

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (5): 1293-1300.DOI: 10.6048/j.issn.1001-4330.2025.05.028
• Animal Husbandry Veterinarian·Agricultural Eeconomy • Previous Articles
TIAN Conghua(
), CENG Hongmei, ZHANG Lizhao, MIAO Hongping, WANG Hongmei, DAI Junsheng(
)
Received:2024-10-11
Online:2025-05-20
Published:2025-07-09
Correspondence author:
DAI Junsheng
Supported by:
田聪华(
), 张利召, 苗红萍, 程红梅, 王红梅, 戴俊生(
)
通讯作者:
戴俊生
作者简介:田聪华(1978-),女,甘肃武威人,研究员,硕士,研究方向为区域经济与产业经济,(E-mali)391253466@qq.com
基金资助:CLC Number:
TIAN Conghua, CENG Hongmei, ZHANG Lizhao, MIAO Hongping, WANG Hongmei, DAI Junsheng. Evaluation of agricultural production efficiency in four prefectures in Southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1293-1300.
田聪华, 张利召, 苗红萍, 程红梅, 王红梅, 戴俊生. 新疆南疆四地州农业生产效率评价[J]. 新疆农业科学, 2025, 62(5): 1293-1300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.05.028
| 指标 Index | 变量 Variable | 平均值 Average value | 标准差 Standard deviation | 个案数 Number of cases |
|---|---|---|---|---|
| 产出指标 Output indicators | 农林牧渔业总产值y1(104元) | 6 436 237.55 | 4 216 738.01 | 22 |
| 投入指标 Input index | 农林水事务支出x1(104元) | 1 284 015.39 | 1 581 452.76 | 22 |
| 乡村劳动力数x2(人) | 2 911 736.91 | 842 184.63 | 22 | |
| 农村用电量x3(104kW) | 162 439.93 | 135 619.14 | 22 | |
| 化肥施用量x4(t) | 576 108.26 | 224 429.76 | 22 | |
| 农用塑料薄膜使用量x5(t) | 61 267.09 | 23 445.17 | 22 | |
| 农业机械总动力x6(104kW) | 568.24 | 308.10 | 22 | |
| 农作物播种总面积x7(104hm2) | 174.85 | 48.05 | 22 |
Tab.1 Descriptive statistics of input-output indicators
| 指标 Index | 变量 Variable | 平均值 Average value | 标准差 Standard deviation | 个案数 Number of cases |
|---|---|---|---|---|
| 产出指标 Output indicators | 农林牧渔业总产值y1(104元) | 6 436 237.55 | 4 216 738.01 | 22 |
| 投入指标 Input index | 农林水事务支出x1(104元) | 1 284 015.39 | 1 581 452.76 | 22 |
| 乡村劳动力数x2(人) | 2 911 736.91 | 842 184.63 | 22 | |
| 农村用电量x3(104kW) | 162 439.93 | 135 619.14 | 22 | |
| 化肥施用量x4(t) | 576 108.26 | 224 429.76 | 22 | |
| 农用塑料薄膜使用量x5(t) | 61 267.09 | 23 445.17 | 22 | |
| 农业机械总动力x6(104kW) | 568.24 | 308.10 | 22 | |
| 农作物播种总面积x7(104hm2) | 174.85 | 48.05 | 22 |
| 指标 index | 农林牧渔业 总产值y1 The total output value of agriculture, forestry, animal husbandry and fishery y1 | 农林水事 务支出x1 Expenditure on agriculture, forestry and water services x1 | 乡村劳动 力数x2 Number of rural labor force x2 | 农村用 电量x3 Rural electricity consumption x3 | 化肥施 用量x4 The amount of chemical fertilizer applied x4 | 农用塑料薄 膜使用量x5 Agricultural plastic film usage x5 | 农业机械 总动力x6 Total power of agricultural machinery x6 | 农作物播种 总面积x7 Total sown area of crops x7 | |
|---|---|---|---|---|---|---|---|---|---|
