新疆农业科学 ›› 2023, Vol. 60 ›› Issue (5): 1244-1252.DOI: 10.6048/j.issn.1001-4330.2023.05.024
华兰兰1,2(), 林青2, 时红玲2, 王娜3, 娄恺2, 李金玉1(
), 霍向东2(
)
收稿日期:
2022-09-30
出版日期:
2023-05-20
发布日期:
2023-05-22
通信作者:
霍向东(1974-),男,甘肃人,副研究员,博士,研究方向为微生物资源,(E-mail) xiangdonghuo@163.com;作者简介:
华兰兰(1994-),女,安徽人,硕士研究生,研究方向为应用生物化学与分子生物学,(E-mail)1370708071@qq.com
基金资助:
HUA Lanlan1,2(), LIN Qing2, SHI Hongling2, WANG Na3, LOU Kai2, LI Jinyu1(
), HUO Xiangdong2(
)
Received:
2022-09-30
Published:
2023-05-20
Online:
2023-05-22
Supported by:
摘要:
【目的】分析新疆桦褐孔菌生物学特性及化学成分。【方法】由采自新疆阿勒泰的桦褐孔菌菌核组织分离获得纯培养菌株HS819,利用Biolog FF微孔板表征该菌株的碳源代谢特征;利用GC-MS分析菌核、菌丝体及发酵液的石油醚提取物化学成分。【结果】菌株HS819与桦褐孔菌菌株PAT29027(OP019327)的相似性为99.73%,结合菌核、菌落、菌丝形态及系统进化分析,确定该菌株为桦褐孔菌;该菌株的碳源代谢特征表明其对D-核糖、甘氨酰-L-谷氨酸、水杨苷、β-甲基-D-半乳糖苷、α-酮戊二酸、D-纤维二糖、L-谷氨酸等7种碳源的代谢能力最强;GC-MS在菌核、菌丝体及发酵液中分别检测出43种、39种和38种成分,烃类、酸类和酯类的相对含量明显高于醛类与醇类,其中酸类是菌核及菌丝体的主要成分,分别占总成分的66.07% 和60.03%,在发酵液中,烃类为主要成分,占54.01%。【结论】桦褐孔菌可利用的碳源中纤维素与半纤维素占主要成分;该菌株在自然环境下和液态发酵过程中检测的化学成分种类和含量上差异明显,两者基因的差异性表达可能与生物胁迫、生长环境等因素有关。
中图分类号:
华兰兰, 林青, 时红玲, 王娜, 娄恺, 李金玉, 霍向东. 新疆野生桦褐孔菌生物学特性及化学成分分析[J]. 新疆农业科学, 2023, 60(5): 1244-1252.
HUA Lanlan, LIN Qing, SHI Hongling, WANG Na, LOU Kai, LI Jinyu, HUO Xiangdong. Analysis of biological properties and chemical components of Inonotus obliquus in xinjiang[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1244-1252.
