全质量检测学报, 2014,5(3):742-747. |
WANG Jiahua, TANG Zhihui, HAN Donghai. Developing a predictive model of soluble solids content for apple harvested at different years[J]. Journal of Food Safety & Quality, 2014,5(3):742-747. | |
[25] | 毛莎莎, 曾明, 何绍兰, 等. 哈姆林甜橙果实内在品质的可见-近红外漫反射光谱无损检测法[J]. 食品科学, 2010,31(14):258-263. |
MAO Shasha, ZENG Ming, HE Shaolan. Non-destructive Measurement of Soluble Solids, Vitamin C and Titratable Acidity of Hamlin Sweet Orange using Vis/NIR Spectrometry[J]. Food Science, 2010,31(14):258-263. | |
[26] | 刘洁. 基于近红外光谱技术的板栗品质无损检测方法研究[D]. 武汉:华中农业大学, 2011. |
LIU Jie. Nondestructive measurement of properties of Chestnut based on near infrared spectroscopy[D]. Wuhan: Huazhong Agricultural University, 2011. |
[1] | 沈煜洋, 洪高洁, 范贵强, 陈利, 雷钧杰, 李广阔, 高海峰. 杀虫剂减施和添加助剂对红枣-小麦间作麦田蚜虫防效的影响[J]. 新疆农业科学, 2024, 61(9): 2257-2268. |
[2] | 杨明花, 刘强, 冯国瑞, 廖必勇, 达吾来·杰克山, 彭云承, 布阿依夏木·那曼提, 陈艳萍. 鲜食糯玉米适宜采收期与籽粒含水量分析[J]. 新疆农业科学, 2024, 61(7): 1626-1630. |
[3] | 梁志国, 王泽鹏, 贾宋楠, 范凤翠, 刘胜尧, 张哲, 杜凤焕, 秦勇. 不同土壤水分对设施茄子生长、产量、品质及水分利用效率的影响[J]. 新疆农业科学, 2023, 60(7): 1713-1721. |
[4] | 高倩, 王亚梅, 吴平凡, 张红美, 周岭. 基于近红外光谱的果树残枝纤维组分含量分析[J]. 新疆农业科学, 2022, 59(8): 2025-2032. |
[5] | 方晓彤, 范盈盈, 刘峰娟, 薛鹏, 康露, 田维娜, 王成. 骏枣生育期内源苯甲酸及3种酚酸变化规律[J]. 新疆农业科学, 2022, 59(2): 403-409. |
[6] | 阿丽努尔·阿不都热衣木, 张珍珍, 黄亚东, 阿卜杜瓦日斯·图尔荪江, 陈恺, 李焕荣. 干制红枣可溶性糖含量变化动态模型的构建[J]. 新疆农业科学, 2021, 58(7): 1342-1354. |
[7] | 张梦丽, 岳春芳, 李艺珍. 成龄枣树光合特性与光响应曲线模型[J]. 新疆农业科学, 2020, 57(2): 274-282. |
[8] | 李曦光, 王蕾, 刘平, 罗磊, 侯晓臣, 邱琴. 基于MaxEnt模型的新疆红枣生态适宜性与区划分析[J]. 新疆农业科学, 2020, 57(10): 1785-1791. |
[9] | 李曦光, 刘平, 王蕾, 罗磊, 高健. 基于3S技术分析经济林资源时空分布[J]. 新疆农业科学, 2019, 56(9): 1733-1742. |
[10] | 郑文强, 岳春芳, 曹伟. 基于冠气温差的阿克苏成龄红枣缺水诊断及预测[J]. 新疆农业科学, 2019, 56(12): 2256-2262. |
[11] | 萨吉达木·艾则孜, 麦合木提江·米吉提, 赵志强, 许泰百, 郭庆元. 一种侵染红枣叶片和果实的病原真菌鉴定[J]. 新疆农业科学, 2018, 55(9): 1682-1688. |
[12] | 徐叶挺,张校立,木巴热克·阿尤普,代培红,郭丁,龚鹏. 不同活力花粉与其内含物及水分含量变化及相关性[J]. 新疆农业科学, 2018, 55(8): 1452-1456. |
[13] | 王宁, 侯敏, 房世杰, 艾尼江·尔斯满, 侯新强, 杨蓉, 包慧芳. 红枣黑斑病拮抗细菌JK1产芽孢培养基的优化[J]. 新疆农业科学, 2018, 55(6): 1098-1106. |
[14] | 阎聪, 朱荣光, 黄昆鹏, 邱园园, 范中建, 孟令峰. 羊肉近红外光谱采集质量的影响因素[J]. 新疆农业科学, 2018, 55(5): 974-980. |
[15] | 汪洋,安沙舟. 干旱区内陆河流域典型灌区土地利用变化与耗水量研究[J]. 新疆农业科学, 2018, 55(2): 362-370. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||