| 农林牧渔业 总产值y1 The total output value of agriculture, forestry, animal husbandry and fishery y1 | 相关性 | 1 | 0.891** | 0.962** | 0.976** | 0.940** | 0.879** | 0.981** | 0.925** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农林水事务 支出x1 Expenditure on agriculture, forestry and water services x1 | 相关性 | 0.891** | 1 | 0.883** | 0.912** | 0.835** | 0.756** | 0.900** | 0.776** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 乡村劳动 力数x2 Number of rural labor force x2 | 相关性 | 0.962** | 0.883** | 1 | 0.955** | 0.978** | 0.934** | 0.993** | 0.955** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农村用 电量x3 Rural electricity consumption x3 | 相关性 | 0.976** | 0.912** | 0.955** | 1 | 0.912** | 0.879** | 0.976** | 0.923** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 化肥施用量x4 The amount of chemical fertilizer applied x4 | 相关性 | 0.940** | 0.835** | 0.978** | 0.912** | 1 | 0.962** | 0.975** | 0.962** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农用塑料薄 膜使用量x5 Agricultural plastic film usage x5 | 相关性 | 0.879** | 0.756** | 0.934** | 0.879** | 0.962** | 1 | 0.928** | 0.963** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农业机械 总动力x6 Total power of agricultural machinery x6 | 相关性 | 0.981** | 0.900** | 0.993** | 0.976** | 0.975** | 0.928** | 1 | 0.960** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农作物播种 总面积x7 Total sown area of crops x7 | 相关性 | 0.925** | 0.776** | 0.955** | 0.923** | 0.962** | 0.963** | 0.960** | 1 |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Tab.2 Pearson correlation coefficients of input and output variables from 2000 to 2021
| 指标 index | 农林牧渔业 总产值y1 The total output value of agriculture, forestry, animal husbandry and fishery y1 | 农林水事 务支出x1 Expenditure on agriculture, forestry and water services x1 | 乡村劳动 力数x2 Number of rural labor force x2 | 农村用 电量x3 Rural electricity consumption x3 | 化肥施 用量x4 The amount of chemical fertilizer applied x4 | 农用塑料薄 膜使用量x5 Agricultural plastic film usage x5 | 农业机械 总动力x6 Total power of agricultural machinery x6 | 农作物播种 总面积x7 Total sown area of crops x7 | |
|---|---|---|---|---|---|---|---|---|---|
| 农林牧渔业 总产值y1 The total output value of agriculture, forestry, animal husbandry and fishery y1 | 相关性 | 1 | 0.891** | 0.962** | 0.976** | 0.940** | 0.879** | 0.981** | 0.925** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农林水事务 支出x1 Expenditure on agriculture, forestry and water services x1 | 相关性 | 0.891** | 1 | 0.883** | 0.912** | 0.835** | 0.756** | 0.900** | 0.776** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 乡村劳动 力数x2 Number of rural labor force x2 | 相关性 | 0.962** | 0.883** | 1 | 0.955** | 0.978** | 0.934** | 0.993** | 0.955** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农村用 电量x3 Rural electricity consumption x3 | 相关性 | 0.976** | 0.912** | 0.955** | 1 | 0.912** | 0.879** | 0.976** | 0.923** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 化肥施用量x4 The amount of chemical fertilizer applied x4 | 相关性 | 0.940** | 0.835** | 0.978** | 0.912** | 1 | 0.962** | 0.975** | 0.962** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农用塑料薄 膜使用量x5 Agricultural plastic film usage x5 | 相关性 | 0.879** | 0.756** | 0.934** | 0.879** | 0.962** | 1 | 0.928** | 0.963** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农业机械 总动力x6 Total power of agricultural machinery x6 | 相关性 | 0.981** | 0.900** | 0.993** | 0.976** | 0.975** | 0.928** | 1 | 0.960** |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 农作物播种 总面积x7 Total sown area of crops x7 | 相关性 | 0.925** | 0.776** | 0.955** | 0.923** | 0.962** | 0.963** | 0.960** | 1 |