图1 桦褐孔菌菌株HS819形态特征 注:A:菌核;B:BA生长菌落;C:PDA加富平板生长菌落(正面);D:PDA加富平板生长菌落(背面);E:菌丝体(标尺=20 μm)
Fig.1 Morphological characteristics of Inonotus obliquus strain HS819 Note:A: Sclerotium; B: Upper view of colony on BA; C: Upper view of Colony on enriched PDA; D: Reverse view of colony on enriched PDA; E: Mycelia (Bars=20 μm)
图3 桦褐孔菌菌株HS819利用碳源平均吸光值变化
Fig.3 Average well color development (AWCD) of metabolized carbon sources by Inonotus obliquus strain HS819 in biolog FF microplate based on 16 d incubation (n=3)
孔 Well | 碳源 Carbon source | 代谢能力 Metabolic Capacity |
---|---|---|
E1 | D-核糖D-Ribose | +++ |
F1 | γ-氨基丁酸γ-Aminobutyric Acid | + |
H1 | 甘氨酰-L-谷氨酸Gycyl-L-Glutamic Acid | +++ |
A2 | 吐温80 Tween 80 | ++ |
E2 | 水杨苷Salicin | +++ |
C3 | D-葡萄醛酸D-Glucuronic Acid | ++ |
D3 | D-松三糖D-Melezitose | + |
F3 | 反丁烯二酸Fumaric Acid | ++ |
G3 | 琥珀酰胺酸Succinamic Acid | ++ |
G4 | 琥珀酸Succinic Acid | ++ |
B5 | D-果糖D-Fructose | + |
C5 | 肝糖Glycogen | + |
G5 | 琥珀酸单甲酯Succinic Acid Mono-Methyl Ester | ++ |
C6 | m-纤维醇m-Inositol | + |
D6 | β-甲基-D-半乳糖苷β-Methyl-D- Galactoside | +++ |
F6 | P-羟基苯乙酸p-Hydroxy-phenyla cetic Acid | ++ |
G6 | N-乙酰-L-谷氨酸N-Acetyl-L-Glutamic Acid | ++ |
B7 | D-半乳糖D-Galactose | + |
F7 | α-酮戊二酸α-Ketoglutaric Acid | +++ |
A8 | D-阿拉伯糖D-Arabinose | ++ |
B8 | D-半乳糖醛酸D-Galacturonic Acid | + |
C8 | α-D-乳糖α-D-Lactose | + |
D8 | β-甲基-D-葡萄糖苷β-Methyl-D-Glucoside | + |
A9 | L-阿拉伯糖L-Arabinose | ++ |
B9 | 龙胆二糖Gentiobiose | ++ |
E9 | D-海藻糖D-Trehalose | ++ |
C10 | 麦芽糖醇Maltitol | ++ |
A11 | 熊果苷Arbutin | ++ |
G11 | L-天冬氨酸L-Aspartic Acid | ++ |
A12 | D-纤维二糖D-Cellobiose | +++ |
B12 | α-D-葡萄糖α-D-Glucose | ++ |
E12 | D-木糖D-Xylose | ++ |
G12 | L-谷氨酸L-Glutamic Acid | +++ |
表1 桦褐孔菌菌株HS819在Biolog FF微孔板中的碳底物利用
Tab.1 Carbon substrate utilization profiling of Inonotus obliquus strain HS819 in biolog FF microplate
孔 Well | 碳源 Carbon source | 代谢能力 Metabolic Capacity |
---|---|---|
E1 | D-核糖D-Ribose | +++ |
F1 | γ-氨基丁酸γ-Aminobutyric Acid | + |
H1 | 甘氨酰-L-谷氨酸Gycyl-L-Glutamic Acid | +++ |
A2 | 吐温80 Tween 80 | ++ |
E2 | 水杨苷Salicin | +++ |
C3 | D-葡萄醛酸D-Glucuronic Acid | ++ |
D3 | D-松三糖D-Melezitose | + |
F3 | 反丁烯二酸Fumaric Acid | ++ |
G3 | 琥珀酰胺酸Succinamic Acid | ++ |
G4 | 琥珀酸Succinic Acid | ++ |
