新疆农业科学 ›› 2024, Vol. 61 ›› Issue (10): 2475-2483.DOI: 10.6048/j.issn.1001-4330.2024.10.015
• 植物保护·土壤肥料·节水灌溉·农业装备工程与机械化·草业 • 上一篇 下一篇
黄伟1(), 王宁1, 宋博2, 王苏玲1, 秦新政1, 宋素琴1, 罗义1, 魏增宙1, 张丽娟1,3(
), 王玮1(
)
收稿日期:
2024-04-08
出版日期:
2024-10-20
发布日期:
2024-11-07
通信作者:
张丽娟(1986-),女,山东人,副研究员,研究方向为微生物资源,(E-mail)532172011@qq.com;作者简介:
黄伟(1991-),男,新疆阿图什人,助理研究员,研究方向为有益微生物代谢产物,(E-mail)1428775150@qq.com
基金资助:
HUANG Wei1(), WANG Ning1, SONG Bo2, WANG Suling1, QIN Xinzheng1, SONG Suqin1, LUO Yi1, WEI Zengzhou1, ZHANG Lijuan1,3(
), WANG Wei1(
)
Received:
2024-04-08
Published:
2024-10-20
Online:
2024-11-07
Correspondence author:
ZHANG Lijuan (1986-), female, from Shandong, associate researcher, research direction: microbial resources, (E-mail)532172011@qq.com;Supported by:
摘要:
【目的】 研究不同相态下娄彻氏链霉菌Streptomyces rochei A144挥发性物质对苹果树腐烂病菌壳囊孢Valsa mali的抑制效果,并进行体外检测,确定具有抑菌活性挥发性物质种类。【方法】 采用平板对扣法测定不同生长时期(0、10、20、25、30 d)娄彻氏链霉菌A144挥发性物质对苹果树腐烂病菌的抑制效果,使用顶空固相微萃取和气相色谱-串联质谱法检测分析其挥发性物质的含量,分别采用平板对扣法和涂抹法得出液态和气态处理下具有较好抑菌活性的挥发性物质。【结果】 当娄彻氏链霉菌A144生长至20 d时,菌株A144产生的挥发性物质对苹果树腐烂病菌的抑制率为100%;生长至20 d的菌株A144共产生了63种挥发性物质。当浓度为62.50 μL/L时,愈创木酚、1-辛醇和二甲基三硫气态熏蒸处理仍能完全抑制苹果树腐烂病菌的生长;将原液稀释8倍后,即体积分数为12.5% 的1-辛醇和二甲基三硫液态处理仍能完全抑制苹果树腐烂病菌的生长。【结论】 挥发性物质单体化合物1-辛醇和二甲基三硫具有显著抑制苹果树腐烂病菌的能力,有潜力作为抗苹果树腐烂病的重要开发农药药剂来源。
中图分类号:
黄伟, 王宁, 宋博, 王苏玲, 秦新政, 宋素琴, 罗义, 魏增宙, 张丽娟, 王玮. 不同相态娄彻氏链霉菌A144挥发性物质对苹果树腐烂病菌的抑制效果[J]. 新疆农业科学, 2024, 61(10): 2475-2483.
HUANG Wei, WANG Ning, SONG Bo, WANG Suling, QIN Xinzheng, SONG Suqin, LUO Yi, WEI Zengzhou, ZHANG Lijuan, WANG Wei. Inhibitory effect of different phases of Streptomyces rochei A144 volatile substances on Valsa mali var.mali[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2475-2483.