| 显著性 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
| 区域Region | Crste | Vrste | Scale |
|---|---|---|---|
| 新疆南疆四地州 Four prefectures in Southern Xinjiang | 0.954 | 0.969 | 0.984 |
| 阿克苏地区 Aksu region | 0.913 | 0.930 | 0.980 |
| 克孜勒苏柯尔 克孜自治州 Kizilsu Kirghiz Autonomous Prefecture | 0.959 | 0.973 | 0.986 |
| 喀什地区 Kashgar Region | 0.980 | 0.986 | 0.994 |
| 和田地区 Hotan Region | 0.962 | 0.986 | 0.975 |
Tab.3 Analysis results of DEA Model in four states in Southern Xinjiang
| 区域Region | Crste | Vrste | Scale |
|---|---|---|---|
| 新疆南疆四地州 Four prefectures in Southern Xinjiang | 0.954 | 0.969 | 0.984 |
| 阿克苏地区 Aksu region | 0.913 | 0.930 | 0.980 |
| 克孜勒苏柯尔 克孜自治州 Kizilsu Kirghiz Autonomous Prefecture | 0.959 | 0.973 | 0.986 |
| 喀什地区 Kashgar Region | 0.980 | 0.986 | 0.994 |
| 和田地区 Hotan Region | 0.962 | 0.986 | 0.975 |
| 年份 Years | 阿克苏地区 Aksu Region | 克孜勒苏柯尔克孜自治州 Kizilsu Kirghiz Autonomous Prefecture | 喀什地区 Kashgar Region | 和田地区 Hotan Region | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Crste | Vrste | Scale | Rs | Crste | Vrste | Scale | Rs | Crste | Vrste | Scale | Rs | Crste | Vrste | Scale | Rs | |
| 2000 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2001 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.979 | 1 | 0.979 | irs | 0.995 | 0.995 | 1 | irs |
| 2002 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.997 | 1 | 0.997 | irs | 1 | 1 | 1 | - |
| 2003 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2004 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2005 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.984 | 1 | 0.984 | irs | 1 | 1 | 1 | - |
| 2006 | 0.984 | 0.984 | 0.999 | irs | 0.97 | 1 | 0.97 | irs | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2007 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2008 | 0.848 | 0.875 | 0.969 | irs | 0.954 | 0.956 | 0.998 | irs | 1 | 1 | 1 | - | 0.969 | 1 | 0.969 | irs |
| 2009 | 0.901 | 0.903 | 0.998 | irs | 0.89 | 0.922 | 0.965 | irs | 1 | 1 | 1 | - | 0.916 | 0.975 | 0.939 | irs |
| 2010 | 0.953 | 0.954 | 0.999 | irs | 0.837 | 0.876 | 0.956 | irs | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2011 | 0.872 | 0.873 | 0.999 | irs | 0.882 | 0.926 | 0.952 | irs | 1 | 1 | 1 | - | 0.975 | 0.991 | 0.984 | irs |
| 2012 | 0.844 | 0.888 | 0.95 | irs | 0.884 | 0.904 | 0.977 | irs | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2013 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2014 | 0.904 | 0.916 | 0.987 | irs | 0.93 | 0.931 | 0.999 | irs | 1 | 1 | 1 | - | 0.953 | 0.955 | 0.997 | drs |
| 2015 | 0.988 | 1 | 0.988 | irs | 0.951 | 0.977 | 0.973 | irs | 0.986 | 0.986 | 1 | irs | 0.932 | 0.983 | 0.948 | drs |