B5 | D-果糖D-Fructose | + |
C5 | 肝糖Glycogen | + |
G5 | 琥珀酸单甲酯Succinic Acid Mono-Methyl Ester | ++ |
C6 | m-纤维醇m-Inositol | + |
D6 | β-甲基-D-半乳糖苷β-Methyl-D- Galactoside | +++ |
F6 | P-羟基苯乙酸p-Hydroxy-phenyla cetic Acid | ++ |
G6 | N-乙酰-L-谷氨酸N-Acetyl-L-Glutamic Acid | ++ |
B7 | D-半乳糖D-Galactose | + |
F7 | α-酮戊二酸α-Ketoglutaric Acid | +++ |
A8 | D-阿拉伯糖D-Arabinose | ++ |
B8 | D-半乳糖醛酸D-Galacturonic Acid | + |
C8 | α-D-乳糖α-D-Lactose | + |
D8 | β-甲基-D-葡萄糖苷β-Methyl-D-Glucoside | + |
A9 | L-阿拉伯糖L-Arabinose | ++ |
B9 | 龙胆二糖Gentiobiose | ++ |
E9 | D-海藻糖D-Trehalose | ++ |
C10 | 麦芽糖醇Maltitol | ++ |
A11 | 熊果苷Arbutin | ++ |
G11 | L-天冬氨酸L-Aspartic Acid | ++ |
A12 | D-纤维二糖D-Cellobiose | +++ |
B12 | α-D-葡萄糖α-D-Glucose | ++ |
E12 | D-木糖D-Xylose | ++ |
G12 | L-谷氨酸L-Glutamic Acid | +++ |
类别 Cate- gory | 化合物 Compound | 相对含量 Relative content (%) | ||
---|---|---|---|---|
菌核 Sclero- tium | 菌丝体 Myce- lium | 发酵液 Fermen- tation broth | ||
烃类 Hydroc arbons | 2,6,10-三甲基十三烷 | - | - | 1.07 |
二十碳基环己烷 | - | 0.19 | 0.51 | |
2-甲基庚烷 | - | 0.16 | 2.14 | |
5-甲基壬烷 | - | 0.15 | - | |
环己基十九烷 | - | 0.27 | 0.91 | |
1,2-环氧十六烷 | - | 0.77 | - | |
2-甲基二十五烷 | - | 0.17 | 0.93 | |
十五烷基环己烷 | - | 0.14 | - | |
正三十六烷 | 1.33 | 0.3 | 6.58 | |
十一烷基环戊烷 | - | 0.17 | - | |
正十八烷 | - | 0.14 | - | |
α-衣兰油烯 | - | 0.2 | - | |
十四烷 | - | 0.15 | 0.63 | |
四十四烷 | 0.38 | - | 0.53 | |
正二十烷 | 1.01 | 0.26 | 4.91 | |
正二十一烷 | 0.46 | - | 0.99 | |
正十七烷 | 0.22 | - | - | |
1-碘二十烷 | 1.2 | - | - | |
1-十九碳烯 | 0.23 | 0.42 | 0.97 | |
3-甲基十七烷 | 0.28 | - | 0.97 | |
植烷 | 1 | - | - | |
1-碘癸烷 | 0.48 | - | - | |
11-甲基二十烷 | 0.39 | 0.37 | 7.11 | |
正五十四烷 | - | 2.49 | ||
三十五烷 | 1.68 | - | 7.44 | |
正二十四烷 | 1.33 | 0.41 | 4.89 | |
十六烷环己烷 | 0.37 | - | - | |
正四十烷 | 1.44 | 0.13 | 3.81 | |
正十七烷基环己烷 | 0.22 | - | 1.27 | |
1,14-二溴十四烷 | 0.32 | - | - | |
N-二十八烷 | 1.66 | - | - | |
三十四烷 | 1.68 | 0.19 | 1.87 | |
5,5-二乙基十五烷 | 1.48 | - | - | |
角鲨烯 | 4.53 | - | 3.99 | |
酸类 Acids | 九十六烷酸 | 0.45 | - | - |
肉豆蔻酸 | 2.75 | 0.99 | 3.06 | |
棕榈酸 | 7.4 | 18.51 | 3.3 | |
棕榈油酸 | 2.31 | 0.48 | - | |
硬脂酸 | 5.87 | 3.89 | - | |
酸类 Acids | 油酸 | 28.76 | 1.36 | |
反油酸 | 21.15 | 7.4 | - | |
亚油酸 | 24.39 | - | - | |
亚麻酸 | 1.75 | - | - | |