峰号 Peak no. | 保留时间 Retention time(min) | 相对含量 Relative content(%) | 相似度 Similarity(%) | CAS号 CAS# | 挥发性物质名称 Name of volaile substance |
---|---|---|---|---|---|
1 | 6.012 | 3.51 | 96 | 624-92-0 | 二甲基二硫/Disulfide, dimethyl |
2 | 19.204 | 3 | 97 | 513-86-0 | 3-羟基-2-丁酮/Acetoin |
3 | 21.582 | 4.23 | 97 | 3658-80-8 | 二甲基三硫/Dimethyl trisulfide |
4 | 27.026 | 0.06 | 87 | 111-87-5 | 1-辛醇/1-Octanol |
5 | 27.609 | 0.42 | 92 | 513-85-9 | 2,3-丁二醇/2,3-Butanediol |
6 | 33.381 | 0.07 | 95 | 3796-70-1 | 香叶基丙酮/5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- |
7 | 33.57 | 0.75 | 98 | 90-5-1 | 愈创木酚/Phenol, 2-methoxy- |
8 | 33.858 | 1.39 | 95 | 100-51-6 | 苯甲醇/Benzyl alcohol |
9 | 34.634 | 53.94 | 97 | 60-12-8 | 苯乙醇/Phenylethyl Alcohol |
表1 菌株A144部分挥发性物质相对含量及相似度对比
Tab.1 Comparisons determination results of part of relative content and similarity with volatile substances produced by strain A144
峰号 Peak no. | 保留时间 Retention time(min) | 相对含量 Relative content(%) | 相似度 Similarity(%) | CAS号 CAS# | 挥发性物质名称 Name of volaile substance |
---|---|---|---|---|---|
1 | 6.012 | 3.51 | 96 | 624-92-0 | 二甲基二硫/Disulfide, dimethyl |
2 | 19.204 | 3 | 97 | 513-86-0 | 3-羟基-2-丁酮/Acetoin |
3 | 21.582 | 4.23 | 97 | 3658-80-8 | 二甲基三硫/Dimethyl trisulfide |
4 | 27.026 | 0.06 | 87 | 111-87-5 | 1-辛醇/1-Octanol |
5 | 27.609 | 0.42 | 92 | 513-85-9 | 2,3-丁二醇/2,3-Butanediol |
6 | 33.381 | 0.07 | 95 | 3796-70-1 | 香叶基丙酮/5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- |
7 | 33.57 | 0.75 | 98 | 90-5-1 | 愈创木酚/Phenol, 2-methoxy- |
8 | 33.858 | 1.39 | 95 | 100-51-6 | 苯甲醇/Benzyl alcohol |
9 | 34.634 | 53.94 | 97 | 60-12-8 | 苯乙醇/Phenylethyl Alcohol |
挥发性物质名称 Name of volatile substance | 抑制率 Inhibition rate(%) | |||
---|---|---|---|---|
62.50 μL/L | 125.00 μL/L | 250.00 μL/L | 500.00 μL/L | |
香叶基丙酮Geranyl acetone | 0e | 22.97±4.64d | 67.20±1.17c | 73.31±1.95b |
苯甲醇Benzyl alcohol | 70.38±1.08b | 82.29±0.79b | 80.10±1.87b | 100a |
3-羟基-2-丁酮3-hydroxy-2-butanone | 3.23±0.97d | 13.08±0.71e | 12.48±0.99f | 12.66±3.58c |
愈创木酚Guaiacol | 100a | 100a | 100a | 100a |
二甲基二硫Dimethyl disulfide | 0e | 28.07±2.29cd | 45.54±2.17e | 100a |
辛醇1-octanol | 100a | 100a | 100a | 100a |
二甲基三硫Dimethyl trisulfide | 100a | 100a | 100a | 100a |
2,3-丁二醇2, 3-butanediol | 0e | 0f | 0g | 0d |
苯乙醇Phenylethanol | 35.29±3.54c | 34.53±3.56c | 51.83±1.46d | 71.74±1.16b |
表2 不同浓度挥发性物质气态熏蒸下苹果树腐烂病菌抑制率的变化 Fig.2 Changes of inhibition rate of different concentrations of volatile substances on Valsa mali by gaseous fumigation
挥发性物质名称 Name of volatile substance | 抑制率 Inhibition rate(%) | |||
---|---|---|---|---|
62.50 μL/L | 125.00 μL/L | 250.00 μL/L | 500.00 μL/L | |
香叶基丙酮Geranyl acetone | 0e | 22.97±4.64d | 67.20±1.17c | 73.31±1.95b |
苯甲醇Benzyl alcohol | 70.38±1.08b | 82.29±0.79b | 80.10±1.87b | 100a |
3-羟基-2-丁酮3-hydroxy-2-butanone | 3.23±0.97d | 13.08±0.71e | 12.48±0.99f | 12.66±3.58c |
愈创木酚Guaiacol | 100a | 100a | 100a | 100a |
二甲基二硫Dimethyl disulfide | 0e | 28.07±2.29cd | 45.54±2.17e | 100a |