| 2016 | 0.69 | 0.72 | 0.958 | irs | 0.953 | 0.977 | 0.975 | irs | 0.934 | 0.938 | 0.996 | irs | 0.888 | 0.912 | 0.974 | irs |
| 2017 | 0.589 | 0.681 | 0.865 | irs | 0.959 | 1 | 0.959 | irs | 0.94 | 0.951 | 0.988 | irs | 0.734 | 0.902 | 0.813 | irs |
| 2018 | 0.87 | 0.916 | 0.949 | irs | 1 | 1 | 1 | - | 0.966 | 0.97 | 0.996 | drs | 0.826 | 0.981 | 0.842 | irs |
| 2019 | 0.795 | 0.854 | 0.931 | irs | 1 | 1 | 1 | - | 0.892 | 0.919 | 0.971 | irs | 1 | 1 | 1 | - |
| 2020 | 0.857 | 0.891 | 0.962 | irs | 0.897 | 0.932 | 0.962 | irs | 0.885 | 0.923 | 0.958 | irs | 0.985 | 1 | 0.985 | irs |
| 2021 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
Tab.4 The results of DEA model analysis
| 年份 Years | 阿克苏地区 Aksu Region | 克孜勒苏柯尔克孜自治州 Kizilsu Kirghiz Autonomous Prefecture | 喀什地区 Kashgar Region | 和田地区 Hotan Region | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Crste | Vrste | Scale | Rs | Crste | Vrste | Scale | Rs | Crste | Vrste | Scale | Rs | Crste | Vrste | Scale | Rs | |
| 2000 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2001 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.979 | 1 | 0.979 | irs | 0.995 | 0.995 | 1 | irs |
| 2002 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.997 | 1 | 0.997 | irs | 1 | 1 | 1 | - |
| 2003 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2004 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2005 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.984 | 1 | 0.984 | irs | 1 | 1 | 1 | - |
| 2006 | 0.984 | 0.984 | 0.999 | irs | 0.97 | 1 | 0.97 | irs | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2007 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2008 | 0.848 | 0.875 | 0.969 | irs | 0.954 | 0.956 | 0.998 | irs | 1 | 1 | 1 | - | 0.969 | 1 | 0.969 | irs |
| 2009 | 0.901 | 0.903 | 0.998 | irs | 0.89 | 0.922 | 0.965 | irs | 1 | 1 | 1 | - | 0.916 | 0.975 | 0.939 | irs |
| 2010 | 0.953 | 0.954 | 0.999 | irs | 0.837 | 0.876 | 0.956 | irs | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2011 | 0.872 | 0.873 | 0.999 | irs | 0.882 | 0.926 | 0.952 | irs | 1 | 1 | 1 | - | 0.975 | 0.991 | 0.984 | irs |
| 2012 | 0.844 | 0.888 | 0.95 | irs | 0.884 | 0.904 | 0.977 | irs | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2013 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 2014 | 0.904 | 0.916 | 0.987 | irs | 0.93 | 0.931 | 0.999 | irs | 1 | 1 | 1 | - | 0.953 | 0.955 | 0.997 | drs |
| 2015 | 0.988 | 1 | 0.988 | irs | 0.951 | 0.977 | 0.973 | irs | 0.986 | 0.986 | 1 | irs | 0.932 | 0.983 | 0.948 | drs |
| 2016 | 0.69 | 0.72 | 0.958 | irs | 0.953 | 0.977 | 0.975 | irs | 0.934 | 0.938 | 0.996 | irs | 0.888 | 0.912 | 0.974 | irs |
| 2017 | 0.589 | 0.681 | 0.865 | irs | 0.959 | 1 | 0.959 | irs | 0.94 | 0.951 | 0.988 | irs | 0.734 | 0.902 | 0.813 | irs |
| 2018 | 0.87 | 0.916 | 0.949 | irs | 1 | 1 | 1 | - | 0.966 | 0.97 | 0.996 | drs | 0.826 | 0.981 | 0.842 | irs |