醇类 Alcohols | 1-二十三烷醇 | - | 0.32 | 1.37 |
1-二十二醇 | 0.3 | - | - | |
二十四烷醇 | 0.4 | - | - | |
二十七烷醇 | 1.55 | 0.72 | 3.05 | |
鲸蜡醇 | - | - | 0.78 | |
叶绿醇 | 1.32 | - | 1.87 | |
二十六烷醇 | 0.25 | - | 1.17 | |
酯类 Esters | 油酸乙酯 | - | 1.13 | - |
十八碳酸乙烯基酯 | - | - | 5.04 | |
十六酸乙酯 | - | 0.14 | - | |
乙酸三十烷酯 | - | 1.06 | - | |
乙酸二十八酯 | 1.06 | 1.06 | 1.06 | |
邻苯二甲酸二丁酯 | 0.21 | - | ||
(Z)-十八碳-9-烯内酯 | - | 27.12 | - | |
四十三烷基七氟丁酸酯 | - | - | 2.36 | |
4-甲氧基乙酸十三烷基酯 | - | - | 4.43 | |
邻苯二甲酸异丁基环己基甲酯 | 0.47 | - | - | |
其它 Others | 壬基十四烷基醚 | 0.48 | 0.29 | 1.28 |
辛基十四烷基醚 | - | - | 0.64 | |
十二烷基七聚乙二醇醚 | - | - | 2.57 | |
二十烷基壬基醚 | 2.7 | 0.29 | - | |
硬脂烷醛 | 0.61 | - | - | |
顺-7-十四烯醛 | 1.42 | - | - | |
N-乙基花生酰胺 | 0.33 | - | - | |
N,N-二甲基辛酰胺 | - | 0.53 | - | |
肉豆蔻酰胺 | 0.5 | - | 2.1 | |
棕榈酰胺 | - | 0.41 | ||
2,4-二叔丁基酚 | 0.85 | 0.23 | 2.16 | |
依兰酚 | - | 1.55 | 8.39 | |
萘酚 | - | 0.32 | - |
表2 野生桦褐孔菌菌核、菌株HS819菌丝体、发酵液中化学成分的定性和定量变化
Tab.2 Qualitative and quantitative results of chemical components in sclerotium, mycelium and fermentation broth of Inonotus obliquus strain HS819
类别 Cate- gory | 化合物 Compound | 相对含量 Relative content (%) | ||
---|---|---|---|---|
菌核 Sclero- tium | 菌丝体 Myce- lium | 发酵液 Fermen- tation broth | ||
烃类 Hydroc arbons | 2,6,10-三甲基十三烷 | - | - | 1.07 |
二十碳基环己烷 | - | 0.19 | 0.51 | |
2-甲基庚烷 | - | 0.16 | 2.14 | |
5-甲基壬烷 | - | 0.15 | - | |
环己基十九烷 | - | 0.27 | 0.91 | |
1,2-环氧十六烷 | - | 0.77 | - | |
2-甲基二十五烷 | - | 0.17 | 0.93 | |
十五烷基环己烷 | - | 0.14 | - | |
正三十六烷 | 1.33 | 0.3 | 6.58 | |
十一烷基环戊烷 | - | 0.17 | - | |
正十八烷 | - | 0.14 | - | |
α-衣兰油烯 | - | 0.2 | - | |
十四烷 | - | 0.15 | 0.63 | |
四十四烷 | 0.38 | - | 0.53 | |
正二十烷 | 1.01 | 0.26 | 4.91 | |
正二十一烷 | 0.46 | - | 0.99 | |
正十七烷 | 0.22 | - | - | |
1-碘二十烷 | 1.2 | - | - | |
1-十九碳烯 | 0.23 | 0.42 | 0.97 | |
3-甲基十七烷 | 0.28 | - | 0.97 | |
植烷 | 1 | - | - | |
1-碘癸烷 | 0.48 | - | - | |
11-甲基二十烷 | 0.39 | 0.37 | 7.11 | |
正五十四烷 | - | 2.49 | ||
三十五烷 | 1.68 | - | 7.44 | |
正二十四烷 | 1.33 | 0.41 | 4.89 | |
十六烷环己烷 | 0.37 | - | - | |
正四十烷 | 1.44 | 0.13 | 3.81 | |
正十七烷基环己烷 | 0.22 | - | 1.27 | |
1,14-二溴十四烷 | 0.32 | - | - | |
N-二十八烷 | 1.66 | - | - | |
三十四烷 | 1.68 | 0.19 | 1.87 | |
5,5-二乙基十五烷 | 1.48 | - | - | |
角鲨烯 | 4.53 | - | 3.99 | |