辛醇1-octanol | 100a | 100a | 100a | 100a |
二甲基三硫Dimethyl trisulfide | 100a | 100a | 100a | 100a |
2,3-丁二醇2, 3-butanediol | 0e | 0f | 0g | 0d |
苯乙醇Phenylethanol | 35.29±3.54c | 34.53±3.56c | 51.83±1.46d | 71.74±1.16b |
挥发性物质名称 Name of volatile substance | 抑制率Inhibition rate(%) | |||
---|---|---|---|---|
原液 Original fluid | 稀释2倍 Diluted 2 times | 稀释4倍 Diluted 4 times | 稀释8倍 Diluted 8 times | |
香叶基丙酮Geranyl acetone | 100a | 80.23±0.66b | 75.91±0.53b | 70.51±1.25c |
苯甲醇Benzyl alcohol | 100a | 100a | 100a | 26.76±4.29e |
3-羟基-2-丁酮3-hydroxy-2-butanone | 0b | 0c | 0c | 0f |
愈创木酚Guaiacol | 100a | 100a | 100a | 87.63±0.39b |
二甲基二硫Dimethyl disulfide | 0b | 0c | 0c | f |
1-辛醇1-octanol | 100a | 100a | 100a | 100a |
二甲基三硫Dimethyl trisulfide | 100a | 100a | 100a | 100a |
2,3-丁二醇2, 3-butanediol | 0b | 0c | 0c | 0f |
苯乙醇Phenylethanol | 100a | 100a | 100a | 67.93±0.65d |
表3 不同浓度的挥发性物质液态处理下苹果树腐烂病菌抑制率的变化 Fig.3 Changes of inhibition rate of different concentrations of volatile substances on Valsa mali by liquid treatment
挥发性物质名称 Name of volatile substance | 抑制率Inhibition rate(%) | |||
---|---|---|---|---|
原液 Original fluid | 稀释2倍 Diluted 2 times | 稀释4倍 Diluted 4 times | 稀释8倍 Diluted 8 times | |
香叶基丙酮Geranyl acetone | 100a | 80.23±0.66b | 75.91±0.53b | 70.51±1.25c |
苯甲醇Benzyl alcohol | 100a | 100a | 100a | 26.76±4.29e |
3-羟基-2-丁酮3-hydroxy-2-butanone | 0b | 0c | 0c | 0f |
愈创木酚Guaiacol | 100a | 100a | 100a | 87.63±0.39b |
二甲基二硫Dimethyl disulfide | 0b | 0c | 0c | f |
1-辛醇1-octanol | 100a | 100a | 100a | 100a |
二甲基三硫Dimethyl trisulfide | 100a | 100a | 100a | 100a |
2,3-丁二醇2, 3-butanediol | 0b | 0c | 0c | 0f |
苯乙醇Phenylethanol | 100a | 100a | 100a | 67.93±0.65d |
[34] | Qadri M, Deshidi R, Ali Shah B, et al. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds[J]. World Journal of Microbiology and Biotechnology, 2015, 31(10): 1647-1654. |
[35] | 陈利军, 王国君, 田雪亮, 等. 产香真菌ZY-2菌株鉴定及其挥发性物质抑菌活性测定与组分分析[J]. 南方农业学报, 2013, 44(11): 1818-1822. |
CHEN Lijun, WANG Guojun, TIAN Xueliang, et al. Identification of an aroma-producing fungus ZY-2 and its analysis on antifungal activity and chemical component of volatile compounds[J]. Journal of Southern Agriculture, 2013, 44(11): 1818-1822. | |
[36] | 孙敏. 白刺链霉菌(Streptomyces albospinus)CT205次生代谢活性物质的结构鉴定及对尖孢镰刀菌的抑制作用[D]. 南京: 南京农业大学, 2019: 43. |
SUN Min. Strctural Identification of Secindary Metabolically Active Substance of Streptomyces Albosponus CT205 and Its Antagonistic Effect Against Fusarium Oxysporum[D]. Nanjing: Nanjing Agricultural University, 2019: 43. | |
[37] | CN202210019112.6.挥发性物质在防治番茄颈腐根腐病中的应用[P]. |
CN202210019112.6.Application of volatile substances in the control of tomato neck rot root rot[P]. | |
[38] | Papazlatani C, Rousidou C, Katsoula A, et al. Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils[J]. European Journal of Plant Pathology, 2016, 146(2): 391-400. |
[39] |
宫安东, 董飞燕, 吴楠楠, 等. 吡咯伯克霍尔德菌WY6-5产二甲基二硫对储藏期花生黄曲霉及毒素的抑制作用[J]. 中国农业科学, 2019, 52(17): 2972-2982.