| 2019 | 0.795 | 0.854 | 0.931 | irs | 1 | 1 | 1 | - | 0.892 | 0.919 | 0.971 | irs | 1 | 1 | 1 | - |
| 2020 | 0.857 | 0.891 | 0.962 | irs | 0.897 | 0.932 | 0.962 | irs | 0.885 | 0.923 | 0.958 | irs | 0.985 | 1 | 0.985 | irs |
| 2021 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | - |
| 指标 Indexes | 投入 | ||||||
|---|---|---|---|---|---|---|---|
| 农林水事务 支出S+(万元) Expenditure on agriculture, forestry and water services (104yuan) | 乡村劳动力 数S+(人) Number of rural labor force (person) | 农村用电量 S+(万千瓦) Rural electricity consumption (104kW/h) | 化肥施 用量S+(吨) Rural electricity consumption (t) | 农用塑料薄膜 使用量S+(吨) Agricultural plastic film usage (t) | 农业机械 总动力 S+(万千瓦) Total power of agricultural machinery (104kW/h) | 农作物播种 总面积 S+(万公顷) Total sown area of crops (104hm2) | |
| 合计 Total | 150 303.909 | 35 494.664 | 8 394.291 | 29 808.632 | 5 547.887 | 20.574 | 3.415 |
| 阿克苏地区 Aksu Region | 45 760.622 | 7 951.969 | 776.278 | 22 055.626 | 2 975.625 | 5.049 | 1.325 |
| 克孜勒苏柯尔 克孜自治州 Kizilsu Kirghiz Autonomous Prefecture | 5 693.687 | 2 597.188 | 0.000 | 390.650 | 37.484 | 0.413 | 0.068 |
| 喀什地区 Kashgar Region | 98 274.589 | 16 946.119 | 2 894.136 | 6 719.036 | 2 217.927 | 12.976 | 1.770 |
| 和田地区 Hotan Region | 575.011 | 7 999.388 | 4 723.877 | 643.320 | 316.851 | 2.136 | 0.253 |
Tab.5 Inputs the redundant table
| 指标 Indexes | 投入 | ||||||
|---|---|---|---|---|---|---|---|
| 农林水事务 支出S+(万元) Expenditure on agriculture, forestry and water services (104yuan) | 乡村劳动力 数S+(人) Number of rural labor force (person) | 农村用电量 S+(万千瓦) Rural electricity consumption (104kW/h) | 化肥施 用量S+(吨) Rural electricity consumption (t) | 农用塑料薄膜 使用量S+(吨) Agricultural plastic film usage (t) | 农业机械 总动力 S+(万千瓦) Total power of agricultural machinery (104kW/h) | 农作物播种 总面积 S+(万公顷) Total sown area of crops (104hm2) | |
| 合计 Total | 150 303.909 | 35 494.664 | 8 394.291 | 29 808.632 | 5 547.887 | 20.574 | 3.415 |
| 阿克苏地区 Aksu Region | 45 760.622 | 7 951.969 | 776.278 | 22 055.626 | 2 975.625 | 5.049 | 1.325 |
| 克孜勒苏柯尔 克孜自治州 Kizilsu Kirghiz Autonomous Prefecture | 5 693.687 | 2 597.188 | 0.000 | 390.650 | 37.484 | 0.413 | 0.068 |
| 喀什地区 Kashgar Region | 98 274.589 | 16 946.119 | 2 894.136 | 6 719.036 | 2 217.927 | 12.976 | 1.770 |
| 和田地区 Hotan Region | 575.011 | 7 999.388 | 4 723.877 | 643.320 | 316.851 | 2.136 | 0.253 |
| [1] | 高旺盛. 新阶段农业结构调整若干战略问题讨论[J]. 民主与科学, 2021,(6): 15-17. |
| GAO Wangsheng. Discussion on some strategic problems of agricultural structure adjustment in the new stage[J]. Democracy & Science, 2021,(6): 15-17. | |
| [2] | 刘冬梅. 中国农业结构的形成、演变与调整建议[J]. 农村农业农民(B版), 2021,(6): 44-45. |
| LIU Dongmei. Formation, evolution and adjustment suggestions of agricultural structure in China[J]. Country Agriculture Farmers (B), 2021,(6): 44-45. | |
| [3] | 郭鹏鹏, 韩国明. 中国农业结构调整的阶段特征与政策演化[J]. 现代经济探讨, 2022,(11): 106-115. |
| GUO Pengpeng, HAN Guoming. Phase characteristics and policy evolution of agricultural structural adjustment in China[J]. Modern Economic Research, 2022,(11): 106-115. | |