酸类 Acids | 九十六烷酸 | 0.45 | - | - |
肉豆蔻酸 | 2.75 | 0.99 | 3.06 | |
棕榈酸 | 7.4 | 18.51 | 3.3 | |
棕榈油酸 | 2.31 | 0.48 | - | |
硬脂酸 | 5.87 | 3.89 | - | |
酸类 Acids | 油酸 | 28.76 | 1.36 | |
反油酸 | 21.15 | 7.4 | - | |
亚油酸 | 24.39 | - | - | |
亚麻酸 | 1.75 | - | - | |
醇类 Alcohols | 1-二十三烷醇 | - | 0.32 | 1.37 |
1-二十二醇 | 0.3 | - | - | |
二十四烷醇 | 0.4 | - | - | |
二十七烷醇 | 1.55 | 0.72 | 3.05 | |
鲸蜡醇 | - | - | 0.78 | |
叶绿醇 | 1.32 | - | 1.87 | |
二十六烷醇 | 0.25 | - | 1.17 | |
酯类 Esters | 油酸乙酯 | - | 1.13 | - |
十八碳酸乙烯基酯 | - | - | 5.04 | |
十六酸乙酯 | - | 0.14 | - | |
乙酸三十烷酯 | - | 1.06 | - | |
乙酸二十八酯 | 1.06 | 1.06 | 1.06 | |
邻苯二甲酸二丁酯 | 0.21 | - | ||
(Z)-十八碳-9-烯内酯 | - | 27.12 | - | |
四十三烷基七氟丁酸酯 | - | - | 2.36 | |
4-甲氧基乙酸十三烷基酯 | - | - | 4.43 | |
邻苯二甲酸异丁基环己基甲酯 | 0.47 | - | - | |
其它 Others | 壬基十四烷基醚 | 0.48 | 0.29 | 1.28 |
辛基十四烷基醚 | - | - | 0.64 | |
十二烷基七聚乙二醇醚 | - | - | 2.57 | |
二十烷基壬基醚 | 2.7 | 0.29 | - | |
硬脂烷醛 | 0.61 | - | - | |
顺-7-十四烯醛 | 1.42 | - | - | |
N-乙基花生酰胺 | 0.33 | - | - | |
N,N-二甲基辛酰胺 | - | 0.53 | - | |
肉豆蔻酰胺 | 0.5 | - | 2.1 | |
棕榈酰胺 | - | 0.41 | ||
2,4-二叔丁基酚 | 0.85 | 0.23 | 2.16 | |
依兰酚 | - | 1.55 | 8.39 | |
萘酚 | - | 0.32 | - |
[1] |
Zheng W F, Miao Kj, Liu Y B, et al. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production[J]. Applied Microbiology and biotechnology, 2010, 87: 1237-1254.
DOI URL |
[2] |
Sun J E, Ao Z H, Lu Z M, et al. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice[J]. Journal of Ethnopharmacology, 118(1): 7-13.
DOI URL |
[3] |
Zhong X H, Ren K, Lu S J, et al. Progress of research on Inonotus obliquus[J]. Chinese Journal of Integrative Medicine, 2009, 15(2): 156-160.
DOI URL |
[4] |
Lu Xm, Chen H X, Dong P, et al. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus[J]. Journal of the Science of Food and Agriculture, 2010, 90(2): 276-280.
DOI URL |
[5] | Ichimura T, Watanabe O, Maruyama S. Inhibition of HIV-1 Protease by Water-Soluble Lignin-Like Substance from an Edible Mushroom, Fuscoporiaobliqua[J]. Bioscinece Biotechnology and Biochemistry, 1998, 62(3): 575-577. |
[6] |
Glamoĉlija J, Ciric A, Nikolic M, et al. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal "mushroom"[J]. Journal of Ethnopharmacology, 2015, 162: 323-332.