DOI |
GONG Andong, DONG Feiyan, WU Nannan, et al. Inhibitory effect of dimethyl disulfide from Burkholderia pyrrocinia WY6-5 on Aspergillus flavus and aflatoxins in peanuts during storage period[J]. Scientia Agricultura Sinica, 2019, 52(17): 2972-2982. | |
[40] | 李宝庆, 张晓云, 郭庆港, 等. 枯草芽孢杆菌CAB-1产挥发性物质对病原菌及植物的作用[C]// 中国植物病理学会2011年学术年会论文集. 宜昌, 2011: 553. |
[1] | 张琼, 刘召阳, 高承宇, 等. 苹果树腐烂病菌含cupin结构域蛋白Vmcupin1的鉴定及功能分析[J]. 植物病理学报, 2023, 53(4): 580-588. |
ZHANG Qiong, LIU Zhaoyang, GAO Chengyu, et al. Identification and functional analysis of cupin domain-containing protein Vmcupin1 in Valsa Mali[J]. Acta Phytopathologica Sinica, 2023, 53(4): 580-588. | |
[2] |
戴蓬博, 张荣, 孙广宇. 中国苹果病害病原菌物名录[J]. 菌物学报, 2021, 40(4): 936-964.
DOI |
DAI Pengbo, ZHANG Rong, SUN Guangyu. A checklist of pathogenic fungi on apple in China[J]. Mycosystema, 2021, 40(4): 936-964.
DOI |
|
[3] | Wang X L, Wei J L, Huang L L, et al. Re-evaluation of pathogens causing Valsa canker on apple in China[J]. Mycologia, 2011, 103(2): 317-324. |
[4] | Meng X L, Yang R, Liu A T, et al. The influence of lower temperature induction of Valsa mali on the infection of apple trees[J]. Plant Disease, 2021, 105(10): 2776-2780. |
[5] | Wang X L, Shi C M, Gleason M L, et al. Fungal species associated with apple Valsa canker in East Asia[J]. Phytopathology Research, 2020, 2(1): 35. |
[6] |
Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Applied and Environmental Microbiology, 2005, 71(9): 4951-4959.