| [4] | 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[J]. 中国水利, 2021,(6): 1-38. |
| Xinhua News Agency. The outline of the 14th Five-Year Plan(2021—2025) for national economic and social development and the long-range objectives through the year 2035 of P. R. China[J]. China Water Resources, 2021,(6): 1-38. | |
| [5] | 艾买尔江·吾斯曼, 王冀川, 阿依谢姆古丽·玉苏普, 等. 新疆林(果)麦间作原理与技术[J]. 江苏农业科学, 2016, 44(11): 72-77. |
| Aimaierjiang Wusiman, WANG Jichuan, Ayixiemuguli Yusupu, et al. Principle and technology of forest (fruit) wheat intercropping in Xinjiang[J]. Jiangsu Agricultural Sciences, 2016, 44(11): 72-77. | |
| [6] | 鲜开梅, 江伟, 王柏柯. 新疆南疆四地州果树间套作种植情况分析[J]. 北方园艺, 2016,(12): 209-210. |
| XIAN Kaimei, JIANG Wei, WANG Baike. Analysis of fruit trees intercropping planting situation of southern Xinjiang’s four regions[J]. Northern Horticulture, 2016,(12): 209-210. | |
| [7] | 李婕, 王玉斌, 程鹏飞. 中国农业全要素生产率的时空演变差异及内源构成[J]. 中国农业大学学报, 2023, 28(2): 240-252. |
| LI Jie, WANG Yubin, CHENG Pengfei. Spatio-temporal evolution differences and endogenous composition of Chinese agricultural total factor productivity[J]. Journal of China Agricultural University, 2023, 28(2): 240-252. | |
| [8] | 张海霞, 韩佩珺. 农业全要素生产率测度及收敛性分析——基于Hicks-Moorsteen指数[J]. 农村经济, 2018,(6): 55-61. |
| ZHANG Haixia, HAN Peijun. Measurement and convergence analysis of agricultural total factor productivity—based on Hicks-moorsteen index[J]. Rural Economy, 2018,(6): 55-61. | |
| [9] | 蹇彦丽, 马爱艳, 刘沙. 西北地区各省农业生产效率评价研究[J]. 现代商贸工业, 2023, 44(6): 1-3. |
| JIAN Yanli, MA Aiyan, LIU Sha. Study on evaluation of agricultural production efficiency of provinces in northwest China[J]. Modern Business Trade Industry, 2023, 44(6): 1-3. | |
| [10] | 郭萍, 余康, 黄玉. 中国农业全要素生产率地区差异的变动与分解——基于Färe-Primont生产率指数的研究[J]. 经济地理, 2013, 33(2): 141-145. |
| GUO Ping, YU Kang, HUANG Yu. Changes and decomposition of agricultural TFP regional disparities in China: study of Färe-primont TFP index[J]. Economic Geography, 2013, 33(2): 141-145. | |
| [11] | 王大勇, 田东林, 刘文才. 基于DEA模型的云南省农业生产效率研究[J]. 现代农业科技, 2023,(11): 217-220. |
| WANG Dayong, TIAN Donglin, LIU Wencai. Study on agricultural production efficiency in Yunnan Province based on DEA model[J]. Modern Agricultural Science and Technology, 2023,(11): 217-220. | |
| [12] | 杜小军, 魏建国. 乡村振兴背景下山东省农业生产效率实证研究——基于三阶段DEA方法[J]. 山东农业大学学报(社会科学版), 2023, 25(2): 159-165. |
| DU Xiaojun, WEI Jianguo. Empirical study on the agricultural production efficiency of Shandong Province under the background of rural revitalization—based on the three-stage DEA method[J]. Journal of Shandong Agricultural University (Social Science Edition), 2023, 25(2): 159-165. | |
| [13] | 温馥榕, 张友泓, 朱芝燕, 等. 基于DEA模型的广西农业生产效率研究[J]. 农村经济与科技, 2022, 33(23): 92-95. |
| WEN Furong, ZHANG Youhong, ZHU Zhiyan, et al. Research on agricultural production efficiency in Guangxi based on DEA model[J]. Rural Economy and Science-Technology, 2022, 33(23): 92-95. | |