DOI PMID |
[7] |
Parka Y K, Lee H B, Jeon E J, et al. Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay[J]. BioFactors, 2004, 21(1-4): 109-112.
PMID |
[8] | Chen H, Xu X Q, Zhu Y. Optimization of Hydroxyl Radical Scavenging Activity of Exopolysaccharides from Inonotus obliquus in Submerged Fermentation Using Response Surface Methodology[J]. Journal Microbiol and Biotechnol, 2010, 20(4): 835-843. |
[9] |
Park Y M, Won J H, Kim Y H, et al. In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus[J]. Journal of Ethnopharmacology, 2005, 101(1-3): 120-128.
DOI URL |
[10] | Choi S Y, Hur S J, An C S, et al. Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate[J]. Biomed Research International, 2010: 1-5. |
[11] |
Song Y, Hui J, Kou W, et al. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides[J]. Current Microbiology, 2008, 57: 454-462.
DOI URL |
[12] |
Song F Q, Liu Y, Kong X S, et al. Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotusobliquus[J]. Asian Pacific Journal of Cancer Prevention, 2013, 14(3): 1571-1578.
DOI URL |
[13] |
Müller A, Faubert P, Hage N M, et al. Volatile profiles of fungi-chemotyping of species and ecological functions[J]. Fungal Genetics and Biology, 2013, 54: 25-33.
DOI PMID |
[14] |
Lu Z M, Tao W Y, Zou X L, et al. Protective effects of mycelia of Antrodiacamphorata and Armillariellatabescens in submerged culture against ethanol-induced hepatic toxicity in rats[J]. Journal of Ethnopharmacol, 2007, 110(1): 160-164.
DOI URL |
[15] |
Singh M P. Application of Biolog F F Micro Plate for substrate utilization and metabolite profiling of closely related fungi[J]. Journal of Microbiological Methods, 2009, 77(1): 102-108.
DOI URL |
[16] | 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. |
ZHENG Liping, LONG Tao, LIN Yusuo, et al. Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J]. Chinese Journal of Applied Environmental Biology, 2013 19(5): 759-765. | |
[17] |
Barrera V A, Martin M E, Aulicino M, et al. Carbon-substrate utilization profiles by Cladorrhinum (Ascomycota)[J]. Revista Argentina De Microbiología, 2019, 51(4): 302-306.
DOI URL |
[18] | 张惠艳, 李艳菊, 顾金刚, 等. 基于 Biolog-FF 技术的金霉素降解真菌的碳代谢特征研究[J]. 微生物学报, 2015, 42(7): 1241-1247. |
ZHANG Huiyan, LI Yanju, GU Jingang, et al. On carbon metabolism of fungi in chlortetracycline degradation based on Biolog-FF system[J]. Microbiology China, 2015, 42 (7): 1241-1247. | |
[19] |
Wang C, Zhuang W Y. Carbon metabolic profiling of Trichoderma strains provides insight into potential ecological niches[J]. Mycology: An International Journal on Fungal Biology, 2020, 112(2): 213-223.
DOI URL |
[20] |
Janusz G, Czurylo A, Frac M, et al. Laccase production and metabolic diversity among Flammulinavelutipes strains[J]. World Journal of Microbiology and Biotechnology, 2015, 31: 121-133.
DOI URL |
[21] |
Pérez J, Muñoz-Dorado J, De La Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview[J]. International Microbiology, 2002, 5: 53-63.
DOI PMID |
[22] |
Polizzi V, Adams A, De Saeger S, et al. Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds[J]. Science of the Total Environment, 2012, 414: 277-286.
DOI URL |
[23] | Boddy L, Frankland J, Van West P. Ecology of Saprotrophic Basidiomycetes[M]. The British Mycological Society: Elsevier Ltd, 2008. |
[24] |
Öberg G, Brunberg H, Hjelm O. Prodcction of organically-bound chorine during degradation of birch wood by common white-rot fungi[J]. Soil Biology and Biochemistry, 1997, 29(2): 191-197.