PMID |
[7] | Raaijmakers J M, Vlami M, de Souza J T. Antibiotic production by bacterial biocontrol agents[J]. Antonie Van Leeuwenhoek, 2002, 81(1/2/3/4): 537-547. |
[8] | Morath S U, Hung R, Bennett J W. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential[J]. Fungal Biology Reviews, 2012, 26(2/3): 73-83. |
[9] | 钟涛, 王智荣, 杜木英. 微生物源挥发性物质防治采后果蔬病害的研究进展[J]. 微生物学报, 2021, 61(7): 1771-1785. |
ZHONG Tao, WANG Zhirong, DU Muying. Control of postharvest fruits and vegetables diseases by microbial volatile compounds[J]. Acta Microbiologica Sinica, 2021, 61(7): 1771-1785. | |
[10] | 黄伟, 张丽娟, 王宁, 等. 芽孢杆菌属挥发性物质及其在植物病害防治中的应用研究进展[J]. 中国植保导刊, 2021, 41(9): 30-36. |
HUANG Wei, ZHANG Lijuan, WANG Ning, et al. Research progress and application of Bacillus spp. volatile organic compounds in plant disease control[J]. China Plant Protection, 2021, 41(9): 30-36. | |
[11] | Mcain A H. A volatile antibiotic produced by Streptomyces griseus[J]. Phytopathology, 1966, 56(2): 150. |
[12] | Fiddaman P J, Rossall S. The production of antifungal volatiles by Bacillus subtilis[J]. The Journal of Applied Bacteriology, 1993, 74(2): 119-126. |
[13] | Raza W, Wang J C, Wu Y C, et al. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum[J]. Applied Microbiology and Biotechnology, 2016, 100(17): 7639-7650. |
[14] | Sapers G M, Gorny J R, Yousef A E. 果蔬微生物学[M].陈卫, 田丰伟, 译. 北京: 中国轻工业出版社, 2011: 58-65. |
Sapers G M, Gorny J R, Yousef A E. Microbiology of fruits and vegetables translated by CHEN Wei, TIAN Fengwei[M]. Beijing: China Light Industry Press, 2011:58-65. | |
[15] | 王宁, 黄伟, 鲁致远, 等. 苹果树腐烂病生防链霉菌A144的鉴定及其代谢产物的抑菌活性[J]. 西北农业学报, 2023, 32(3): 440-449. |
WANG Ning, HUANG Wei, LU Zhiyuan, et al. Identification of biocontrol Streptomyces A144 against apple tree Valsa cancer and antifungal activity of its metabolites[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(3): 440-449. | |
[16] | 黄伟, 王宁, 刘峰娟, 等. 产香真菌M6-5的鉴定及其挥发性物质对库尔勒香梨果实采后黑斑病的抑制效果[J]. 食品科学, 2022, 43(22): 199-206. |
[40] | LI Baoqing, ZHANG Xiaoyun, GUO Qinggang, et al. Effects of volatile substances produced by Bacillus subtilis CAB-1 on pathogenic bacteria and plants[C]// Proceedings of the 2011 Annual Conference of Chinese Society of Plant Pathology. Yichang, 2011: 553. |
[16] |
HUANG Wei, WANG Ning, LIU Fengjuan, et al. Identification of aroma-producing fungal strain M6-5 and inhibitory effect of volatile substances from it on postharvest black spot of Korla fragrant pear[J]. Food Science, 2022, 43(22): 199-206.
DOI |
[17] | Murungi L K, Kirwa H, Coyne D, et al. Identification of key root volatiles signaling preference of tomato over spinach by the root knot nematode Meloidogyne incognita[J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7328-7336. |
[18] | Estupiñan-López L, Campos V P, da Silva Júnior J C, et al. Volatile compounds produced by Fusarium spp. isolated from Meloidogyne paranaensis egg masses and corticous root tissues from coffee crops are toxic to Meloidogyne incognita[J]. Tropical Plant Pathology, 2018, 43(3): 183-193. |
[19] | Zhai Y L, Shao Z Z, Cai M M, et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita[J]. Frontiers in Microbiology, 2018, 9: 253. |
[20] | Ye L, Wang J Y, Liu X F, et al. Nematicidal activity of volatile organic compounds produced by Bacillus altitudinis AMCC 1040 against Meloidogyne incognita[J]. Archives of Microbiology, 2022, 204(8): 521. |