| [14] | 安博文, 侯震梅, 蒋北辰, 等. 新疆农业生产效率测度的实证研究——基于农业高质量发展新视角[J]. 云南农业大学学报(社会科学), 2021, 15(5): 95-102. |
| AN Bowen, HOU Zhenmei, JIANG Beichen, et al. Calculation of production efficiency of Xinjiang agricultural: based on high-quality development[J]. Journal of Yunnan Agricultural University (Social Science), 2021, 15(5): 95-102. | |
| [15] | 徐康宁, 喻晓玲. 基于数据包络模型下的新疆农业生产效率研究[J]. 湖北农业科学, 2021, 60(7): 161-165. |
| XU Kangning, YU Xiaoling. Study on agricultural production efficiency in Xinjiang based on data envelopment model[J]. Hubei Agricultural Sciences, 2021, 60(7): 161-165. | |
| [16] | 李季鹏, 黄永胜, 安博文. 新疆低碳农业生产效率研究——基于SBM-DEA的研究方法[J]. 绿色财会, 2021,(4): 9-15. |
| LI Jipeng, HUANG Yongsheng, AN Bowen. Study on production efficiency of low-carbon agriculture in Xinjiang—based on SBM-DEA research method[J]. Green Finance and Accounting, 2021,(4): 9-15. | |
| [17] | 彭铿. 基于超效率DEA和Malmquist指数新疆农业生产效率研究[J]. 当代农村财经, 2019,(9): 7-14. |
| PENG. Analysis of agricultural production efficiency and total factor productivity in Xinjiang based on super-efficiency DEA and Malmquist index[J]. Contemporary Rural Finance and Economics, 2019,(9): 7-14. | |
| [18] | 张驰, 张晔, 李苗. 新疆农业生产效率地区差异分解与影响因素研究——基于非期望产出Super-SBM-Theil-GMS[J]. 中国农业资源与区划, 2018, 39(10): 100-106. |
| ZHANG Chi, ZHANG Ye, LI Miao. Study on regional difference decomposition and influencing factors of agricultural production efficiency in Xinjiang—based on super-sbm(undesirable)-theil-gms three-stage model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(10): 100-106. | |
| [19] | 张立. 基于SFA模型的农业生产技术效率分析——以新疆为例[J]. 现代商贸工业, 2014, 35(8): 35-37. |
| ZHANG Li. Technical efficiency analysis of agricultural production based on SFA model—taking Xinjiang as an example[J]. Modern Business Trade Industry, 2014, 35(8): 35-37. | |
| [20] | 颜聪聪, 车斌. 基于三阶段DEA的新疆区域种植业生产效率研究[J]. 地域研究与开发, 2019, 38(4): 147-152. |
| YAN Congcong, CHE Bin. Research on production efficiency of Xinjiang regional planting industry based on three-stage DEA[J]. Areal Research and Development, 2019, 38(4): 147-152. |
| [1] | ZHANG Yongqiang, ZHANG Heng, FANG Hui, CHEN Chuanxin, Sailihan Sai, XUE Lihua, CHEN Xingwu, LEI Junjie. Response of Winter Wheat Canopy Structure and Microclimate to Planting Density in Walnut-Wheat Intercropping Pattern [J]. Xinjiang Agricultural Sciences, 2020, 57(7): 1177-1186. |
| [2] | LIU Xiangyu, LOU Shanwei, WANG Ruihua, ZHANG Pengzhong, Bahargul Xamxi, PENG Hua, REN Hongsong. Evaluation and Selection of Upland Cotton Varieties Suitable for Melon-Cotton Intercropping Pattern [J]. Xinjiang Agricultural Sciences, 2020, 57(6): 1000-1008. |
| [3] | HE Jing-xue;CHEN Tong;LIU Guo-yong. Analysis of Economic Benefits in Three Prefectures in Southern Xinjiang Based on Jujube Grain and Cotton Intercropping Pattern [J]. , 2014, 51(1): 183-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||