DOI URL |
[25] |
Strobel G A, Dirkse E, Sears J, et al. Volatile antimicrobials from Muscodoralbus, a novel endophytic fungus[J]. Microbiology, 2001, 147(11): 2943-2950.
DOI URL |
[26] | Stadler M, Mayer A, Anke H, et al. Fatty Acids and Other Compounds with Nematicidal Activity from Cultures of Basidiomycetes[J]. Planta Medice, 1994, 60(2): 128-132. |
[27] |
CANTRELL CL, CASE B P, MENA E E, et al. Isolation and Identification of Antifungal Fatty Acids from the Basidiomycete Gomphusfloccosus[J]. Journal of Agricultural and Food Chemistry, 2008, 56: 5062-5068.
DOI URL |
[28] | 杨生兵, 陆震鸣, 耿燕, 等. 灰树花菌核与发酵菌丝体挥发性化合物分析[J]. 菌物学报, 2013, 32(1): 103-113. |
YANG Sengbing, LU Zhenming, GENG Yan, et al. Analysis of volatile compounds in fruiting bodies and fermentation mycelium of Grifolafrondosa[J]. Journal of Fungi, 2013, 32(1): 103-113. | |
[29] | Olennikov D N, Agafonova Sy V, Penzina Ty A, et al. Fatty Acid Composition of Fourteen Wood-decaying Basidiomycete Species Growing in Permafrost Conditions[J]. Records of Natural Products, 2014, 8(2): 184-188. |
[30] |
Stahl P D, Klug M J. Characterization and Differentiation of Filamentous Fungi Based on Fatty Acid Composition[J]. Applied and Environmental Microbiology, 1996, 62(11): 4136-4146.
DOI PMID |
[31] |
Dexter Y, Cooke R C. Fatty acids, stterols and carotenoids of the psychrophilemucorstrictus and some mesophilic mucor species[J]. Transactions of the British Mycological Society, 1984, 83(3): 455-461.
DOI URL |
[32] |
Sumner J L, Morgan E D, Evans H C. The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales[J]. Canadian Journal of Microbiology, 1969, 15: 515-520.
PMID |
[33] |
Gutiérrez A, Del Rio J C, Martínez-Íñigo M J, et al. Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes[J]. Applied and Environmental Microbiology, 2002, 68(3): 1344-1350.
DOI PMID |
[34] | Vestal J R, White D C. Lipid Analysis in Microbial Ecology[J]. American Institute of Biological Sciences, 1989, 39(8): 535-541. |
[1] | 邱殿光;潘兰;力瓦衣丁·买合苏提;贾月梅;贾晓光;陈刚. 吐鲁番锦鸡儿根化学成分初步研究[J]. , 2014, 51(5): 963-966. |
[2] | 周琴;贾新岳;潘兰;贾晓光;石明辉. 哈萨克族民间药用角果藜化学成分初步研究[J]. , 2012, 49(5): 891-894. |
[3] | 阿米尼姑丽·买买提;木塔力甫·艾买提;尼砸木·艾海提;布威海丽且姆·阿巴拜科日;依米提·热合曼. 新疆产蜂胶提取物对农作物病原真菌的抗性作用[J]. , 2011, 48(9): 1716-1722. |
[4] | 周容;许晶晶;波拉提·马卡比力;潘兰;贾晓光. 新疆蓝刺头特征化学成分初步研究[J]. , 2011, 48(1): 45-47. |
[5] | 潘兰;李晓瑾;贾晓光;贾盛杰;刘绪香. 瘤果黑种草化学成分的初步研究[J]. , 2010, 47(2): 300-302. |
[6] | 潘兰;贾晓光;李晓瑾;朱军. 维药瘤果黑种草子的化学成分初步分析(Ⅰ)[J]. , 2009, 46(4): 873-876. |
[7] | 陆东林;张丹凤;刘朋龙;董茂林. 驴乳的化学成分和营养价值[J]. , 2006, 43(4): 335-340. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||