[21] | 吴云成. 拮抗油菜菌核病的功能菌筛选与作用机制研究[D]. 南京: 南京农业大学, 2016: 65-68. |
WU Yuncheng. Isolation and Antagonisitic Mechanism Investigation of Biocontrol Agents Against Sclerotinia Stem Rot of Canola[D]. Nanjing: Nanjing Agricultural University, 2016: 65-68. | |
[22] | Li Q L, Ning P, Zheng L, et al. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa[J]. Postharvest Biology and Technology, 2010, 58(2): 157-165. |
[23] | 李其利. 链霉菌JK-1的鉴定及其防病潜能和防病机制的研究[D]. 武汉: 华中农业大学, 2011: 105-111. |
LI Qili. Identification, Biocontrol Potential and Mode of Action of Streptomyces JK-1[D]. Wuhan: Huazhong Agricultural University, 2011: 105-111. | |
[24] | 王小姣. Streptomyces albospinus CT205诱变育种及在芹菜根腐病防控中的应用[D]. 南京: 南京农业大学, 2020: 34-35. |
WANG Xiaojiao. Mutation Breeding of Streptomyces Albospinus CT205 and the Application in Preventing Celery Root Rot[D]. Nanjing: Nanjing Agricultural University, 2020: 34-35. | |
[25] | 李其利, 郭堂勋, 黄穗萍, 等. 细菌产生的挥发性物质及其生物学功能[J]. 微生物学杂志, 2012, 32(5): 74-82. |
LI Qili, GUO Tangxun, HUANG Suiping, et al. Volatile substances produced by bacteria and their biological functions[J]. Journal of Microbiology, 2012, 32(5): 74-82. | |
[26] | 张春慧. 链霉菌TD-1产挥发性物质抑制番茄灰霉病菌的研究[D]. 天津: 天津科技大学, 2015: 24. |
ZHANG Chunhui. Study on the Inhibiting of Volatiles Produced by Streptomyces Alboflavus TD-1 on Botrytis Cinerea[D]. Tianjin:Tianjin University of Science & Technology, 2015: 24. | |
[27] | Wilkins K, Schöller C. Volatile organic metabolites from selected Streptomyces strains[J]. Actinomycetologica, 2009, 23(2): 27-33. |
[28] | 吕昂. 链霉菌3-10抗真菌代谢产物鉴定及防病潜力评估[D]. 武汉: 华中农业大学, 2017: 111-118. |
LYU Ang. Identification of the Antifungal Metabolites from Streptomyces sp.3-10 and Evaluation of Their Efficacy against Plant Fungal Diseases[D]. Wuhan: Huazhong Agricultural University, 2017: 111-118. | |
[29] | Sun M, Duan Y X, Liu J P, et al. Efficacy of dimethyl trisulfide on the suppression of ring rot disease caused by Botryosphaeria dothidea and induction of defense-related genes on apple fruits[J]. Frontiers in Microbiology, 2022, 13: 796167. |
[30] | 唐利华, 郭堂勋, 黄穗萍, 等. 二甲基三硫醚对杧果胶孢炭疽菌的抑制作用及机理研究[C]// 中国植物病理学会2017年学术年会论文集. 泰安, 2017: 427. |
TANG Lihua, GUO Tangxun, HUANG Suiping, et al. Study on inhibition and mechanism of dimethyl trithioether against P. indica[C] // Proceedings of 2017 Annual Conference of Chinese Plant Pathology Society, Taian, 2017: 427. | |
[31] | Qin Y L, Zhang S B, Lv Y Y, et al. The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth[J]. Applied Microbiology and Biotechnology, 2022, 106(13/14/15/16): 5179-5196. |
[32] | Romero-Cortes T, Pérez España V H, López Pérez P A, et al. Antifungal activity of vanilla juice and vanillin against Alternaria alternata[J]. CyTA-Journal of Food, 2019, 17(1): 375-383. |
[33] | Yang J F, Yang C H, Liang M T, et al. Chemical composition,Antioxi-dant,and antibacterial activity of wood vinegar from Litchi chenensis[J]. Molecules, 2016, 21(9): 1150. |
[1] | 李华静, 王晓东. 酵母菌0939-5产挥发性抑菌物质固态发酵工艺优化[J]. 新疆农业科学, 2023, 60(7): 1773-1779. |
[2] | 王如月, 罗莎莎, 王茹, 虎海防, 孙雅丽. 利用GC-IMS分析3个核桃品种叶片挥发性物质指纹差异[J]. 新疆农业科学, 2023, 60(11): 2764-2778. |
[3] | 刘亚伟, 张延辉, 赵芳, 谭世新, 陈俊宏, 杨开伦. 不同生育期红三叶草营养成分含量变化研究[J]. 新疆农业科学, 2017, 54(8): 1531-1539. |
[4] | 孟伊娜;马燕;邹淑萍;许铭强;张谦. 不同成熟期骏枣贮藏期环磷酸腺苷变化研究[J]. , 2016, 53(8): 1436-1443. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||